八年级数学下册平均数和加权平均数练习题及解析
人教八年级数学下册-平均数(附习题)
误区 计算加权平均数时漏掉权 二八年级期末考试成绩如下:八(1)班55人,平 均分 81分;八(2)班40人,平均分90分;八(3)45 人,平均分85分;八(4)班60人,平均分84分.求 年级平均分. 错解:x 81 90 85 84 =8(5 分)
4
正解:x 81 55 90 40 85 45 8460 =84.(6 分)
2.加权平均数中的“权”对计算结果 有什么影响?
3.能把这种加权平均数的计算方法推 广到一般吗?
一般地,若n个数x1,x2,…,xn的权分别是w1,
w2,…,wn,则
x=
x1w1+x2w2 + L +xnwn w1+w2+ L +wn
叫做这n个数的加权平均数.
如果这家公司想招一名口语能力较强的翻译, 听、说、读、写成绩按3:3:2:2的比确定,计 算两名应试者的平均成绩(百分制),从他们的 成绩看,应录取谁?
6+4
此时乙将被录取
2.晨光中学规定学生的学期体育成绩满分为100分, 其中早锻炼及体育课外活动占20%,期中考试 成绩占30%,期末考试成绩占50%.小桐的三项 成绩(百分制)依次是95分、90分、85分,小 桐这学期的体育成绩是多少?
解:小桐这学期的体育成绩为:
95 20%+90 30%+8550% =88.5(分) 20% 30% 50%
即样本平均数是1672.
用寿命合适吗?
因此,可以估计这批灯泡的平均使用寿
命大约是1672h.
1.例3中各组的“数据”和“权”怎么确定? 2.总结用样本平均数估计总体平均数的一般步骤. 3.某次数学测试成绩统计如图,试根据统计图中
的信息,求这次测试的平均成绩.
八年级数学下册20.1平均数3加权平均数平均数与加权平均数考题分析素材华东师大版(new)
平均数与加权平均数考题分析1。
算术平均数一般地,对于n 个数x 1,x 2,…,x n ,我们把)(121n x x x n+++ 叫做这n 个数据的算术平均数,简称平均数,记作x .2.加权平均数若n 个数据x 1,x 2,x 3,…,x n 的权为w 1,w 2,w 3,…,w n ,则nn n w w w w x w x w x ++++++ 212211 叫做这n 个数的加权平均数.其中数据的权能够反映数据的相对“重要程度”. 在求n 个数的算术平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次,(这里f 1+f 2+…+f k =n),那么这n 个数的算术平均数nf x f x f x x k k +++= 2211也叫做x 1,x 2,x 3,…,x k 这k 个数的加权平均数,其中f 1,f 2,…,f k 分别叫x 1,x 2,x 3,…,x k 的权。
,这也叫做n 个数据算术平均数的简便计算方法.并非真正意义上的加权平均数.计算平均数经常出现在中考试题中,请看下面来源于中考的几道试题.例1 在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表:求这30名同学捐款的平均数。
分析:要计算这30名同学捐款的平均数,观察表格信息可知有11人捐款5元,9人捐款10元,…,也就是数据5出现11次,数据出现9次,…,所以可以用算术平均的简便计算方法进行计算。
解:1130130125220615910115=⨯+⨯+⨯+⨯+⨯+⨯=x所以这30名同学捐款的平均数为11元.例2 在实施城乡清洁工作过程中,某校对各个班级教室卫生情况的考评包括以下几项:黑板、门窗、桌椅、地面。
一天,两个班级的各项卫生成绩分别如下表:(单位:分)(1)两个班的平均得分分别是多少?(2)按学校的考评要求,将黑板、门窗、桌椅、地面这四项得分依次按15%、10%、35%、40%的比例计算各班的卫生成绩,那么哪个班的卫生成绩高?请说明理由。
20.1.3 加权平均数 初中数学华东师大版八年级下册同步课时练习(含答案)
20.1.3 加权平均数知识点1 加权平均数1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3∶5∶2.小王经过考核后所得的分数依次为90分、88分、83分,那么小王的最后得分是( )A.87分B.87.5分C.87.6分D.88分2.为了满足顾客的需求,某商场将5 kg奶糖、3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖的售价为每千克20元,水果糖的售价为每千克15元,混合后什锦糖的售价应为每千克( )A.25元B.28.5元C.29元D.34.5元3.学校进行广播体操比赛,图是20位评委给某班的评分情况统计图,则该班的平均得分是 分.4.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这(m+n)个数据的平均数等于 .5.某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如下表:用水量(吨)4568户数3845则这20户家庭这个月的平均用水量是多少吨?6.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示,求小丽和小明的总平均分.学生作业测验期中考试期末考试小丽80757188小明76806890知识点2 应用平均数解决实际问题7.假期里小菲和小琳结伴去超市买水果,三次购买的草莓价格和数量如下表:价格/(元/kg)12108合计/kg小菲购买的数量/kg2226小琳购买的数量/kg1236从平均价格看,谁买得比较划算( )A.一样划算B.小菲买得比较划算C.小琳买得比较划算D.无法比较8.一次演讲比赛中,评委从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果甲859595乙958595(1)如果认为这三方面的成绩同等重要,那么从他们的成绩看,谁能胜出?(2)如果按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例计算甲、乙的平均成绩,那么谁将胜出?9.八(1)班一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男生、女生人数之比为( )A.1∶2B.2∶1C.2∶3D.3∶210.小军的期末总评成绩由平时、期中、期末成绩按权重比为2∶3∶5组成,现小军平时考试成绩为90分,期中考试成绩为75分,要使他的总评成绩不低于85分,那么小军的期末考试成绩应不低于 分.11.某班40名学生的某次数学测验成绩统计表如下:成绩(分)5060708090100人数(名)2x10y42若这个班的数学平均成绩是69分,则x= ,y= .12.某中学积极倡导阳光体育运动,提高中学生身体素质,开展跳绳比赛,下表为该校八年级(1)班40人参加跳绳比赛的情况,若标准数量为每人每分钟跳100个.跳绳个数与标准数量的差值-2-10456人数61216105(1)求八年级(1)班40人一分钟内平均每人跳绳多少个;(2)规定跳绳超过标准数量,每多跳1个加3分,规定跳绳未达到标准数量,每少跳1个扣1分.若班级跳绳总分超过250分,便可得到学校的奖励,通过计算说明八年级(1)班能否得到学校奖励.13.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序如下:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试.两个程序的结果统计如下:测试项测试成绩/分目甲乙丙笔试929095面试859580请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.14.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如下表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价;(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,则其中最多可加入丙种糖果多少千克?参考答案1.C [解析] 小王的最后得分=90×+88×+83×=27+44+16.6=87.6(分).故选C.2.C [解析] 根据题意,得(40×5+20×3+15×2)÷(5+3+2)=29(元),所以混合后什锦糖的售价应为每千克29元.故选C.3.9.1 [解析] 根据加权平均数公式,有=×(8×5+9×8+10×7)=×(40+72+70)=×182=9.1.故答案为9.1.4. 5.5.8吨6.解:小丽:80×10%+75×30%+71×25%+88×35%=79.05(分),小明:76×10%+80×30%+68×25%+90×35%=80.1(分).答:小丽的总平均分是79.05分,小明的总平均分是80.1分.7.C [解析] ∵小菲购买的平均价格是(12×2+10×2+8×2)÷6=10(元/kg),小琳购买的平均价格是(12×1+10×2+8×3)÷6=(元/kg),∴小琳买得比较划算.故选C.8.解:(1)==91(分),==91(分).∵=,∴甲、乙势均力敌.(2)=85×50%+95×40%+95×10%=90(分),=95×50%+85×40%+95×10%=91(分).∵<,∴乙将胜出.9.D [解析] 设男生有x人,女生有y人,根据题意,得=80,则82x+77y=80x+80y,即2x=3y,则x∶y=3∶2.故选D.10.8911.18 4 [解析] 依题意得50×2+60x+70×10+80y+90×4+100×2=69×40,即3x+4y=70,①x+y+2+10+4+2=40,即x+y=22,②将①-②×3,得y=4,故x=18.12.解:(1)八年级(1)班40人中平均每人跳绳的个数为100+=102(个).答:八年级(1)班40人一分钟内平均每人跳绳102个.(2)依题意,得(4×6+5×10+6×5)×3-(-2×6-1×12)×(-1)=288(分)>250分.所以八年级(1)班能得到学校奖励.13.解:(1)甲的得票数是200×34%=68(票),乙的得票数是200×30%=60(票),丙的得票数是200×28%=56(票).(2)甲的总成绩为=85.1(分);乙的总成绩为=85.5(分);丙的总成绩为=82.7(分).∵乙的总成绩最高,∴乙将被推荐.14.[解析] (1)根据加权平均数的计算公式和三种糖果的单价和千克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果(100-x)千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和什锦糖的单价每千克至少降低2元,列出不等式进行求解即可.解:(1)根据题意,得=22(元/千克).答:该什锦糖的单价是22元/千克.(2)设加入丙种糖果x千克,则加入甲种糖果(100-x)千克.根据题意,得≤22-2,解得x≤20.答:最多可加入丙种糖果20千克.。
人教版数学八年级下册20.1.1平均数
次.
选手
演讲内容
演讲能力
演讲效果
A
85
95
95
B
95
85
95
解析:本题中演讲内容、演讲能力、演讲效果三 项成绩的权分别是 __5_0_%___、___4_0_%__、___1_0_%___
选手A的最后得分是:
85 ×50%+95 ×40%+95 ×10% 50%+40%+10%
=90
√选手B的最后得分是: 95 ×50%+85 ×40%+95 ×10% =91
=88.5
归纳权的形式
:
1、比值的形式
2、百分比的形式
如 3:3:2:4 如 20%,30%,50%
本节课你掌握了什么知识?
权:数据的重要程度 加权平均数: 平均数不同比重数据的
加权平均数的计算:第一步:数据分别乘以相应的权作为分子;
第二步:所有的权相加作为分母; 第三步:将分子除以分母
布置作业
自行阅读教材 P111—113
问题1 一家公司打算招聘一名英文翻译。对甲、乙 两名应试者各进行了听、说、读、写的英语水平测试,他
们的各项成绩(百分制)如下表所示。
应试者 听 说 读 写
甲
85 78 85 73
乙
73 80 82 83
(1)如果公司想招一名综合能力较强的翻译, 计算两名应试者的平均成绩,应该录用谁?
答:因为_x__乙__>__x_甲 __,所以__乙___将被录取.
典例评析
例1 一次演讲比赛中,评委将从演讲内容、演讲
能力、演讲效果三个方面为选手打分.各项成绩均按百分
制计,然后再按演讲内容占50%、演讲能力占40%、演
专题数据的分析(常考知识点分类专题)(基础篇)(专项练习)八年级数学下册基础知识专项讲练
专题20.5 数据的分析(常考知识点分类专题)(基础篇)(专项练习)一、单选题★【知识点一】平均数与加权平均数1. 一组数据,有4个数的平均数为20,另外16个数的平均数为15,则这20个数的平均数是()A. 16B. 17.5C. 18D. 202. 思政课上,某小组的2023全国“两会”知识测试成绩统计如表(满分10分):成绩78910频数1342则该组测试成绩的平均数为( )(单位:分)A. 8.2B. 8.3C. 8.7D. 8.9★【知识点二】利用平均数与加权平均数做出决策3. 实验中学举行了以“爱我中华”为主题的演讲比赛,7名评委为某选手的打分如表(满分10分),去除一个最高分和一个最低分之后取平均值为最后得分,该选手的最后得分为()分数8.308.509.009.50频数1312A. 8.24B. 8.65C. 8.80D. 8.924. 某商店在一段时间内销售了某种女鞋30双,各种尺码的销售量如表所示,如果鞋店要购进100双这种女鞋,那么购进24厘米、24.5厘米和25厘米三种女鞋数量之和最合适的是()尺码/厘米2222.52323.52424.525销售量/双12512631A. 20双B. 33双C. 50双D. 80双★【知识点三】众数与中位数5. 样本数据1-,4,7,a的中位数与平均数相同,则a的值是( )A. 4-或2或12B. 2或5或12C. 4-或2D. 2-或126. 荸荠口感脆甜,营养丰富,黄岩院桥素有“店头荸荠三根葱”的美誉.某校兴趣小组对50株荸荠的叶状茎生长度进行测量、记录,统计如下表:株数(株)712238叶状茎长度45.646.546.947.8(cm)这批荸荠叶状茎长度的众数为( )A. 45.6B. 46.5C. 46.9D. 47.8★【知识点四】利用众数与中位数做出决策7. 从小到大的一组数据-1,1,2,x,6,8的中位数为2,则这组数据的众数和平均数分别是()A. 2,4B. 2,3C. 1,4D. 1,38. 2012年5月份,齐齐哈尔市一周空气质量报告中某项污染指数的数据是:31,35,30,31,34,32,31,这组数据的中位数、众数分别是【】A. 32,31B. 31,31C. 31,32D. 32,35★【知识点五】方差、极差与标准差9. 一个样本有20个数据,其中最小值为61,最大值为70,若取组距为2,则可分为( )A. 5组B. 6组C. 7组D. 8组10. 某小组五位同学参加某次考试(满分20分)的平均成绩是16分,其中三位男生成绩的方差为6,两位女生的成绩分别为17分、15分,则这五位同学成绩的标准差为()B. 2C.D. 6A.★【知识点六】利用方差做出决策11. 某校队有A ,B ,C 三位短跑运动员,下表是三人最近10次百米赛跑的成绩平均分以及方差,如果现在要推荐一位运动员参加区级比赛,你认为最合适的运动员是( )ABCx1320'''1305'''1305'''2s 2.16.40.9A. AB. BC. CD. 无法确定12. 某鞋店对某款女鞋一周的销售情况进行统计,结果如下:尺码353637383940销售量(双)618331221根据上表信息,该店主决定下周多进一些37码的鞋子,影响店主进货决策的统计量是( )A. 众数B. 中位数C. 平均数D. 方差二、填空题★【知识点一】平均数与加权平均数13. 已知数据a ,b ,c 的平均数为8,那么数据123a b c +++,,的平均数是_________.14. 面试时,某人的基本知识、表达能力、工作态度的得分分别是85分,80分,88分,若依次按20%,30%,50%的比例确定成绩,则这个人的面试成绩是______分.★【知识点二】利用平均数与加权平均数做出决策15. 某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分),将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,被录用的是_________.应聘者阅读能力思维能力表达能力甲859080乙95809516. 某公司招聘,甲、乙两位候选人面试和笔试成绩如表所示.若面试与笔试成绩按6和4的权计算每人的平均成绩,从两人的成绩看,公司录取的是__________(填“甲”或“乙”).候选人面试笔试甲9284乙9086★【知识点三】众数与中位数17. 小王统计了一周家庭用水量,绘制了如图的统计图,那么这周用水量的众数是______,中位数是________.18. 已知3、2、n的平均数与2n、3、n、3、5的唯一众数相同,则这8个数的中位数是______.★【知识点四】利用众数与中位数做出决策19. 如图是容容前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千a___________.克,发现这四个单价的中位数恰好也是众数,则20. 家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.5销售量/双1251173该鞋店决定本周进该品牌女鞋时多进一些尺码为23.5厘米的鞋,则影响鞋店决策的统计量是_____.★【知识点五】方差、极差与标准差21. 一组数据2,3,4,7,a,3,5,1的平均数是4,则这组数据的方差为____________.22. 如果有一组数据-2,0,1,3,x的极差是6,那么x的值是_________.★【知识点六】利用方差做出决策23. 甲、乙、丙、丁四名短跑运动员进行百米测试,每人5场测试成绩的平均数x (单位:秒)及方差2s(单位:秒2)如下表所示:甲乙丙丁x1010.110102s2 1.6 2.5 1.5根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择__.24. 某校要从甲、乙两名同学中选取一名成绩稳定的同学去参加数学竞赛,已知五次模拟测试中统计所得的信息为x甲=115,S甲2=12,x乙=115,S乙2=36,则应选择____参加竞赛.三、解答题25. 某校有3600名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.(1)参与本次问卷调查的学生共有 人,其中选择D类的人数有 人;(2)在扇形统计图中,求E类对应的扇形圆心角 的度数,并补全C对应的条形统计图;(3)若将A、B、C.D.E这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.26. 小明随机抽取了某校八年级部分学生,针对他们晚上在家学习时间的情况进行调查,并将调查结果绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)本次抽取的八年级学生晚上学习时间的众数是小时,中位数是小时;(3)若该校共有600 名八年级学生,则晚上学习时间超过1.5 小时的约有多少名学生?27. 某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受调查的初中学生人数为___________,图①中m的值为_____________;(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1h的学生人数.28. 在本学期某次考试中,某校八⑴、八⑵两班学生数学成绩统计如下表:分数5060708090100八⑴351631112班人数八⑵251112137班请根据表格提供的信息回答下列问题:1.八⑴班平均成绩为_________分,八⑵班平均成绩为________分,从平均成绩看两个班成绩谁优谁次?____________________2.八⑴班众数为________分,八⑵班众数为________分.从众数看两个班的成绩谁优谁次?____________________3.已知八⑴班的方差大于八⑵班的方差,那么说明什么?专题20.5 数据的分析(常考知识点分类专题)(基础篇)(专项练习)一、单选题★【知识点一】平均数与加权平均数【1题答案】【答案】A 【解析】【分析】根据平均数的计算方法进行计算即可求解.【详解】解:依题意,这20个数的平均数是()142016151620⨯+⨯=故选:A .【点睛】本题考查了求一组数据的平均数,熟练掌握平均数的定义是解题的关键.平均数:是指一组数据中所有数据之和再除以数据的个数.【2题答案】【答案】C 【解析】【分析】根据表格中的数据和加权平均数的计算方法,可以计算出该组测试成绩的平均数.【详解】解:由表格可得,该组测试成绩的平均数为:7183941028.71342⨯+⨯+⨯+⨯=+++,故选:C .【点睛】本题考查加权平均数、频数分布表,解答本题的关键是明确加权平均数的计算方法.★【知识点二】利用平均数与加权平均数做出决策【3题答案】【答案】C 【解析】【分析】去除一个最高分,取出一个最低分之后,只剩下五个数据,依据加权平均数的概念计算可得.【详解】解:该名选手的最后得分为8.5039.009.508.805⨯++=.故选:C .【点睛】考查了加权平均数,关键是熟练掌握加权平均数公式,注意要去掉一个8.30,一个9.50.【4题答案】【答案】B 【解析】【分析】求得销售这三种鞋数量之和为10,是30的三分之一,故要购进的这三种鞋应是100的三分之.【详解】根据题意可得:∵销售的某种女鞋30双,24厘米、24.5厘米和25厘米三种女鞋数量之和为10,∴要购进100双这种女鞋,购进这三种女鞋数量之和应是100333≈ ,∴购进100双这种女鞋,购进这三种女鞋数量之和最合适的是33双,故选:B【点睛】本题主要考查了综合运用统计知识解决问题的能力,理清题意,是解决此类问题的关键.★【知识点三】众数与中位数【5题答案】【答案】A 【解析】【分析】根据中位数和平均数的意义列方程求解.对于a 的取值分情况讨论:①1a ≤-;②17a -<<;③7a ≥.【详解】①当1a ≤-时,平均数为()11474a -+++,中位数为32,故可得:()1314742a -+++=,解得:4a =-.②当17a -<<时,平均数为()11474a -+++,中位数为42a +,故可得:()1414742a a +-+++=,解得:2a =.③当7a ≥时,平均数为()11474a -+++,中位数为112,故可得:()11114742a -+++=,解得:12a =.综上所述,a 可取4-或2或12.故选:A .【点睛】本题主要考查中位数和平均数的意义.解题的关键是对于a 的值要分情况讨论.【6题答案】【答案】C【解析】【分析】根据众数的定义即可求解,众数:在一组数据中出现次数最多的数.【详解】解:在这组数据中,46.9出现23次,次数最多,∴这批荸荠叶状茎长度的众数为46.9,故选:C .【点睛】本题考查了求一组数据的众数,熟练掌握众数的定义是解题的关键.★【知识点四】利用众数与中位数做出决策【7题答案】【答案】B【解析】【分析】先利用中位数的定义求出x 的值,再根据众数的定义和平均数的公式,即可求出这组数据的众数和平均数.【详解】解:∵一组数据-1,1,2,x ,6,8的中位数为2,∴x =2×2-2=2,2出现的次数最多,故这组数据的众数是2,这组数据的平均数是()11226863-+++++÷=.【点睛】本题主要考查了众数,平均数及中位数,解题的关键是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【8题答案】【答案】B【解析】【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).【详解】解:由此将这组数据重新排序为30、31、31、31、32、34、35,∴中位数是按从小到大排列后第4个数为:31.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是31,故这组数据的众数为31.所以这组数据的中位数是31,众数是31.故选B .★【知识点五】方差、极差与标准差【9题答案】【答案】A【解析】【分析】先计算这组数据的极差,再根据组数=极差÷组距,进行计算即可.【详解】解:最小值为61,最大值为70,即极差是70619-=,则组数是925÷≈(组).故选:A .【点睛】本题考查的是频数分布表,掌握组距、分组数的确定方法:组距=(最大值-最小值)÷组数是解题的关键.【10题答案】【答案】B【分析】设三位男生的成绩分别为a 、b 、c ,可求得3位男同学考试分数的平均数,再由三位男生的方差为6,求得这个学习小组5位同学考试分数的方差,从而求得标准差.【详解】解:∵两位女生的成绩分别为17分、15分,∴两位女生的成绩的平均数是()1715216+÷=(分),∴三位男生成绩的平均数是16分.三位男生的方差2221[(16)(16)(16)]63a b c =⨯-+-+-=,222(16)(16)(16)18a b c ∴-+-+-=,∴这个学习小组5位同学考试分数的方差222221[(16)(16)(16)(1716)(1516)]5a b c =⨯-+-+-+-+-1(1811)5=⨯++4=,∴2=,故选:B .【点睛】本题考查标准差,计算标准差需要先算出方差,标准差即方差的算术平方根;注意标准差和方差一样都是非负数.★【知识点六】利用方差做出决策【11题答案】【答案】C【解析】【分析】通过比较平均数和方差进行选择即可.【详解】解:A ,B ,C 三位短跑运动员中B 和C 的平均数最小且相等,A ,B ,C 三位运动员中C 的方差最小,∴综合平均数和方差两个方面说明C 成绩既高又稳定,∴最合适的人选是C .故选:C .【点睛】本题考查了平均数和方差数据特征并根据题意进行决策,理解平均数和方差的特征是解题的关键.【12题答案】【答案】A【解析】【分析】根据各种统计量的含义与性质进行选择即可【详解】A 、众数是最多的数,它代表了销量最好,故符合题意;B 、中位数是指排好序后最中间的数,对进货没有指导意义,故不符题意;C 、平均数是所有尺码的平均销售量,反映整体水平,也不能做进货指导,故不符题意;D 、方差反映的是波动水平,不能做进货指导,故不符题意.故选:A【点睛】本题题考查众数、中位数、平均数、方差的理解与应用,理解这些概念是关键.二、填空题★【知识点一】平均数与加权平均数【13题答案】【答案】10【解析】【分析】根据数据a ,b ,c 的平均数为8,求出24a b c ++=,进而求出123a b c +++,,的平均数为10.【详解】解:∵数据a ,b ,c 的平均数为8,∴8324a b c ++=⨯=,∴12312324630a b c a b c +++++=+++++=+=,∴123a b c +++,,的平均数13003==.故答案为10.【点睛】本题考查了算术平均数,平均数是指在一组数据中所有数据之和除以这组数据的个数所得的商,熟悉掌握算术平均数的公式是本题的解题关键.【14题答案】【答案】85【解析】【分析】根据加权平均数进行求解即可.【详解】解:根据题意这个人的面试乘积为85208030885017244485⨯+⨯+⨯=++=%%%,故答案为:85.【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解本题的关键.★【知识点二】利用平均数与加权平均数做出决策【15题答案】【答案】甲【解析】【分析】分别求出三个人的加权成绩,然后进行比较即可.【详解】解:由题意得:甲的成绩85190380187131⨯+⨯+⨯==++分;乙的成绩95180395186131⨯+⨯+⨯==++分,∴乙的成绩<甲的成绩,∴被录取的是甲,故答案为:甲.【点睛】本题主要考查了加权平均数,解题的关键在于能够熟练掌握加权平均数的求法.【16题答案】【答案】甲【解析】【分析】根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【详解】解:甲的平均成绩为:(92×6+84×4)÷10=88.8(分),乙的平均成绩为:(90×6+86×4)÷10=88.4(分),因为88.8>88.4,所以甲将被录取.故答案为:甲【点睛】本题考查了加权平均数,熟练握加权平均数的计算公式是解题的关键.★【知识点三】众数与中位数【17题答案】【答案】①. 1 ②. 1【解析】【分析】根据众数和中位数的定义解答即可.【详解】根据统计图可知用水量为1的天数为3天,最多,故这周用水量的众数是1;将这周用水量按从小到大排列为:0.5,1,1,1,1.5,1.5,2,∴这周用水量的中位数是1.故答案为:1,1.【点睛】本题考查众数和中位数的定义.解题的关键是掌握一组数据中出现次数最多的数值为众数;按顺序排列的一组数据中居于中间位置的数为中位数,当数据为偶数个时,为最中间两个数的平均值.【18题答案】【答案】3.5【解析】【分析】先求出n的值,再求出中位数,求一组数据的中位数是将这组数据从小到大排列,再求这组数据中间的数,即为中位数.【详解】∵2n、3、n、3、5有唯一众数∴2n、3、n、3、5这组数中的众数为3∵3、2、n的平均数与2n、3、n、3、5的唯一众数相同∴3、2、n的平均数为3∴4n=∴这8个数从小到大排列一次是:2、3、3、3、4、4、5、8∴这8个数的中位数是343.52+=.故答案为:3.5.【点睛】本题考查中位数、众数和平均数的求解方法,解题的关键是掌握相关概念,进行数据分析.★【知识点四】利用众数与中位数做出决策【19题答案】【答案】8【解析】【分析】根据统计图中的数据利用中位数和众数的定义即可得到a的值.【详解】由统计图可知,前三次的中位数是8,∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数,a=时,中位数是8.5,众数是9,不合题意;∴当9a=时,中位数是8,众数是8,符合题意;当8a=时,中位数是7,众数是6,不符合题意;当6故答案为:8.【点睛】本题考查条形统计图、中位数、众数,解答本题的关键是明确题意,利用数形结合的思想解答.【20题答案】【答案】众数【解析】【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:鞋店最关心的应该是某一尺码鞋子的销售量最多,在统计量中也就是众数,所以影响鞋店决策的统计量是众数,故答案为:众数.【点睛】此题主要考查统计的有关知识,熟练掌握平均数、中位数、众数、方差的意义是解题的关键.★【知识点五】方差、极差与标准差【21题答案】【答案】4.25【解析】【分析】根据平均数的定义先求出x 的值,再根据方差的定义求出这组数的方差即可.【详解】利用平均数的计算公式,得234735148a +++++++=⨯,解得7a =,∴这组数据为2,3,4,7,7,3,5,1,∴这组数据的方差为()()()()()()2222222124234442745414 4.258s ⎡⎤=-+⨯-+-+⨯-+-+-=⎣⎦.故答案为:4.25.【点睛】本题考查了方差的定义、平均数,掌握公式正确求解计算是解题关键.【22题答案】【答案】4或-3##-3或4【解析】【分析】根据极差的定义求解.分两种情况:x 为最大值或最小值.【详解】解:∵3-(-2)=5,一组数据-2,0,1,3,x 的极差是6,∴当x 为最大值时,x -(-2)=6,解得x =4;当x 是最小值时,3-x =6,解得:x =-3.故答案为:4或-3.【点睛】此题主要考查了极差的定义,正确理解极差的定义,能够注意到应该分两种情况讨论是解决本题的关键.★【知识点六】利用方差做出决策【23题答案】【答案】丁【解析】【分析】根据平均数比较成绩的好坏,根据方差比较数据的稳定程度.【详解】甲、丙、丁的平均数较小,丁的方差<甲的方差<丙的方差,∴丁比较稳定,∴成绩较好状态稳定的运动员是丁,故答案为:丁.【点睛】本题重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【24题答案】【答案】甲【解析】【分析】比较两人的平均数和方差,方差越小,成绩越稳定,反之,方差越大,成绩越不稳定.【详解】解:∵x甲=x乙=115,S甲2=12<S乙2=36,∴甲、乙的平均成绩相同,但甲的成绩比乙的成绩稳定,∴应该选择甲同学参加竞赛,故答案为:甲.【点睛】本题考查了平均数和方差,熟悉它们的意义是解题的关键.三、解答题【25题答案】α=︒,答案见解析;(3)3456人.【答案】(1)450,72;(2)36【解析】【分析】(1)用A的人数除以A所占总人数的百分比即得总的学生数;用D所占总人数的百分比乘以总的学生数即得D的学生人数;(2)用100%减去A、B、C、D、F所占的百分比,得到E所占的百分比,然后再乘360°,即得到E类对应的圆心角;用20%乘以总的学生数即得到C类的学生数;(3)用3600×4%即得到F类学生的人数,再用3600减去F类学生数即可.【详解】解:(1)用A的人数除以A占总人数的比值:162÷36%=450(人),故本次问卷调查的学生共有450人,其中D类的人数有:450×16%=72(人).故答案为:共有460人,D类的人数有72人.(2)E类学生占总人数的百分比为:1-36%-14%-20%-16%-4%=10%,故E类对应的圆心角为:10%×360°=36°,C类学生为:20%×450=90(人),如下图所示:α=︒.所以36(3)3600名学生中,F类所占的人数为:3600×4%=144(人),故选择“绿色出行”的学生人数为:3600-144=3456(人),所以该校选择“绿色出行”的学生人数为3456(人).【点睛】本题考查了扇形统计图及条形统计图的相关知识,两个统计图要结合看,考查了学生数形结合的思想,熟练的掌握统计图所代表的每一部分的含义是解题的关键.【26题答案】【答案】(1)补全条形统计图和扇形统计图见解析;(2)2,2;(3)晚上学习时间超过1.5 小时的约有450名学生.【解析】【分析】(1)先由1小时的人数及其所占百分比求得总人数,总人数乘以2.5小时对应百分比求得其人数,用2小时人数除以总人数可得其百分比;(2)根据人数、中位数的定义求解可得;(3)总人数乘以样本中2小时和2.5小时人数所占百分比之和可得.【详解】(1)分别由条形统计图和扇形统计图知:1小时的人数为2人、所占百分比为5%,∴被调查的学生总人数为2÷5%=40人,∴2.5小时的人数为40×30%=12人,2小时人数所占百分比为18100%45% 40⨯=,补全条形统计图和扇形统计图如下:(2)2小时出现的次数最多,是18次,因此众数是2小时,把这40个数据从小到大排列后处在第20、21位的数都是2,因此中位数是2小时,故答案为:2,2;(3)晚上学习时间超过1.5小时的学生约有600(30%45%)450⨯+=(人)答:晚上学习时间超过1.5 小时的约有450名学生.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.【27题答案】【答案】(Ⅰ)40,25;(Ⅱ)平均数是1.5,众数为1.5,中位数为1.5;(Ⅲ)每天在校体育活动时间大于1h的学生人数约为720.【解析】【分析】(Ⅰ)求得直方图中各组人数的和即可求得学生人数,利用百分比的意义求得m;(Ⅱ)利用加权平均数公式求得平均数,然后利用众数、中位数定义求解;(Ⅲ)利用总人数乘以对应的百分比即可求解.【详解】解:(Ⅰ)本次接受调查的初中学生人数为:4+8+15+10+3=40(人),m=100×1040=25.故答案是:40,25;(Ⅱ)观察条形统计图,∵0.94 1.28 1.515 1.810 2.13 1.54815103x ⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.5.∵在这组数据中,1.5出现了15次,出现的次数最多,∴这组数据的众数为1.5.∵将这组数据按从小到大的顺序棑列,其中处于中间的两个数都是1.5,有1.5 1.5 1.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1h 的人数约占90%.有80090%720⨯=.∴该校800名初中学生中,每天在校体育活动时间大于1h 的学生人数约为720.【点睛】本题考查的是条形统计图的综合运用,还考查了加权平均数、中位数和众数以及用样本估计总体.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.【28题答案】【答案】【答题空1】80【答题空2】80【答题空3】70【答题空4】90【答题空5】(2)班成绩好【解析】【分析】(1)根据平均数的计算公式计算出两个班的平均成绩,即可比较;(2)求出两个班成绩的众数,根据众数的大小即可比较;(3)根据方差的特征即可回答.【详解】(1)八(1)班平均成绩为:503605701680390111001280351631112⨯+⨯+⨯+⨯+⨯+⨯=+++++(分);八(2)班平均成绩为: 502605701180129013100780251112137⨯+⨯+⨯+⨯+⨯+⨯=+++++(分);从平均成绩看两个班成绩一样.(2)八(1)班70分的有16人,人数最多,众数为70(分);八(2)班90分的有13人,人数最多,众数为90(分);从众数看两个班的成绩八(2)班成绩优.(3)八(1)班的方差大于八(2)班的方差,说明八(1)班的学生成绩不很稳定,波动较大.【点睛】本题考查加权平均数、众数的求法以及方差的意义.加权平均数:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…,w n ,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数.一组数据中出现次数最多的数据叫做众数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.。
人教八年级下册数学_平均数和加权平均数同步练习
第二十章数据的分析长郡中学史李东20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数一、选择题1.如果数据2,3,x,4的平均数是3,那么x等于( ).A.2B.3C.3.5D.42.某居民大院月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则每户平均用电( ).A.41度B.42度C.45.5度D.46度3.为了解乡镇企业的水资源的利用情况,市水利管理部门抽查了部分乡镇企业在一个月中的用水情况,其中用水15吨的有3家,用水20吨的有5家,用水30吨的有7家,那么平均每家企业1个月用水( ).A.23.7吨B.21.6吨C.20吨D.5.416吨4.m个x1,n个x2和r个x3,由这些数据组成一组数据的平均数是( ).[来源:Z。
xx。
]A.332 1xxx++B.3rnm++C.33 21rx nxmx++D.rnm rxnx mx++++321二、填空题5.某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人.6.如果10名学生的平均身高为1.65米,其中2名学生的平均身高为1.75米,那么余下8名学生的平均身高是______米.7.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90,92,73分,则这名同学本学期的体育成绩为______分,可以看出,三项成绩中______的成绩对学期成绩的影响最大.三、解答题8.一组数据7,a,8,b,10,c,6的平均数为4.(1)求a,b,c的平均数;(2)求2a+1,2b+1,2c+1的平均数.9.学校广播站要招聘一名播音员,考察形象、知识面、普通话三个项目,按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的形象知识面普通话各项成绩如下表:项目选手李文70 80 88孔明80 75 x(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?10.某校在“爱护地球绿化祖国”的创建活动中,组织学生开展植树造林活动,为了解全校学生的植树情况,学校随机抽查了100名学生的植树情况,将调查数据整理成下表:植树数量(单位:颗) 4[来源:学§科§网Z§X§X§K]5 6 8 10人数30 22 25 15 8则这100名学生平每人植树棵;若该校共有1000名学生,请根据以上调查结果估计该校学生的植树总棵数是棵.11.某瓜农采用大棚栽培技术种植了一亩良种西瓜,约有800个,在西瓜上市前,该瓜农随机摘下10个西瓜,称重如下:质量(千克)6.3 6.5 77.5 7.78.0数量(个) 1 2 3 2 1 1(1)计算这10个西瓜的平均质量;(2)估计这块地共产西瓜少千克.[来源:]12.某中学生为调查本校学生平均每天完成作业所用时间的情况,随机调查了5名同学,如图是根据调查所得数据绘制的统计图的一部分.[来源:学科网] 请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用总时间.参考答案 1.B . 2.C 3.A . 4.D 5.900. 6.1.625.7.80.4;体育技能测试.8. 解: (1) ∴7,a ,8,b ,10,c ,6的平均数为4, ∴7+a+8+b+10+c+6=4X7,∴a+b+c=-3,∴a ,b ,c 的平均数是-1. (2)[(2a+1) + (2b+1)+(2c+1)]÷3=()23a b c +++=-1.9. 解: (1)李文同学的总成绩为 70×10%+80×40%+88×50%=83(分)(2) 孔明同学的总成绩为80×10%+75×40%+50%·x. 根据题意,得80×10%+75×40%+50%·x ﹥83, 解得x ﹥90.答:若孔明同学要在总成绩上超过李文同学,则他的普通话成绩超过90分. 10. 5.8;5 800 解析 100名学生的平均植树棵树=植树总棵树÷总人数;估计该校学生指数总棵树时,可用100名学生的平均植树棵树当作1000名学生的平均植树棵树,以此来估计该校学生的植树总棵树.11. 分析:估计这块地共产西瓜的质量时,可用这10个西瓜的平均质量作为这块地中所有西瓜的平均质量.解:(1)()16.32 6.52737.527.718.017.110x =⨯+⨯+⨯+⨯+⨯+⨯= (千克). (2)∵7.1 X800=5680(千克) ∴这块地共产西瓜约5680千克.12.解:(1)50-6-12-16-8=8,补充完整的统计图如图所示.(2)由上述统计图可得x=61122163848550⨯+⨯+⨯+⨯+⨯=3(h).估计该校全体学生平均每天完成作业所用总时间为3×1800=5400(h).【素材积累】1、冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘摘这广漠的荒原上,闪着寒冷的银光。
23.1平均数与加权平均数(一)同步练习含答案解析
《23.1 平均数与加权平均数(一)》一、选择题1.北京市2015年5月份某一周的日最高气温(单位:℃)分别为25,28,30,29,31,32,28,这周的日最高气温的平均值为()A.28℃ B.29℃ C.30℃ D.31℃2.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:金额/元 5 6 7 10人数 2 3 2 1这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元3.某居民区的月底统计用电情况如下,其中3户用电45度,5户用电50度,6户用电42度,则平均用电()度.A.41 B.42 C.45.5 D.464.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为()A.分 B.分C.分D.8分5.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.2 B.2.5 C.2.95 D.3.0 二、填空题6.一般地,我们把n个数x1,x2,…,xn的和与n的比,叫做这n个数的,简称记作x,读作“x拔”.7.一组数据里的各个数据的重要程度不一定相同,在计算它们的平均数时,往往给每个数据一个“权”,由此求出的平均数叫做平均数.8.若n个数据x1,x2, (x)n的权重分别是w1,w2,…wn,则这n个数的加权平均数为.9.近年来,义乌市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量依次约为:15,19,22,26,x(单位:万辆),这五个数的平均数为22,则x的值为.10.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是分.11.某市广播电视局欲招聘播音员一名,对A,B两名候选人进行了三项测试,两人的三项测试成绩如表所示.根据实际需要,广播电视局将面试、笔试和上镜效果测试的得分按3:3:4的比例计算两人的总成绩,那么(填A或B)将被录用.测试项目测试成绩 A B面试90 95笔试80 85上镜效果80 7012.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐10元、20元和30元的,还有捐50元和100元的.如图反映了不同捐款数的人数比例,那么该班同学平均每人捐款元.13.某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数为.分数 5 4 3 2 1人数(单位:人) 3 1 2 1 3三、解答题14.上学期期末考试后,小林同学数学科的期末考试成绩为76分,但他平时数学测试的成绩为90分,期中数学考试成绩为80分.(1)请问他一学期的数学平均成绩是多少?(2)如果期末总评成绩按:平时成绩占20%,期中成绩占30%,期末成绩占50%计算,那么该同学期末总评数学成绩是多少?15.某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲 66 89 86 68乙 66 60 80 68丙 66 80 90 68(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?16.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:景点 A B C D E原价(元)10 10 15 20 25现价(元) 5 5 15 25 30平均日人数(千人) 1 1 2 3 2(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?《23.1 平均数与加权平均数(一)》参考答案与试题解析一、选择题1.北京市2015年5月份某一周的日最高气温(单位:℃)分别为25,28,30,29,31,32,28,这周的日最高气温的平均值为()A.28℃ B.29℃ C.30℃ D.31℃【考点】算术平均数.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.本题可把所有的气温加起来再除以7即可.【解答】解:依题意得:平均气温=(25+28+30+29+31+32+28)÷7=29℃.故选B.【点评】本题考查的是平均数的求法.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.2.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:金额/元 5 6 7 10人数 2 3 2 1这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元【考点】加权平均数.【专题】压轴题.【分析】根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【解答】解:根据题意得:(5×2+6×3+7×2+10×1)÷8=6.5(元);故选C.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.3.某居民区的月底统计用电情况如下,其中3户用电45度,5户用电50度,6户用电42度,则平均用电()度.A.41 B.42 C.45.5 D.46【考点】加权平均数.【专题】应用题.【分析】只要运用加权平均数的公式即可求出,为简单题.【解答】解:平均用电=(45×3+50×5+42×6)÷(3+5+6)=45.5度.故选C.【点评】本题考查了平均数的定义.一组数据的平均数等于所有数据的和除以数据的个数.4.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为()A.分 B.分C.分D.8分【考点】加权平均数;条形统计图.【专题】图表型.【分析】先从统计图中读出数据,然后根据平均数的公式求解即可.【解答】解:平均分=(6×5+8×15+10×20)÷40=分.故选B.【点评】本题考查的是样本平均数的求法和对统计图的理解.熟记公式是解决本题的关键.5.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.2 B.2.5 C.2.95 D.3.0【考点】条形统计图;扇形统计图;加权平均数.【分析】根据分数是4分的有12人,占30%,据此即可求得总人数,然后根据百分比的定义求得成绩是3分的人数,进而用总数减去其它各组的人数求得成绩是2分的人数,利用加权平均数公式求解.【解答】解:参加体育测试的人数是:12÷30%=40(人),成绩是3分的人数是:40×42.5%=17(人),成绩是2分的人数是:40﹣3﹣17﹣12=8(人),则平均分是: =2.95(分).故选C.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.二、填空题6.一般地,我们把n个数x1,x2,…,xn的和与n的比,叫做这n个数的算术平均数,简称平均数记作x,读作“x拔”.【考点】算术平均数.【分析】根据算术平均数的定义解答即可.【解答】解:一般地,我们把n个数x1,x2,…,xn的和与n的比,叫做这n个数的算术平均数,简称平均数,记作,读作“x拔”.故答案为:算术平均数,平均数.【点评】本题考查了算术平均数的定义,熟记算术平均数的定义是解题的关键.7.一组数据里的各个数据的重要程度不一定相同,在计算它们的平均数时,往往给每个数据一个“权”,由此求出的平均数叫做加权平均数.【考点】加权平均数.【分析】根据加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,叫做这n个数的加权平均数.【解答】解:一组数据里的各个数据的重要程度不一定相同,在计算它们的平均数时,往往给每个数据一个“权”,由此求出的平均数叫做加权平均数,故答案为:加权.【点评】此题主要考查了加权平均数的定义,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.8.若n个数据x1,x2, (x)n的权重分别是w1,w2,…wn,则这n个数的加权平均数为.【考点】加权平均数.【分析】加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则叫做这n个数的加权平均数.【解答】解:这n个数的加权平均数为:,故答案为:.【点评】此题主要考查了加权平均数,关键是掌握加权平均数的计算公式.9.近年来,义乌市民用汽车拥有量持续增长,2009年至2013年该市民用汽车拥有量依次约为:15,19,22,26,x(单位:万辆),这五个数的平均数为22,则x的值为28 .【考点】算术平均数.【分析】根据算术平均数:对于n 个数x 1,x 2,…,x n ,则=(x 1+x 2+…+x n )就叫做这n 个数的算术平均数进行计算即可.【解答】解:(15+19+22+26+x )÷5=22, 解得:x=28, 故答案为:28.【点评】此题主要考查了算术平均数,关键是掌握算术平均数的计算公式.10.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 88 分. 【考点】加权平均数. 【专题】压轴题.【分析】根据笔试和面试所占的百分比以及笔试成绩和面试成绩,列出算式,进行计算即可. 【解答】解:∵笔试按60%、面试按40%, ∴总成绩是(90×60%+85×40%)=88分, 故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.11.某市广播电视局欲招聘播音员一名,对A ,B 两名候选人进行了三项测试,两人的三项测试成绩如表所示.根据实际需要,广播电视局将面试、笔试和上镜效果测试的得分按3:3:4的比例计算两人的总成绩,那么 B (填A 或B )将被录用.测试项目测试成绩A B 面试 90 95 笔试 80 85 上镜效果8070【考点】加权平均数.【分析】根据加权平均数的计算公式进行计算即可. 【解答】解: ==83,==82,∵<,∴B 被录取, 故答案为:B .【点评】此题主要考查了加权平均数:若n 个数x 1,x 2,x 3,…,x n 的权分别是w 1,w 2,w 3,…, =叫做这n 个数的加权平均数.12.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐10元、20元和30元的,还有捐50元和100元的.如图反映了不同捐款数的人数比例,那么该班同学平均每人捐款 31.2 元.【考点】加权平均数;扇形统计图.【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,用捐的具体钱数乘以所占的百分比,再相加,即可得该班同学平均每人捐款数.【解答】解:该班同学平均每人捐款:100×12%+50×16%+20×44%+10×20%+5×8%=31.2(元). 故答案为:31.2.【点评】本题主要考查扇形统计图和加权平均数,关键是正确从扇形统计图中得到正确信息.13.某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数为 3 .分数 5 4 3 2 1 人数(单位:人) 31213【考点】加权平均数.【分析】利用加权平均数的计算方法列式计算即可得解. 【解答】解:×(5×3+4×1+3×2+2×1+1×3)=×(15+4+6+2+3) =×30=3.所以,这10人成绩的平均数为3.故答案为:3.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求5、4、3、2、1这五个数的算术平均数,对平均数的理解不正确.三、解答题14.上学期期末考试后,小林同学数学科的期末考试成绩为76分,但他平时数学测试的成绩为90分,期中数学考试成绩为80分.(1)请问他一学期的数学平均成绩是多少?(2)如果期末总评成绩按:平时成绩占20%,期中成绩占30%,期末成绩占50%计算,那么该同学期末总评数学成绩是多少?【考点】加权平均数.【分析】(1)直接利用算术平均数的计算公式计算即可;(2)利用加权平均数的计算公式进行计算即可.【解答】解:(1)数学平均成绩为:(76+90+80)=82(分);(2)小林同学上学期期末总评数学成绩是90×20%+80×30%+76×50%=18+24+38=80(分).【点评】本题考查的是加权平均数的求法.熟记公式是解决本题的关键.解题时要认真审题,不要把数据代错.15.某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)七巧板拼图趣题巧解数学应用魔方复原甲 66 89 86 68 乙 66 60 80 68 丙 66 80 90 68(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?【考点】二元一次方程组的应用;加权平均数.【专题】压轴题.【分析】(1)根据求加权平均数的方法就可以直接求出甲的总分;(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由条件建立方程组求出其解就可以求出甲的总分而得出结论.【解答】解:(1)由题意,得甲的总分为:66×10%+89×40%+86×20%+68×30%=79.8(分);(2)设趣题巧解所占的百分比为x,数学运用所占的百分比为y,由题意,得,解得:,∴甲的总分为:20+89×0.3+86×0.4=81.1>80,∴甲能获一等奖.【点评】本题考查了列二元一次方程组解实际问题的运用,加权平均数的运用,在解答时建立方程组求出趣题巧解和数学运用的百分比是解答本题的关键.16.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变.有关数据如下表所示:景点 A B C D E原价(元)10 10 15 20 25现价(元) 5 5 15 25 30平均日人数(千人) 1 1 2 3 2(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平.问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?【考点】加权平均数.【专题】销售问题;图表型.【分析】(1)分别计算调整前后的价格的平均数,比较价格上的平均数的变化;(2)计算出调整前后的日平均收入后,再进行比较;(3)根据(1)、(2)的算法,结合平均数的定义,得出结果.【解答】解:(1)风景区是这样计算的:调整前的平均价格: =16(元)调整后的平均价格: =16(元)∵调整前后的平均价格不变,平均日人数不变∴平均日总收入持平;(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元)现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)∴平均日总收入增加了:×100%≈9.4%;(3)根据加权平均数的定义可知,游客的算法是正确的,故游客的说法较能反映整体实际.【点评】本题考查了平均数的计算方法,从不同的方面得到的平均数的意义不同.。
八级数学下册 20.1 平均数 3 加权平均数 用加权平均数解决实际问题素材 (新版)华东师大版
用加权平均数解决实际问题一、计算平均成绩例1 小林在八年级第一学期的数学书面测验成绩分别为:平时考试第一单元得84分,第二单元得76分,第三单元得92分;期中考试得82分;期末考试得90分.如果按照平时、期中、期末的权重分别为10%、30%、60%计算,那么小林该学期数学书面测验的总评成绩应为多少分?分析:这个问题可以看成是求平时、期中、期末成绩的加权平均数,10%、30%、60%说明三项成绩在总评中的重要程度,是三项成绩的权.计算总评成绩,首先要计算出三次单元测试的平均成绩.解:x(平时单元测试平均成绩)847692843++=(分).所以总评成绩为84108230906087103060⨯+⨯+⨯=++%%%%%%(分).所以小林该学期数学书面测验的总评成绩应为87分.说明:由于平时、期中、期末在总评中的权重不同,所以本题用到计算加权平均数的方法.二、计算商品平均价格例2 一种什锦糖是由甲、乙、丙三种不同价格的糖果混合而成的,已知甲种糖果的单价为9元/千克,乙种糖果的单价为10元/千克,丙种糖果的单价为12元/千克.(1)若甲、乙、丙三种糖果数量按2∶5∶3的比例混合,问此时得到的什锦糖果单价是多少元才能保证获得的利润不变?(2)若甲、乙、丙三种糖果数量按6∶3∶1的比例混合,则混合后得到的什锦糖果的单价是多少才能保证获得的利润不变?分析:要求混合后的什锦糖果的单价,不能简单将三种糖果的单价加起来除以3,而应当根据三种糖果的权重按比例求加权平均数.解:(1)1×20%×9+1×50%×10+1×30%×12=10.4(元).要保证混合后的利润不变,这种什锦糖果单价应定为10.4元.(2)1×60%×9+1×30%×10+1×10%×12=9.6(元).要保证利润不变,这种什锦糖果单价应定为9.6元.说明:三种糖的权重不同,得到的这种什锦糖果单价也不同,当按不同的比例混合时,一定要根据权重的不同来计算平均价格,而不能用三种价格之和除以3来计算平均价格.三、计算平均用水量例3 下表是某居民小区五月份的用水情况:(1)计算这20户家庭的月平均用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少立方米?分析:本题通过表格形式给出数据信息,要计算20户家庭的月平均用水量,可根据加权平均数的计算方法进行计算.解:(1)20户家庭的月平均用水量为:4253678592111 6.720⨯+⨯+⨯+⨯+⨯+⨯=(米3). (2)6.7×500=3 350(米3).所以20户家庭的月平均用水量为6.7立方米,该小区500户家庭每月大约用水3 350立方米.说明:本题在计算20户家庭的月平均用水量时用到了计算加权平均数的方法.。
人教八年级下册数学_.平均数和加权平均数同步练习
第二十章 数据的分析20.1 数据的集中趋势 20.1.1 平均数第1课时 平均数和加权平均数一、选择题1.如果a 、b 、c 的平均数是4,那么a -1,b -5和c +3的平均数是( ). A.-1B.3C.5D.92.某班一次知识问答成绩如下:成绩/分 50 60 70 80 90 100 人数/人13817147那么这次知识问答全班的平均成绩是( )(结果保留整数). A.80分B.81分C.82分D.83分3.一次考试后,某学习小组组长算出全组5位同学数学的平均分为M ,如果把M 当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均数为N ,那么M ∶N 为( ).A.5∶6B.1∶1C.6∶5D.2∶14.某辆汽车从甲地以速度v 1匀速行驶至乙地后,又从乙地以速度v 2匀速返回甲地,则汽车在这个行驶过程中的平均速度是( ).A. 2121v v v v +B. 2121v v v v +C.221v v + D. 21212v v v v +5.某同学在用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此算出的平均数与实际平均数的差为( ).A.3B.-3C.3.5D.-3.5二、填空题6.如果一组数据中有3个6、4个-1,2个-2、1个0和3个x ,其平均数为x ,那么x =________.7.某次射击训练中,一小组的成绩如下表所示:环数/环6789人数/人 1 3 2若该小组的平均成绩为7.7环,则成绩为8环的人数是______.三、解答题8.某班有学生52人,期末数学考试平均成绩是72分.有两名同学下学期要转学,已知他俩的成绩分别为70分和80分.求他俩转学后该班的数学平均分.9.某瓜农采用大棚栽培技术种植了1亩地的两种西瓜,共产出了约600个西瓜.在西瓜上市前,该瓜农随机摘下了10个成熟的西瓜称重:西瓜质量/千克 5.5 5.4 5.0 4.9 4.6 4.3西瓜数量/个 1 2 3 2 1 1计算这10个西瓜的平均质量,并估计这亩地的西瓜产量是多少千克.10.某校九年级小聪、小亮两位同学毕业评价的三项成绩如下表(单位:分).学校规定毕业评价成绩在80分以上(含80分)为“优秀”.项目综合素质考试成绩体育测试满分100 100 100小聪72 98 60小亮90 75 95(1)若将三项成绩的平均分记为毕业评价成绩,则小聪、小亮谁能达到“优秀”水平?(2)若综合素质、考试成绩、体育测试三项成绩按4:4:2计算毕业评价成绩,通过计算说明小聪和小亮谁能达到“优秀”水平.[源:学。
人教版八年级数学下册优秀作业课件 第二十章 数据的分析 数据的集中趋势 第1课时 平均数与加权平均数
12.某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣5分,不 回答扣2分;一共10个题,每个队的基本分均为0分.A、B、C、D四队前8题的答 题情况如下表:
(1)A队前8题的得分是:6×10+0×(-5)+2×(-2)=56分,按照这种计算方法: B队前8题共得____分2,9 C队前8题共得____分2,3 D队前8题共得____分3;5
根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测 评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票 记1分.
(1)分别计算三人民主评议的得分; (2)根据实际需要,学校将笔试、面试、民主评议三项得分按4∶3∶3的比例确 定个人成绩,三人中谁的得分最高? 解 : (1) 甲 民 主 评 议 的 得 分 是 200×25% = 50( 分 ) ; 乙 民 主 评 议 的 得 分 是 200×40%=80(分);丙民主评议的得分是200×35%=70(分) (2) 甲 的 成 绩 是 (75×4 + 93×3 + 50×3)÷(4 + 3 + 3) = 72.9( 分 ) , 乙 的 成 绩 是 (80×4 + 70×3 + 80×3)÷(4 + 3 + 3) = 77( 分 ) , 丙 的 成 绩 是 (90×4 + 68×3 + 70×3)÷(4+3+3)=77.4(分),∵77.4>77>72.9,∴丙的得分最高
知识点2:加权平均数 4.(2021·大连)某校健美操队共有10名队员,统计队员的年龄情况,结果如下: 13岁3人,14岁5人,15岁2人.该健美操队队员的平均年龄为( C ) A.14.2岁 B.14.1岁 C.13.9岁 D.13.7岁
5.(河南中考)某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元,3 元,2元,1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是 (C)
初中八下平均数课后作业(含答案解析)
平均数课后作业
1.一次考试后,某学习小组组长算出全组5 位同学数学的平均分为M,若把M 当成另一个同学的分数,与原来的5 个分数一起,算出这6 个分数的平均数为N,那么M∶N 为( ).
(A)5∶6 (B)1∶1 (C)6∶5 (D)2∶1
【答案】B.
【解析】利用平均数的计算方法可知
2.某辆汽车从甲地以速度v1 匀速行驶至乙地后,又从乙地以速度v2 匀速返回甲地,则汽车在这个行驶过程中的平均速度是( ).
【答案】D.
【解析】设甲乙两地之间的路程为S,则平均速度= 3.小明和小颖本学期数学平时成绩、期中成绩、期末成绩分别如下:
假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6 的比
例来计算,那么小明和小颖的学期总评成绩谁较高?
【答案】小明.
【解析】利用加权平均数公式进行计算:
4.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:
试判断谁会被公司录取.
【答案】乙会被录取.
【解析】利用加权平均数公式可以算出:。
2019八年级数学下册20.1平均数3加权平均数课堂练习华东师大版
第20章数据的整理与初步处理20. 1 平均数3.加权平均数1.[2018·无锡]某商场为了了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:售价x/(元/件) 90 95 100 105 110销量y/件110 100 80 60 50则这5天中,A产品平均每件的售价为( )A.100元 B.95元C.98元 D.97.5元2.[新疆]某餐厅供应单价为10元、18元、25元三种价格的抓饭.如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为____元.3.[2018·宜宾]某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如下表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分最高者,则被录取教师的综合成绩为____分.教师甲乙丙成绩笔试80分82分78分面试76分74分78分4.[2018·日照]某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试.他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5∶4∶1,请计算三名应聘者的平均成绩,从成绩看,应该录取谁?5.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如下表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价/(元/千克) 15 25 30千克数40 40 20(1)求该什锦糖的单价;(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?6.[2018·湘潭]今年我市将创建全国森林城市,提出了“共建绿色城”的倡议,某校积极响应,在3月12日植树节这天组织全校学生开展了植树活动.校团委对全校各班的植树情况进行了统计,并绘制了如图所示的两幅不完整的统计图.(1)求该校的班级总数;(2)将条形统计图补充完整;(3)求该校各班在这一活动中植树的平均棵数.参考答案1. C 2. 17 3. 78.8 4.解:甲的平均成绩为70×5+85×4+80×15+4+1=77(分);乙的平均成绩为90×5+85×4+75×15+4+1=86.5(分);丙的平均成绩为80×5+90×4+85×15+4+1=84.5(分).因为乙的平均成绩最高,所以应录取乙. 5.解:(1)根据题意得15×40+25×40+30×20100=22(元/千克).答:该什锦糖的单价是22元/千克.(2)设加入丙种糖果x 千克,则加入甲种糖果(100-x )千克. 根据题意得30x +15(100-x )+22×100200≤22-2,解得x ≤20.答:最多可加入丙种糖果20千克. 6.解:(1)植树的班级总数为325%=12(个);(2)植树11棵的班级数为12-1-2-3-4=2(个),补全条形图如答图:答图(3)设平均数为x ,则x =1×8+2×9+2×11+3×12+4×1512=12(棵),所以该学校各班的平均植树棵数为12棵.。
八年级数学下:算术平均数与加权平均数(练习1、2)
八年级数学下:算术平均数与加权平均数(练习1)【基础知识训练】1.如果一组数据5,x ,3,4的平均数是5,那么x=_______.2.某班共有学生50人,平均身高为168cm ,其中30名男生平均身高为170cm ,•则20名女生的平均身高为________.3.某校八年级(一)班一次数学考试的成绩为:100分的3分,90分的13人,80•分的17人,70分的12人,60分的2人,50分的3人,全班数学考试的平均成绩是_______.(结果保留到个位) 4分和一个最低分后的平均分是________分.5.在航天知识竞赛中,包括甲同学在内的6•名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分. 【创新能力应用】6.如果一组数据x 1,x 2,x 3,x 4的平均数是x ,那么另一组数据x 1,x 2+1,x 3+2,x 4+3的平均数是( ) A .x B .x +1 C .x +1.5 D .x +67.有m 个数的平均数是x ,n 个数的平均数是y ,则这(m+n )个数的平均数为( ) A ....22x yx y mx ny mx nyB C D m nm n++++++ 8.x 1,x 2,x 3,……,x 10的平均数是5,x 11,x 12,x 13,……,x 20的平均数是3,则x 1,x 2,x 3,……,x 20的平均数是( )A .5 B .4 C .3 D .89.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电( ) A .41度 B .42度 C .45.5度 D .46度10.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,•乙种10千克,丙种3千克混在一起,则售价应定为每千克( )A .6.7元 B .6.8元 C .7.5元 D .8.6元 11.为了增强市民的环保意识,某初中八年级(二)班的50名学生在今年6月5日(•世界环境日)这一天调查了各自家庭丢弃旧塑料袋的情况.统计数据如下表:请根据以上数据回答:(1)50户居民每天丢弃废旧塑料袋的平均个数是______个. (2)该校所在的居民区有1万户,则该居民区每天丢弃的废旧塑料袋约_____万个.12.某商场四月份随机抽查了6天的营业额,结果分别如下(单位:万元):2.8,•3.2,3.4,3.0,3.1,3.7,试估算该商场四月份的总营业额,大约是______万元.13.某班进行个人投篮比赛,受污染的下表记录了在规定时间内投进n•个球的人数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?14.随机抽查某城市30天的空气状况统计如下:其中,w≤50时,空气质量为优;50<w≤100时,空气质量为良;100<w≤150时,空气质量为轻微污染.(1)请用扇形统计图表示这30天中空气质量的优、良、轻微污染的分布情况;(2)估计该城市一年(365)天有多少空气质量达到良以上.15.老王家的鱼塘中放养了某种鱼1500条,若干年后,准备打捞出售,为了估计鱼塘中这种鱼的总质量,现从鱼塘中捕捞三次,得到数据如下表:(1)鱼塘中这种鱼平均每条重约多少千克?(2)若这种鱼放养的成活率是82%,鱼塘中这种鱼约有多少千克?(3)如果把这种鱼全部卖掉,价格为每千克6.2元,那么这种鱼的总收入是多少元?若投资成本为14000元,这种鱼的纯收入是多少元?16.某单位欲从内部招聘管理员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序组织200名职工对三人利用投票推荐Array的方式进行民主评议,三人得票(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3•的比例确定个人的成绩,那么谁将被录用?17.某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变,有关数据如下表所示:(1)该风景区称调整后这5个景点门票的平均收费不变,平均日总收入持平,问风景区是怎样计算的?2(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,•实际上增加了约9.4%,问游客是怎样计算的?(3)你认为风景区和游客哪一个说法较能反映整体实际?x+1,x+2,x+3的平均数。
初二数学平均数与加权平均数同步练习题及参考答案
初二数学平均数与加权平均数同步练习题及参考答案平均数与加权平均数1.一般地,如果有n个数,那么 _______________,叫做这几个数的平均数。
2.如果数据2,3,x,4的平均数是3,那么x等于____________。
3.数据5,3,2,1,4,的平均数是____________。
4.已知1,2,3,,,的平均数是8,那么,,的平均数是____________。
5.某次考试,5名学生的平均分是83,除学生甲外,其余4名学生的平均分是80,则学生甲的得分是__________。
6.某校几名学生参加今年全国初中数学竞赛,其中8名男同学的平均成绩为85分,4名女同学的平均成绩为76分,则该校12名同学的平均成绩为___________。
7.已知一跳高运动员在1次大型运动会上成绩的平均数为2.35米,若选派参加亚运会,可以预料,他的成绩大约为______米。
8.经随机调查某校初三30名学生每天完成家庭作业时间为3小时,由可估计该校家庭作业约为___________小时。
9.数据a,a,b,c,a,c,d的平均数是 ( )A. B.C. D.10.某次考试,5名学生的平均分是82,除学生甲外,其余4名学生的平均分是80,那么学生甲的得分是( )A.84B.86C.88D.9011.已知数据的平均数是,那么的平均数是 ( )A. B.2 C.2 +1 D.12.若m个数的平均数为x,n个数的平均数为y,则这(m+n)个数的平均数是 ( )A. B. C. D.13.已知一组数据23.02,22.99,22.98,23.01,a的平均数为23.01。
求a的值。
14.已知数据,,的平均数是10,求数据的平均数。
15.一组数1,2,3,x,y,z的平均数是4(1)求x,y,z三数的平均数。
(2)求4x+5,4y+6,4z+7的平均数。
16.从甲、乙、丙三个厂家生产的同一产品中,各抽出8件产品,对其使用寿命进行跟踪调查,结果如下:(单位:年) 甲:3,4,5,6,8,8,8,10乙:4,6,6,6,8,9,12,13丙:3,3,4,7,9,10,11,12试计算三个厂这三批灯泡的平均寿命并比较哪个厂生产的产品寿命最长。
20.1 平均数 加权平均数 专题练习题(含答案)
20.1平均数加权平均数专题练习题1.数据3,2,2,3,2中2的权数为________.2.一组数据由100个数组成,x的权数为0.35,则x出现________次.3.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克糖果混在一起,则售价应定为每千克( )A.6.7元 B.6.8元C.7.5元D.8.6元4.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电( ) A.41度B.42度C.45.5度D.46度5.为了调查某一路口某时段的汽车流量,某同学观察记录了15天,其中2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天在该时段通过该路口的汽车平均辆数为( )A.146辆 B.150辆 C.153辆 D.600辆6.学校规定:学生期末总评成绩由卷面成绩、研究性学习成绩、平时成绩三部分组成,各部分所占比例分别是60%,20%,20%,小明本学期数学学科三部分成绩分别是90分,80分,85分,则小明的期末数学总评成绩为( ) A.84分 B.85分 C.86分 D.87分7.某校八(1)班一次数学考试的成绩为:100分的3人,90分的13人,80分的17人,70分的12人,60分的2人,50分的3人,全班数学考试的平均成绩是________.(结果保留到个位)8.某次射击训练中,一小组的成绩如下表所示:环数6789人数132若该小组的平均成绩为7.7环,则成绩为8环的人数是________.9.某校测量了七(1)班学生的身高(精确到1cm),得到如图所示的频数分布直方图(每组含最小值,不含最大值),根据图中信息,计算出该班学生的平均身高大约是______cm.10.某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用,三位候选人的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩,谁将被录用?说明理由;(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.11.在一组数据中出现x 1,x 2,x 3,x 4,且x 1,x 2,x 3的权数为,,,则x 4的权数为( )315215615A .15B .4C.D.4151412.在一次“爱心互助”捐款活动中,某班甲组8名同学捐款的金额(单位:元)如下表所示:金额(元)56710人数2321这8名同学捐款的平均金额为( )A .3.5元B .6元C .6.5元D .7元13.某班学生在一次测验中平均成绩为80分,其中男生平均成绩为82分,女生平均成绩为77分,则该班男、女生人数之比为( )A .1∶2B .2∶1C .3∶2D .2∶314.x 1,x 2,x 3,…,x 10的平均数是5,x 11,x 12,x 13,…,x 20的平均数是3,则x 1,x 2,x 3,…,x 20的平均数是( )A .5B .4C .3D .815.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩,孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是________分.16.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(小时)4567人数1020155则这50名学生一周的平均课外阅读时间是________小时.17.勤劳是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务.王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时,每组含最大值,不含最小值),所得数据统计如下表:由此可估计王刚同学所在学校的同学寒假在家做家务的平均时间是________小时.18.为了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下表:月用水量/吨1013141718户 数22321(1)计算这10户的平均月用水量;(2)如果该小区有500户,根据上面的计算结果,估计该小区居民每月用水多少吨?19.小明家买了一辆小轿车,小明连续记录了一周每天行驶的路程:请你用学过的统计知识解决下面的问题:(1)小明家的轿车每月(按30天计算)要行驶多少千米?(2)若每行驶100千米需汽油8升,汽油每升6.64元,请你算出小明家一年(按12个月计算)的汽油费用大约是多少元(精确到百位).20.小林在八年级第一学期的数学书面测验成绩分别为:平时考试第一单元得104分,第二单元得96分,第三单元得112分;期中考试得102分;期末考试得110分.如果按照平时、期中、期末各占10%,30%,60%计算,那么小林该学期数学书面测验的总评成绩为多少分?参考答案1. 0.62. 353. B4. C5. C6. D7. 798. 4人9. 16210. (1)x甲=73分,x乙=72分,x丙=74分,丙将被录用 (2)x甲=76.3分,x乙=72.2,x丙=72.8,甲将被录用11. C12. C13. C14. B15. 8816. 5.317. 4418. (1)14吨 (2)7000吨19. (1)1050千米 (2)6700元20. 107分。
人教版数学八年级下册 平均数和加权平均数
权的英文 weight
是
w1一,般w2地,,…若,wn n个,数则xx1,1w1x+2,x2…w2,+ xn
的权分别
+xn wn
w1+w2 + +wn
叫做这 n 个数的加权平均数.
思考:如果公司想招一名口语能力较强的翻译,听、 说、读、写的成绩按照 3:3:2:2 的比确定,那么甲、 乙两人谁将被录取?与上述问题中的 (1) (2) 相比较, 你体会到权的作用吗?
例2 某跳水队为了解运动员的年龄情况,做了一次
年龄调查,结果如下表. 求这个跳水队运动员的平
均年龄(结果取整数). 13 13 13 13 13 13 13 13 14 年龄 频数(出现次数)
14 14 14 14 14 14 14 14 14 13
8
14 14 14 14 14 14 15 15 15 14
知识点2: 加权平均数的其他形式
权 能体现在整组数据比重中所占的比重
比例
百分数
数据出现?的次数
2:1:3:4 50% : 40% : 10%
想一想:哪组数据的 2 所占的比重更大呢?
2的权: 1 1,2 1个 2
2的权: 10 1,2,2,2,2,2,2,2,2,2,2 10个2
总结 碰到重复的数据时,可以用加权的办法来计算平均数.
(2) 如果公司想招一名笔译能力较强的翻译,听、说、 读、写的成绩按照 2:1:3:4 的比确定,计算两名应试者 的平均成绩(百分制) . 从他们的成绩看,应该录取谁?
分析: 权
比例 2:1:3:4
应试者 听
说
读
写
甲
85
78
沪科版八年级下册数学 第20章 20.2.2 加权平均数 习题课件
答案显示
核心必知
1.若f1, f2, …,fk分别表示数据x1,x2, …, xk出现的次数,或
者表示数据x1,x2, …, xk在总结果中的比重,我们称其
为各数据的权.求这样一组数据的平均数,可用公式:
_x做=这xn1个f1f+数1+x据2f2f的+2+…__…加+_+_权f_kx_平k__fk均_(_f数1_+_.f2+
能力提升练 11.A,B,C三名大学生竞选系学生会主席,他们的
笔试和面试成绩(单位:分)如下表:
笔试 面试
ABC 85 95 90 90 80 85
能力提升练 (1)竞选的最后一个程序是由本系的300名学生进行投票,
三名候选人的得票情况如图(没有弃权票,每名学生只 能推荐一人),请计算每人的得票数;
能力提升练 解:小明的数学学业水平:85×30%+84×20%+ 80×30%+82×20%=82.7(分), 小李的数学学业水平:80×30%+82×20%+85×30%+ 86×20%=83.1(分), 小王的数学学业水平:75×30%+90×20%+88×30%+ 85×20%=83.9(分). ∵82.7<83.1<83.9,∴小王的数学学业水平最高.
饪大赛.据了解,淮南豆腐是经典的传统小吃,国家地 理标志产品,若对此次烹饪大赛的菜品的评价按味道、 外形、色泽三个方面进行评价(评价的满分均为100分), 三个方面的重要性之比依次为7∶2∶1.某位厨师的菜所 得的分数依次为92分、88分、80分,那么这位厨师的最 后得分是___9_0____分.
基础巩固练 9.【易错题】八年级两个班一次数学考试的成绩如下:八
解:A的得票数:300×35%=105, B的得票数:300×40%=120, C的得票数:300×25%=75.
八年级数学下册20.1平均数3.加权平均数练习(含答案)
3.加权平均数1.(易错题)某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)( B )(A)83.1分(B)83.2分(C)83.4分(D)83.5分某次射击(A)5人(B)6人(C)4人(D)7人3.在中国好声音选秀节目中,四位参赛选手的各项得分如下表(每项按10分制),如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高进入下一轮比赛人气指数(A)小赵(B)小王 (C)小李 (D)小黄4.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩2的权重,根据四人各自的平均成绩,公司将录取( B )(A)甲(B)乙 (C)丙 (D)丁5.为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆.那么这15天在该时段通过该路口的汽车平均辆数为153辆.6.(2018宜宾)某校拟招聘一名优秀数学教师,现有甲、乙、丙三名教师入围,三名教师笔试、面试成绩如表所示,综合成绩按照笔试占60%、面试占40%进行计算,学校录取综合成绩得分如图是某校八年级学生为灾区捐款情况的条形图和扇形统计图若该校八年级学生有800人,则八年级捐款总数为7 600 元.8.八年级某班40名学生参加“环保知识竞赛”的得分如下表:如果该班学生得分的平均成绩是2.5分,求表中的人数x,y分别是多少?解:根据题意,得解得x=7,y=4.故x,y分别是7,4.9.甲、乙两名大学生竞选班长,现对甲、乙两名候选人从笔试、口试、得票三个方面表现进行评分,各项成绩如表所示:上?(2)如果将笔试、口试和得票按2∶1∶2来计算各人的成绩,那么又是谁会竞选上?解:(1)甲的成绩为85×20%+83×30%+90×50%=86.9(分),乙的成绩为80×20%+85×30%+92×50%=87.5(分),因为87.5>86.9,所以乙会竞选上.(2)甲的成绩为=86.6(分),乙的成绩为=85.8(分),因为86.6>85.8,所以甲会竞选上.10.(分类讨论)甲、乙两同学相约到一家商店去买若干次白糖,两个人买糖方式不同:甲每次总是买1千克的糖,乙每次总是买一元钱白糖,而白糖的价格是变动的,若两人买2次白糖,试问这两位同学买白糖的方式谁比较合算?小明是这样解答的:设两次买白糖的价格分别是x1,x2则甲的平均单价是,乙也是,所以两人买白糖的方式一样合算,你认为小明的解答正确吗?如果不正确应如何改正.解:不正确.设甲平均每千克白糖单价为a=;乙平均每千克白糖单价为b==,因为a≠b,所以a-b=-=>0,即a>b,所以乙买白糖的方式合算.11.(拓展探究)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用;(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?解:(1)甲、乙、丙的民主评议得分分别为200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的测试平均成绩为≈72.67(分);乙的测试平均成绩为≈76.67(分);丙的测试平均成绩为=76.00(分).因为76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分); 乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.。
专题20.1 数据的集中程度----八年级数学人教版(下册)
第二十章 数据的分析20.1 数据的集中程度1.平均数(1)加权平均数:若n 个数n x x x x ...,,,321的权分别是n a a a a ,...,,,321,则有na x a x a x a x x nn ++++=...222211叫这n 个数的加权平均数。
(2)当权为1时,就是我们小学学的算术平均数: 若n 个数n x x x x ...,,,321的权1...321=====n a a a a ,则有nx x x x x n++++=...221叫这n 个数的算术平均数。
(3) 平均数和加权平均数:①都反映一组数据的集中趋势的“特征数”②平均数描述的是一组数据平均水平,受极端值影响很大,数据中任何一个数据变动都会影响平均数的变动。
2、中位数(1)求法:①将n 个数由小到大(由大到小)排序,相同数排在一起,不可算作一个数据。
② 当n 为奇数时,第21+n 个为中位数,当n 为偶数时,第2n 个和第⎪⎭⎫⎝⎛+12n 个数的平均数为中位数。
(2)中位数描述数据集中趋势,代表数据值大小的“中点”,不易受极端值影响,但不可利用所有数据信息。
3、众数反应一组数据中出现次数最多的数据。
注意:①共同点:三者都反映数据的集中趋势的特征数。
平均数反映整体数集中,中位数反映中间数,众数反映最多数。
① 一组数据中,判断好坏,一般看平均分高低,当平均分相同时,看中位数,中位数相同时,看众数。
一、中位数、众数的判断【例题1】某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是 A .6 B .8 C .9 D .10【答案】B【解析】∵某车间6名工人日加工零件数分别为6,10,8,10,5,8, ∴重新排序为5,6,8,8,10,10 ∴中位数为:.故选B .【例题2】为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表: 则这30名同学每天使用的零花钱的众数和中位数分别是( )A .15、15B .20、17.5C .20、20D .20、15【答案】B 【解析】∵调查人数为30人, ∴x=30-2-5-8-6=9(人)∵20出现了9次,出现的次数最多,∴这30名同学每天使用的零花钱的众数为20元;∵30个数据中,第15个和第16个数分别为15、20,它们的平均数为17.5, ∴这30名同学每天使用的零花钱的中位数为17.5元.故选B.【例题3】某公司销售部统计了每个销售员一月份的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为(单位:万元,且为整数). 销售部规定;当时为“不称职”,当时为“基本称职”,当时为“称职”,当时为“优秀”.根据以上信息,解答下列问题:计算销售部销售人员的总人数及销售额为优秀的人数,并补全扇形统计图;求销售额达到称职及以上的所有销售员的月销售额的中位数和众数;为了调动销售员的积极性,销售部决定制定一个月销售额奖标准,如果欲使达到“称职”和“优秀”的销售员中能有约一半人员获得奖励,月销售额奖励标准应定为多少万元(结果取整数)?并简述理由.【答案】(1)补图见解析;(2)见解析;(3)要使得所有“职称”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为万元.【解析】解:被调查的总人数为人.不称职的百分比为.基本称职的百分比为.优秀的百分比为.则优秀的人数为.得分的人数为补全图形如下:由折线图知职称与优秀的销售员职工人数分布如下:万人,万人,万人,万人,万人,万人,万人,万人,万人则职称与优秀的销售员月销售额的中位数为万.众数为万.月销售额奖励标准应定为万元.职称和优秀的销售员月销售额的中位数为万元.要使得所有“职称”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为万元.二、加权平均数的计算【例题4】某学校绿化小组22人参加一项植树治沙工程,其中4人每人种树6棵,8人每人种树3棵,10人每人种树4棵,那么这个小组平均每人种树( )A.6棵B.5棵C.4棵D.3棵【答案】C【解析】这个小组平均每人种树的棵数=(4×6+8×3+10×4)÷22=4棵,故选C.【例题5】春华中学为了解九年级学生的身高情况,随机抽测50名学生的身高后,所得部分资料如下(身高单位:,测量时精确到):若将数据分成8组,取组距为,相应的频率分布表(部分)是:请回答下列问题:(1)样本数据中,学生身高的众数、中位数各是多少?(2)填写频率分布表中未完成的部分;(3)若该校九年级共有850名学生,请你估计该年级学生身高在及以上的人数.【答案】(1)众数是,中位数是;(2)163.5~167.5频数16,频率为0.32.(3)该年级学生身高在及以上的人数为102人.【解析】解:(1)∵图表中167cm的人数最多为6人,∴众数为:167cm;∵共50人,中位数应该是第25和第26人的平均数,∴第25和第26人的平均数为:=164(cm)答:众数是,中位数是;(2)163.5~167.5范围内的人数为:5+2+3+6=16(人),163.5~167.5范围内的频率为:=0.32,∴163.5~167.5频数16,频率为0.32;(3),人答:则该年级学生身高在及以上的人数为102人.故答案为:(1)众数是,中位数是;(2)163.5~167.5频数16,频率为0.32.(3)该年级学生身高在及以上的人数为102人.1.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,122.现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6则不受影响的是()A.众数B.中位数C.平均数D.众数和中位数3.有一组数据:1, 2, 2, 5, 6, 8,这组数据的中位数是()A.2 B.2.5 C.3.5 D.54.一组数据2,3,5,4,4,6的众数和平均数分别是()A.和4 B.4和4 C.4和4.8 D.5和45.某住宅小区六月份1日至5日每天用水量变化情况如图所示,那么这5天用水量的中位数是A.30吨B.36吨C.32吨D.34吨6.如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是()A.平均数是6B.中位数是6.5C.众数是7D.平均每周锻炼超过6小时的人数占该班人数的一半7.如果一组数据3、4、5、6、、8的众数是4,那么这组数据的中位数是()A.4;B.4.5;C.5;D.5.5.8.某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是209.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数10.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为A.、B.、C.、D.、11.若一组数据1,2,,3,4的众数为4,则这组数据的中位数是__________.12.国家科学技术进步奖是国务院设立的国家科学技术奖五大奖项之一,根据国家统计局公布的奖项数绘制成折线统计图,则奖项数的中位数为____.13.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为_________.14.在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是__分.15.“重整行装再出发,驰而不息再争创”,2018年5月8日兰州市召开了新一轮全国文明城市创建启动大会.某校为了更好地贯彻落实创建全国文明城市目标,举办了“我是创城小主人”的知识竞赛.该校七年级、八年级分别有300人,现从中各随机抽取10名同学的测试成绩进行调查分析,成绩如下:整理、描述数据:分析数据:得出结论:(1)根据上述数据,将表格补充完整;(2)估计该校七、八两个年级学生在本次测试成绩中可以取得优秀的人数共有多少人?(3)你认为哪个年级知识掌握的总体水平较好,说明理由.16.某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:(1)求表中m、n的值;(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.17.随着生活水平的提高,人们对空气质量的要求也越来越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十章数据的分析
∴应该录取 .
要点归纳: 一般地,若n 个数x 1,x 2,…,x n 的权分别是w 1,w 2,…,w n ,则 叫做这n 个数的加权平均数.
例1 一次演讲比赛中,评委将从演讲内容,演讲能力,演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:
探究点2:加权平均数的其他形式 知识要点:
在求n 个数的算术平均数时,如果x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次(这里f 1+f 2+…+f k =n )那么这n 个数的算术平均数 也叫做x 1,x 2,…,x k 这k 个数的加权平均数,其中f 1,f 2,…,f k 分别叫做x 1,x 2,…,x k 的权.
例2 某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).
2.某校八年级一班有学生50人,八年级二班有学生45人,期末数学测试中,一班学生的平均分为81.5分,二班学生的平均分为8
3.4分,这两个班95名学生的平均分是多少?
1.一组数据为10,8,9,12,13,10,8,则这组数据的平均数是_________.
2.已知一组数据4,13,24的权数分别是111
,,,632
则这组数据的加权平均数是_____ .
3.某公司有15名员工,他们所在的部门及相应每人所创的年利润(万元)如下表: 该公司每人所创年利润的平均数是_____万元.
4.某次歌唱比赛,两名选手的成绩如下:
(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,此时第一名是谁?。