2.3.2+平面与平面垂直的判定+教案
2.3.2 平面与平面垂直的判定
《2.3.2 平面与平面垂直的判定》导学案班别:____组别:____姓名:____评价:____【学习目标】1.掌握平面与平面垂直的判定定理的条件,并能运用判定定理证明面面垂直的有关问题.【自主学习】(一)知识回顾1. 直线与平面垂直的判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直.图形语言:符号语言:_______________________________________________________________。
(二)新知学习1.平面与平面垂直(1)定义:两个平面相交,如果它们所成的二面角是________,就说这两个平面互相垂直.(2)表示方法:平面α与平面β垂直记作______.探究:如何判断两个平面垂直呢?动手试一试:(1)在我们的周围,你能找出平面与平面垂直的实例吗?(2)你能动手做一个平面与平面垂直的模型吗?试一试以小组为单位完成该项操作。
(3)试一试,一个平面过另一个平面的垂线,这两个平面的位置关系是怎样的?2.平面与平面垂直的判定定理(1)文字语言:一个平面过另一个平面的垂线,则这两个平面____________。
(2)图形语言:(3)符号语言:________________________________________温馨提示:证明面面垂直的关键是__________________【自我检测】1.下列说法正确的是().A.若平面α内有一条直线垂直于平面β内一条直线,则α⊥β.B.若平面α内有一条直线垂直于平面β内两条平行直线,则α⊥β.C.若平面α内有一条直线垂直于平面β内无数条直线,则α⊥β.D.若平面α内有一条直线垂直于平面β内两条相交直线,则α⊥β.2.下列说法正确的是().A.如果平面α内的一条直线垂直于平面β内的两条直线,则α⊥β.B.过平面α的一条垂线,可作无数个平面与平面α垂直.C.过平面α的一条斜线,可作无数个平面与平面α垂直.D.垂直于同一个平面的两个平面平行.3.如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点,求证:平面PAC⊥平面PBC.探究:如图,已知AB⊥平面BCD ,BC⊥CD,你能发现哪些平面互相垂直?它们分别是___________________________________________________________________.为什么?【巩固练习】1.如图,在正方体ABCD-A′B′C′D′中,求证:平面ACC′A′⊥平面A′BD.2.如图所示,在四棱锥S-ABCD中,底面四边形ABCD是平行四边形,SC⊥平面ABCD,E是SA的中点.求证:平面EBD⊥平面ABCD.【课后作业】1.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:平面EFC⊥平面BCD.【课后反思】学完本节课,你在知识、方法等方面有什么收获与感受?请写下来!。
人教课标版高中数学必修2《平面和平面垂直的判定和性质》教学设计
2.3.2平面和平面垂直的判定和性质一、教学目标(一)核心素养(1)通过本节教学,提高学生空间想象能力.(2)通过问题解决,提高等价转化思想渗透的意识.(3)进一步提高学生分析问题、解决问题的能力.(二)学习目标(1)两个平面互相垂直的判定.(2)两个平面互相垂直的性质.(三)学习重点两个平面垂直的判定、性质.(四)学习难点(1)两个平面垂直的判定定理、性质定理运用.(2)正确作出符合题意的空间图形.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第67页到第69页,填空:二面角的定义:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角;以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(2)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎬⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎬⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α1.直线a⊥直线b,a⊥平面β,则b与β的位置关系是()A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β【解题过程】由垂直和平行的有关性质可知b⊂β或b∥β,故选D.【答案】D2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题过程】若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.故选A.【答案】A3.设m、n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥α.B.若m∥β,β⊥α,则m⊥α.C.若m⊥β,n⊥β,n⊥α,则m⊥α.D.若m⊥n,n⊥β,β⊥α,则m⊥α.【解题过程】A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.【答案】C(二)课堂设计1.知识回顾(1)直线和平面垂直的判定定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α(2)直线和平面垂直的判定的另外一种判定方法文字语言图形语言符号语言判定方法如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.ba//,α⊥a.则α⊥b(3)直线和平面垂直的性质定理性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎬⎫a⊥αb⊥α⇒a∥b2.问题探究探究一实例引领,认识平面和平面垂直的概念★●活动①简单类比,引出定义两个平面互相垂直是两个平面相交的特殊情形.教室的墙面与地面、一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念类似,也是用它们所成的角为直角来定义的.请同学思考两个平面互相垂直的定义.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.那么两个互相垂直的平面画其直观图时,应把直立平面的边画成和水平平面的横边垂直,如下图.平面α和β垂直,记作α⊥β.●活动②实例引领,思维激活实例:如图,检查工件的相邻两个平面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,这是为什么?曲尺的一边在一面内转动即为形成一个平面,而另一边与此平面垂直,且又紧靠在另一平面上,即垂线在另一平面内.所以我们得到面面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.)下面我们一起给出分析,证明:已知:AB⊥β,AB∩β=B,AB⊂α.【解题过程】要证α⊥β,需证α 和β 构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB⊂α知,AB、CD共面.∵AB⊥β,CD⊂β,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD.则∠ABE是二面角α-CD-β的平面角.又AB⊥BE,即二面角α-CD-β是直二面角.∴α⊥β.现在同学们明确了面面垂直的判定定理,请思考:建筑工人在砌墙时,常用一段系有铅锤的线来检查所砌墙面是否和水平面垂直,依据是什么?[学生]依据是两个平面垂直的判定定理,一面经过另一面的一条垂线.[老师]从转化的角度来看,两个平面垂直的判定定理可简述为:线面垂直⇒面面垂直请同学们接着思考如下问题:在所给正方体中,下式是否正确:①平面ADD1A1⊥平面ABCD;②D1A⊥AB;③D1A⊥面ABCD.[学生]①∵AB⊥面ADD1A1,AB⊂面ABCD.∴平面ABCD⊥平面ADD1A1.②∵AB⊥面ADD1A1,D1A⊂面ADD1A1∴AB⊥D1A③∵AA1⊥面ABCD,∴AD1与平面ABCD不垂直.平面ADD1A1⊥面ABCD,平面ADD1A1∩平面ABCD=AD,A是平面ADD1A1内一点.过点A可以在平面ADD1A1内作无数条直线,而这些直线满足什么条件就可以使之与平面垂直?判定定理解决两个平面如何垂直,性质定理可以解决上述线面垂直.从转化的角度可表述为:面面垂直,则线面垂直.也给了我们以后证明问题的一种思想方法.下面我们一起来完成证明.证明过程如下:已知:α⊥β、α∩β=a,AB⊂α,AB⊥a于B.【解题过程】:在平面β内作BE⊥a垂足为B,则∠ABE就是二面角α-a-β的平面角.由α⊥β可知,AB⊥BE.又AB⊥a,BE与a是β内两条相交直线,∴AB⊥β.证明的难点在于“作BE⊥a”.为什么要做这一步?主要是由两面垂直的关系,去找其二面角的平面角来决定的.【设计意图】构造二面角的平面角过程可以体现学生的创新精神、转化能力.【答案】见解题过程.探究二层层深化,掌握平面和平面垂直的判定定理和性质定理.●活动①互动交流,初步实践例1 求证:(1)如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直;(2)如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直.【知识点】平面和平面垂直的判定.【数学思想】化归思想.【解题过程】(1)已知:l∥α,l⊥β,求证:α⊥β.证明:在平面α内任取一点P.∵l ∥α,∴P ∉l .P 、l 可确定一平面γ.设α∩γ=l ′则l ∥l ′.⎪⎭⎪⎬⎫⊂'⊥'⇒⎭⎬⎫'⊥αββl l l l l //⇒α⊥β[该题目难在构造既符合题,又能使问题得证的立体图形.] (2)已知:α⊥β,β∥γ.求证:α⊥γ证明:过β 内一点P 作直线l ,使l ⊥α则l ⊂β. l 与γ内任一点Q 确定平面δ,设δ∩γ=l ′,则l ∥l ′. l ′⊥α,因此γ⊥α.【思路点拨】题目较抽象,构造图形,创造条件,使问题转化为可利用已有定理来解决.由此我们又多了两个判断面面垂直的结论. 【答案】见解题过程. ●活动②巩固基础,检查反馈例2 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面P AC ⊥平面PBC .【知识点】平面和平面垂直的判定 【数学思想】化归思想【解题过程】证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有BC ⊥AC ①.因为P A ⊥平面ABC ,BC ⊂平面ABC ,则P A ⊥BC ②. 由①②及AC ∩PA =A ,得BC ⊥平面P AC .因为BC⊂平面PBC,有平面P AC⊥平面PBC.【思路点拨】低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直⇒线面垂直⇒面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.【答案】见解题过程.例3 如图,P是△ABC所在平面外的一点,且P A⊥平面ABC,平面P AC⊥平面PBC,求证:BC⊥AC.【知识点】平面和平面垂直的判断和性质.【数学思想】转化思想.【解题过程】证明:在平面P AC内作AD⊥PC,交PC于D.因为平面P AC⊥平面PBC于PC,AD⊂平面P AC,且AD⊥PC,所以AD⊥平面PBC.又因为BC⊂平面PBC,于是有AD⊥BC①.另外P A⊥平面ABC,BC⊂平面ABC,所以P A ⊥BC.由①②及AC∩PA=A,可知BC⊥平面P AC.因为AC⊂平面P AC,所以BC⊥AC.【思路点拨】在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.【答案】见解题过程.例4 P为120°角α-a-β内一点,P到α和β的距离均为10,求点P到棱a的距离.【知识点】二面角的概念,距离.【数学思想】化归思想.【解题过程】如图,过点P 作P A ⊥α于A ,PB ⊥β于B ,设相交直线P A 、PB 确定的平面为γ,a ∩γ=O ,则α∩γ=OA ,β∩γ=OB 连结PO ,则AP =BP =10∵P A ⊥α,PB ⊥β,∴a ⊥γ,而PO ⊂平面γ,∴a ⊥PO , ∴PO 的长即为点P 到直线a 的距离. 又∵a ⊥γ,γ⊂OA ,γ⊂OB∴∠AOB 是二面角α-a -β的平面角,即∠AOB =120°.而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径. ∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用△APB . 在△APB 中,AP =BP =10,∠APB =60°,∴AB =10. 由正弦定理:332060sin 2=︒==AB R PO . 【思路点拨】(1)该题寻找120°的二面角的平面角,所采取的方法即为垂面法,由此可见,若题目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.(2)充分借助于四边形P AOB 为一圆内接四边形,∵P A ⊥OA ,PB ⊥OB ,∵PO 即为其外接圆直径,然后借助于四边形的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.【答案】.3320活动③ 强化提升,灵活应用例5.过点S 引三条不共面的直线SA 、SB 、SC ,如图,∠BSC =90°,∠ASC =∠ASB =60°,若截取SA =SB =SC =a .(1)求证:平面ABC ⊥平面BSC ; (2)求S 到平面ABC 的距离.【知识点】面面垂直的证明,距离. 【数学思想】化归思想【解题过程】(1)证明:∵SA =SB =SC =a , 又∠ASC =∠ASB =60°,∴△ASB 和△ASC 都是等边三角形,∴AB =AC =a , 取BC 的中点H ,连结AH ,∴AH ⊥BC . 在Rt △BSC 中,BS =CS =a , ∴SH ⊥BC ,a BC 2=,∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在△SHA 中,∴222a AH =,222a SH =,22a SA =, ∴222HA SH SA +=,∴AH ⊥SH ,∴AH ⊥平面SBC .∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC . 或:∵SA =AC =AB ,∴顶点A 在平面BSC 内的射影H 为△BSC 的外心, 又△BSC 为Rt △,∴H 在斜边BC 上,又△BSC 为等腰直角三角形,∴H 为BC 的中点,∴AH ⊥平面BSC . ∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC .(2)由前所证:SH ⊥AH ,SH ⊥BC ,∴SH ⊥平面ABC ,∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==,∴点S到平面ABC的距离为a22.【思路点拨】(1)要证明平面ABC⊥平面BSC,根据面面垂直的判定定理,须在平面ABC或平面BSC内找到一条与另一个平面垂直的直线;(2)外心为三角形外接圆的圆心,即三条中垂线的交点.【答案】(1)见解题过程;(2)a22.同类训练如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥B C.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【知识点】线面平行的判定,面面垂直的证明.【解题过程】(1)证明:在三棱台ABC-DEF中,AC∥DF,AC⊂平面ACE,DF 平面ACE,∴DF∥平面ACE.又∵DF⊂平面DEF,平面ACE∩平面DEF=a,∴DF∥a.(2)线段BE上存在点G,且BG=13BE,使得平面DFG⊥平面CDE.证明如下:取CE的中点O,连接FO并延长交BE于点G,连接GD、GF,∵CF=EF,∴GF⊥CE.在三棱台ABC-DEF中,AB⊥BC⇒DE⊥EF.由CF⊥平面DEF⇒CF⊥DE.又CF ∩EF =F ,∴DE ⊥平面BEF ,∴DE ⊥GF .GF CE GF DE GF CDE CE DE E ⎫⎪⇒⎬⎪⎭⊥⊥⊥平面=.又GF ⊂平面DFG ,∴平面DFG ⊥平面CDE .此时,如平面图所示,∵O 为CE 的中点,EF =CF =2BC ,由平面几何知识易证△HOC ≌△FOE ,∴HB =BC =12EF .由△HGB ∽△FGE 可知12BG GE =,即13BG BE =. 【思路点拨】“探索性问题”的规律方法:一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.【答案】(1)见解题过程;(2)线段BE 上存在点G ,且13BG BE =,使得平面DFG ⊥平面CDE .3. 课堂总结知识梳理(1)证明面面垂直的方法(2)重难点归纳空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.(三)课后作业基础型 自主突破一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不一定成立,故选D.【思路点拨】由题意,画出满足条件的图形,依据面面垂直的性质以及线面平行的性质等知识解答.【答案】D.2.设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是()A.过a一定存在平面β,使得β∥αB.过a一定存在平面β,使得β⊥αC.在平面α内一定不存在直线b,使得a⊥bD.在平面α内一定不存在直线b,使得a∥b【知识点】线面平行的判定,面面垂直的证明.【解题过程】当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b只要垂直于直线a在平面α内的投影,则就必然垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误.【思路点拨】A.根据面面平行的定义和性质判断;B.利用面面垂直的性质和定义判断;C.根据线面垂直的性质判断;D.根据线面平行的性质判断.【答案】B.3.设直线l⊥平面α,直线m⊂平面β,()A.若m∥α,则l∥m B.若α∥β,则l⊥mC.若l⊥m,则α∥β D.若α⊥β,则l∥m【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中直线l与m互相垂直,不正确;B中根据两个平面平行的性质知是正确的;C中的α与β也可能相交;D中l与m也可能异面,也可能相交,故选B.【思路点拨】通过线面平行的性质定理和线面垂直的性质定理即可判断A;由一直线垂直于两个平行平面中的一个,也垂直于另一个,结合线面垂直的性质定理即可判断B;举反例,由线面垂直的性质定理即可判断C;举反例,结合线面垂直和面面垂直的性质定理即可判断D.【答案】B.4.设a、b是两条不同的直线,α、β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D 中,两直线可以平行,相交或异面,故不正确.【思路点拨】通过线面垂直的性质定理判断A;通过面面平行的性质和线面垂直的性质判断B;通过面面平行的性质和线面垂直的定义判断C;由线面平行的性质和面面垂直的性质判断D.【答案】C.5.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE【知识点】面面垂直的判定.【解题过程】因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE ,所以选C.【思路点拨】缺少【答案】C.6.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直”,则______.【解题过程】此题是突破以往高考命题模式的又一典范,丰富的想象和联想是增强创新意识的利器,本题如果能联想构造一长方体,用一平面去截长方体易得满足条件的棱锥A -BCD ,进而易证结论:“2222ABC ACD ADB BCD SS S S ++=.” 【答案】2222ABC ACD ADB BCD S S S S ++=.7.如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为正确的条件即可).【知识点】线面平行的判定,面面垂直的证明.【解题过程】∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥P C.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD ⊥平面PC D.【答案】DM⊥PC(或BM⊥PC)8.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD =DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.【知识点】线面平行的判定,面面垂直的证明。
人教版数学高一-浙江省衢州市仲尼中学高二数学《2.3.2平面与平面垂直的判定》教案
教材分析:在空间,平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范,空间中平面与平面垂直的定义是通过二面角给出的,二面角是高考中的重点和难点。
使学生掌握两个平面互相垂直的判定,提高学生空间想象能力,提高等价转化思想渗透的意识,进一步提高学生分析问题、解决问题的能力;使学生学会多角度分析、思考问题,培养学生的创新精神。
学情分析:学生已经理解了点、线、面的位置关系,掌握了相应的定义、定理和公理,在上节课中也学习了直线与平面垂直的定义与判定定理,对空间中线面垂直的判定也有了一定的认识与理解。
教学目标:1、探究平面与平面垂直的判定定理,二面角的定义及应用。
(C 级目标)2、掌握平面与平面垂直的判定定理的应用,培养学生的空间想象能力。
(B级目标)3、引导学生总结求二面角的方法,培养学生归纳问题的能力。
4、培养学生的归纳能力。
(A 级目标)教学重点:平面与平面垂直的判定。
教学难点:平面与平面垂直的判定和求二面角。
教学过程:一、 复习旧知两平面的位置关系:(1)如果两个平面没有公共点,则两平面平行⇔若,αβαβ⋂=∅则∥。
(2)如果两个平面有一条公共直线,则两平面相交⇔若,A B αβαβ⋂=则与相交。
二、导入新课如果把门和墙分别看成两个平面,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?今天我们一起来探究两个平面所成角的问题。
三、 讲授新课1、 阅读教材内容,回答下列问题(1) 二面角的有关概念、画法及表示方法。
(2) 二面角的平面角的概念和画法。
(3) 什么叫做直二面角?2、 思考:二面角的大小与点O 的位置选取有关吗?为什么?3、 怎样来度量二面角?二面角的大小可以用它的平面角来度量,二面角的平面角是几度,记说这个二面角是几度。
提问:二面角的平面角必须满足哪几个条件?总结规律:求异面直线所成的角,直线与平面所成的角,平面与平面所成的角最终都转化为线与线相交构成的角。
2.3.2平面与平面垂直的判定.pptx
巩固所 学知识,培养 学生观察 能 力,空间 想象 能力, 书写表 达能 力.
所以 BC⊥平面 PAC. 又因为 BC 在平面 PBC 内, 所 以 , 平 面 PAC ⊥ 平 面
PBC. 1.如图,正方形 SG1G2G3
中,E,F 分别是 G1G2,G2G3 的中点,D 是 EF 的中点,现在 沿 SE,SF 及 EF 把这个正 方形折成
通过模
1.二面角 1 半平面
比以上几个问题,归纳出二面 型教学,培养 角的概念及记法表示(可将角 学 生 几 何
平面内的一条直线把平面 与二面角从图形、定义、构成、 直 观能力,
分成两部分,这两部分通常称为 半平面.
2 二面角 从一条直线出发的两个半
表示进行列表对比). 师生共同实验(折纸)思
考二面角的大小与哪一个角 的大小相同?这个角的边与
∴ 2 a OA AE AD a , 2
在△AEC 中, AE 2 EC 2 (2OA)2
cos AEC 2AE EC
= ( AE 2OA)( AE 2OA) 0 , AE 2
∴∠AEC > 90°. 所以面 PAD 与面 PCD 所成的二面角恒大于 90°. 【评析】求二面角的大小应注意作(找)、证、求、答.
学生独立完成
巩固知识 提升能力
学海无 涯
归纳总结
答:面 ABC⊥面 BCD 面 ABD⊥面 BCD 面 ACD⊥面 ABC. 1. 二面角的定义画法与记 法. 2. 二面角的平面角定义与 范
围.
学生总结、教师补充完善
回顾、反思、 归纳知训提 高自我整合
3. 面面垂直的判定方法.
知识的能力
4. 转化思想.
【解析】不论棱锥的高怎样变化,棱锥侧面 PAD 与 PCD 恒为全等三角形.作 AE⊥DP, 垂足为 E,连接 EC,则△ADE ≌△CDE.
高中数学2.3.2平面与平面垂直的判定教案新人教A版必修2
2.3.2 平面与平面垂直的判定一、教材分析在空间平面与平面之间的位置关系中,垂直是一种超级重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的概念是通过二面角给出的,二面角是高考中的重点和难点.使学生掌握两个平面彼此垂直的判定,提高学生空间想象能力,提高等价转化思想渗透的意识,进一步提高学生分析问题、解决问题的能力;使学生学会多角度分析、思考问题,培育学生的创新精神.二、教学目标1.知识与技术(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面彼此垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在教学问题解决上的作用.2.进程与方式(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的气宇方式及两个平面垂直的判定定理.3.情态、态度与价值观通过揭露概念的形成、发展和应有和进程,使学生理会教学存在于观实生活周围,从中激发学生踊跃思维,培育学生的观察、分析、解决问题能力.三、教学重点与难点教学重点:平面与平面垂直判定.教学难点:平面与平面垂直判定和求二面角.四、课时安排1课时五、教学设计(一)温习两平面的位置关系:(1)若是两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.(2)若是两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1(二)导入新课思路1.(情境导入)为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝牢固耐用必需使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成必然的角度.为此,咱们引入二面角的概念,研究两个平面所成的角.思路2.(直接导入)前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,如何描述这种转变呢?今天咱们一路来探讨两个平面所成角问题.(三)推动新课、新知探讨、提出问题①二面角的有关概念、画法及表示方式.②二面角的平面角的概念.③两个平面垂直的概念.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的概念:从一条直线动身的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常常利用直立式和平卧式两种画法:如图2(教师和学生一路动手).直立式:平卧式:(1) (2)图2二面角的表示方式:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、β内(棱之外的半平脸部份)别离取点P、Q,将这个二面角记作二面角P-AB-Q.图3若是棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内别离作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.图4再取棱上另一点O′,在α和β内别离作l 的垂线O ′A′和O′B′,则它们组成角∠A′O′B′.因为OA∥O′A′,OB∥O′B′,所以∠AOB 及∠A′O′B′的两边别离平行且方向相同, 即∠AOB=∠A′O′B′.从上述结论说明了:依照上述方式作出的角的大小,与角的极点在棱上的位置无关. 由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内别离作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角. 图中的∠AOB,∠A′O′B′都是二面角αlβ的平面角.③直二面角的概念.二面角的大小可以用它的平面角来气宇,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是彼此垂直的.两个平面彼此垂直的概念和平面几何里两条直线彼此垂直的概念相类似,也是用它们所成的角为直角来概念,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角. 两个平面彼此垂直的概念可表述为:若是两个相交平面所成的二面角为直二面角,那么这两个平面彼此垂直. 直二面角的画法:如图5.图5④两个平面垂直的判定定理.若是一个平面通过另一个平面的一条垂线,那么这两个平面彼此垂直. 两个平面垂直的判定定理符号表述为:⎭⎬⎫⊂⊥αβAB AB ⇒α⊥β.两个平面垂直的判定定理图形表述为:如图6.图6证明如下:已知AB⊥β,AB∩β=B,AB ⊂α. 求证:α⊥β.分析:要证α⊥β,需证α和β组成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB ⊂α,知AB 、CD 共面. ∵AB⊥β,CD ⊂β,∴AB⊥CD,垂足为点B. 在平面β内过点B 作直线BE⊥CD, 则∠ABE 是二面角αCDβ的平面角.又AB⊥BE,即二面角αCDβ是直二面角, ∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直.(四)应用示例思路1例1 如图7,⊙O 在平面α内,AB 是⊙O 的直径,PA⊥α,C 为圆周上不同于A 、B 的任意一点.图7求证:平面PAC⊥平面PBC.证明:设⊙O 所在平面为α,由已知条件,PA⊥α,BC ⊂α,∴PA⊥BC. ∵C 为圆周上不同于A 、B 的任意一点,AB 是⊙O 的直径, ∴BC⊥AC.又∵PA 与AC 是△PAC 所在平面内的两条相交直线, ∴BC⊥平面PAC.∵BC ⊂平面PBC,∴平面PAC⊥平面PBC. 变式训练如图8,把等腰Rt△ABC 沿斜边AB 旋转至△ABD 的位置,使CD=AC ,图8(1)求证:平面ABD⊥平面ABC ; (2)求二面角CBDA 的余弦值. (1)证明:由题设,知AD=CD=BD,作DO⊥平面ABC ,O 为垂足,则OA=OB=OC. ∴O 是△ABC 的外心,即AB 的中点. ∴O∈AB ,即O ∈平面ABD. ∴OD ⊂平面ABD.∴平面ABD⊥平面ABC.(2)解:取BD 的中点E ,连接CE 、OE 、OC, ∵△BCD 为正三角形,∴CE⊥BD.又△BOD 为等腰直角三角形,∴OE⊥BD. ∴∠OEC 为二面角CBDA 的平面角. 同(1)可证OC⊥平面ABD.∴OC⊥OE.∴△COE 为直角三角形. 设BC=a ,则CE=a 23,OE=a 21,∴cos∠OEC=33=CE OE .点评:欲证面面垂直关键在于在一个平面内找到另一个平面的垂线.例2 如图9所示,河堤斜面与水平面所成二面角为60°,堤面上有一条直道CD ,它与堤角的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走到10 m 时人升高了多少?(精准到0.1 m )图9解:取CD 上一点E ,设C E=10 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.在河堤斜面内,作EF⊥AB,垂足为F ,并连接FG,则FG⊥AB,即∠EFG 就是河堤斜面与水平面ABG 所成二面角的平面角, ∠EFG=60°,由此,得EG=EFsin60°=CEsin30°sin60°=10×2352321=⨯≈(m ). 答:沿直道行走到10 m 时人升高约4.3 m.变式训练已知二面角αABβ等于45°,CD ⊂α,D ∈AB ,∠CDB=45°.求CD 与平面β所成的角.解:如图10,作CO⊥β交β于点O ,连接DO ,则∠CDO 为DC 与β所成的角.图10过点O 作OE⊥AB 于E ,连接CE ,则CE⊥AB. ∴∠CEO 为二面角αABβ的平面角, 即∠CEO=45°. 设CD=a,则CE=a 22,∵CO⊥OE,OC=OE , ∴CO=a 21.∵CO⊥DO,∴sin∠CDO=21=CD CO . ∴∠CDO=30°,即DC 与β成30°角.点评:二面角是本节的另一个重点,作二面角的平面角最常常利用的方式是:在一个半平面α内找一点C ,作另一个半平面β的垂线,垂足为O,然后通过垂足O 作棱AB 的垂线,垂足为E,连接AE,则∠CEO 为二面角α-AB-β的平面角.这一进程要求学生熟记.思路2例1 如图11,ABCD 是菱形,PA⊥平面ABCD ,PA=AD=2,∠BAD=60°.图11(1)求证:平面PBD⊥平面PAC ; (2)求点A 到平面PBD 的距离; (3)求二面角APBD 的余弦值.(1)证明:设AC 与BD 交于点O ,连接PO, ∵底面ABCD 是菱形,∴BD⊥AC.∵PA⊥底面ABCD,BD ⊂平面ABCD,∴的PA⊥BD. 又PA∩AC=A,∴BD⊥平面PAC.又∵BD ⊂平面PBD,∴平面PBD⊥平面PAC.(2)解:作AE⊥PO 于点E,∵平面PBD⊥平面PAC,∴AE⊥平面PBD. ∴AE 为点A 到平面PBD 的距离.在△PAO 中,PA=2,AO=2·cos30°=3,∠PAO=90°, ∵PO=722=+AO PA ,∴AE=7212732==•PO AO PA .∴点A 到平面PBD 的距离为7212. 3)解:作AF⊥PB 于点F,连接EF, ∵AE⊥平面PBD,∴AE⊥PB. ∴PB⊥平面AEF,PB⊥EF.∴∠AFE 为二面角APBD 的平面角. 在Rt△AEF 中,AE=7212,AF=2, ∴sin∠AFE=742=AF AE ,cos∠AFE=77)742(12=-. ∴二面角APBD 的余弦值为77. 变式训练如图12,PA⊥矩形ABCD 所在平面,M 、N 别离是AB 、PC 的中点.(1)求证:MN∥平面PAD ; (2)求证:MN⊥CD;(3)若二面角PDCA=45°,求证:MN⊥平面PDC.图12 图13证明:如图13所示,(1)取PD 的中点Q ,连接AQ 、NQ,则QN21DC,AM 21DC, ∴QN AM.∴四边形AMNQ 是平行四边形.∴MN∥AQ.又∵MN ⊄平面PAD,AQ ⊂平面PAD,∴MN∥平面PAD. (2)∵PA⊥平面ABCD ,∴PA⊥CD. 又∵CD⊥AD,PA∩AD=A,∴CD⊥平面PAD. 又∵AQ ⊂平面PAD,∴CD⊥AQ. 又∵AQ∥MN,∴MN⊥CD.(3)由(2)知,CD⊥平面PAD, ∴CD⊥AD,CD⊥PD.∴∠PDA 是二面角PDCA 的平面角.∴∠PDA=45°. 又∵PA⊥平面ABCD,∴PA⊥AD.∴AQ⊥PD. 又∵MN∥AQ,∴MN⊥CD.又∵MN⊥PD,∴MN⊥平面PDC.例2 如图14,已知直四棱柱ABCD —A 1B 1C 1D 1的底面是菱形,且∠DAB=60°,AD=AA 1,F 为棱BB 1的中点,M 为线段AC 1的中点.图14(1)求证:直线MF∥平面ABCD ; (2)求证:平面AFC 1⊥平面ACC 1A 1;(3)求平面AFC 1与平面ABCD 所成二面角的大小. (1)证明:延长C 1F 交CB 的延长线于点N ,连接AN. ∵F 是BB 1的中点,∴F 为C 1N 的中点,B 为CN 的中点. 又M 是线段AC 1的中点,故MF∥AN. 又∵MF ⊄平面ABCD,AN ⊂平面ABCD, ∴MF∥平面ABCD.(2)证明:连接BD ,由直四棱柱ABCD —A 1B 1C 1D 1,可知AA 1⊥平面ABCD, 又∵BD ⊂平面ABCD ,∴A 1A⊥BD. ∵四边形ABCD 为菱形,∴AC⊥BD. 又∵AC∩A 1A=A,AC 、A 1A ⊂平面ACC 1A 1,∴BD⊥平面ACC 1A 1.在四边形DANB 中,DA∥BN 且DA=BN , ∴四边形DANB 为平行四边形. 故NA∥BD,∴NA⊥平面ACC 1A 1. 又∵NA ⊂平面AFC 1,∴平面AFC 1⊥平面ACC 1A 1.(3)解:由(2),知BD⊥平面ACC 1A 1,又AC 1⊂平面ACC 1A 1,∴BD⊥AC 1. ∵BD∥NA,∴AC 1⊥NA.又由BD⊥AC,可知NA⊥AC,∴∠C 1AC 就是平面AFC 1与平面ABCD 所成二面角的平面角或补角. 在Rt△C 1AC 中,tan∠C 1AC=311=CA C C ,故∠C 1AC =30°. ∴平面AFC 1与平面ABCD 所成二面角的大小为30°或150°.变式训练 如图15所示,在四棱锥S —ABCD 中,底面ABCD 是矩形,侧面SDC⊥底面ABCD ,且AB=2,SC=SD=2.图15(1)求证:平面SAD⊥平面SBC ;(2)设BC=x ,BD 与平面SBC 所成的角为α,求sinα的取值范围. (1)证明:在△SDC 中,∵SC=SD=2,CD=AB=2,∴∠DSC=90°,即DS⊥SC.∵底面ABCD 是矩形,∴BC⊥CD.又∵平面SDC⊥平面ABCD,∴BC⊥面SDC. ∴DS⊥BC.∴DS⊥平面SBC.∵DS ⊂平面SAD,∴平面SAD⊥平面SBC.(2)解:由(1),知DS⊥平面SBC,∴SB 是DB 在平面SBC 上的射影. ∴∠DBS 就是BD 与平面SBC 所成的角,即∠DBS=α. 那么sinα=DBDS. ∵BC=x,CD=2⇒DB=24x +,∴sinα=242x+.由0<x <+∞,得0<sinα<22.(五)知能训练讲义本节练习.(六)拓展提升如图16,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD=60°,N 是PB 中点,过A 、D 、N 三点的平面交PC 于M ,E 为AD 的中点.图16(1)求证:EN∥平面PCD ;(2)求证:平面PBC⊥平面ADMN ;(3)求平面PAB 与平面ABCD 所成二面角的正切值. (1)证明:∵AD∥BC,B C ⊂面PBC,AD ⊄面PBC, ∴AD∥面PBC.又面ADN∩面PBC=MN, ∴AD∥MN.∴MN∥BC. ∴点M 为PC 的中点.∴MN21BC. 又E 为AD 的中点,∴四边形DENM 为平行四边形. ∴EN∥DM.∴EN∥面PDC.(2)证明:连接PE 、BE,∵四边形ABCD 为边长为2的菱形,且∠BAD=60°, ∴BE⊥AD.又∵PE⊥AD,∴AD⊥面PBE.∴AD⊥PB. 又∵PA=AB 且N 为PB 的中点, ∴AN⊥PB.∴PB⊥面ADMN. ∴平面PBC⊥平面ADMN.(3)解:作EF⊥AB,连接PF ,∵PE⊥平面ABCD,∴AB⊥PF. ∴∠PFE 就是平面PAB 与平面ABCD 所成二面角的平面角. 又在Rt△AEB 中,BE=3,AE=1,AB=2,∴EF=23. 又∵PE=3,∴tan∠PFE=233=EFPE=2,即平面PAB 与平面ABCD 所成的二面角的正切值为2.(七)课堂小结知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方式总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(八)作业讲义习题2.3 A组一、二、3.。
平面与平面垂直的判定
3. 如果平面α内的一条直线垂直于平面β内的两条 相交直线, 则α⊥β.( √ )
二、填空题: 1.过平面α的一条垂线可作__无__数_个平面
与平面α垂直.
2.过一点可作_无__数__个平面与已知平面垂
直.
3.过平面α的一条斜线,可作__一__个平
γ
β
2
例1:如图四面体ABCD的棱BD长为2,其余 各棱长均为 2,求二面角A-BD-C的大小。
2.3.2. 平面与平面垂直的判定
两个平面互相垂直
一 般 地 , 两 个 平 面 相 交, 如 果
它 们 所 成 的 角 是 直 二 面角, 就 说
_两__个__平__面___互__相__垂__直 _
我们把类似这样的角成为二面角.
2.3.2. 平面与平面垂直的判定
几个重要概念:
半平面:
l
平 面内 一 条 直 线l把 平 面
分 成 两 部 分, 每 一 部 分 通 常
称 为 半 平 面.
二面角的定义:
l
从 一条 直线 出 发的 两 个半 平面
所 组成 的图 形 叫做__二__面__角__.
这 条 直 线l叫 做 二 面 角 的_棱__ .
C
垂线
A
•
O
B
即证BC 平面PAC.
例3:如图P为ΔABC所在平面外一点, PA⊥平面ABC,∠ABC=90°, AE⊥PB于E,AF⊥PC于F, 求证:⑴平面PAB⊥平面PBC; ⑵平面AEF⊥平面PBC;⑶平面AEF⊥平面PAC。
小结:
2.3.2. 平面与平面垂直的判定
二面角的平面角的概念: 在 二面 角 的棱l上 取一 点O, 以 点O为 垂 足 ,
2.3.2平面与平面垂直的判定课件人教新课标
一般地,两个平面相交,如果它们所成的二面 角是直二面角,就说这两个平面互相垂直.
图形表示
β
β
α
α
记作:α⊥β
思考:给出两个相交平面,如何判 断它们是否垂直。
平面与平面垂直的判定定理
如果一个平面经过另一个平面的 垂线,那么这两个平面互相垂直。
符号表示:
l
l l
α β
αβ
简记:线面垂直,则面面垂直。
从一条直线出发的两个半平面所组成的 图形叫做二面角.这条直线叫做二面角的棱, 这两个半平面叫做二面角的面。
注:面内的一
QB
条直线,把这个
β
P
平面分成两部分,
每 一部分都叫做
lα
半平面。
A
二面角的记法
用面1-棱-面2表示一个二面角 下图二面角记做 二面角α-l-β,或二面角α-AB-β。
QB
β P
lα
问题3:前面我们学过的空间的角有哪几种?
两条异面直线 所成的角
直线和平面 所成的角
平面与平面 所成的角
新课导入
修水坝时,为了使水坝坚固耐用,必须使 水坝面与水平面成一定的角度。
砌墙时,要保证墙面与地面垂直。
A C
B D
教室的门打开时与墙面 成一定的角度。
书本展开时两页纸面成 一定的角度。
二面角
练习1: 如图为正方体,请问哪些平面与 面A1B 垂直?
D1 A1
C1 B1
面A1B 面AC
面A1B 面BC1 面A1B 面A1C1
D
C 面A1B 面AD1
A
B
平面和平面垂直的性质定理
如果两个平面相互垂直,那么在一个平 面内垂直于它们交线的直线垂直于另一个平面。
学案11:2.3.2 平面与平面垂直的判定
2.3.2 平面与平面垂直的判定知识点一二面角提出问题随手打开一本书,发现每两书页之间所在的平面也形成一个角度;修水坝时,为了使水坝坚固耐用,必须使水坝面与水平面成适当的角度.问题1:根据上述问题,你发现两平面形成的角有何特点?问题2:两平面形成的角可以为0°角吗?问题3:两平面成角θ的范围是什么?导入新知二面角(1)定义:从一条直线出发的所组成的图形叫做二面角(如图).叫做二面角的棱,叫做二面角的面.记法:,在α,β内,分别取点P,Q时,可记作;当棱记为l时,可记作________或.(2)二面角的平面角:①定义:在二面角α -l -β的棱l上任取一点O,如图所示,以点O为垂足,在分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做.②直二面角:平面角是的二面角.化解疑难对于二面角及其平面角的理解(1)二面角是一个空间图形,而二面角的平面角是平面图形,二面角的大小通过其平面角的大小表示,体现了由空间图形向平面图形转化的思想.(2)二面角的平面角的定义是两条“射线”的夹角,不是两条直线的夹角,因此,二面角θ的取值范围是0°≤θ≤180°.知识点二平面与平面垂直提出问题建筑工地上,砌墙时,泥水匠为了保证墙面与地面垂直,常常在较高处固定一条端点系有铅锤的线,再沿着该线砌墙,如图,这样就能保证墙面与地面垂直.问题1:由上述可知当直线与平面垂直时,过此直线可作无数个平面,那么这些平面与已知平面有何关系?问题2:若要判断两平面是否垂直,根据上述问题能否得出一个方法?导入新知1.面面垂直的定义(1)定义:如果两个平面相交,且它们所成的二面角是,就说这两个平面互相垂直.(2)画法:记作:.2.两平面垂直的判定(1)文字语言:一个平面过另一个平面的,则这两个平面垂直.(2)图形语言:如图.(3)符号语言:AB⊥β,AB∩β=B,AB⊂α⇒α⊥β.化解疑难对面面垂直的判定定理的理解(1)该定理可简记为“线面垂直,则面面垂直”.(2)定理的关键词是“过另一面的垂线”,所以应用的关键是在平面内寻找另一个面的垂线.(3)线、面之间的垂直关系存在如下转化特征:线线垂直⇒线面垂直⇒面面垂直.这体现了立体几何问题求解的转化思想,应用时要灵活把握.常考题型题型一面面垂直的判定例1如图所示,已知∠BSC=90°,∠BSA=∠CSA=60°,又SA=SB=SC.求证:平面ABC⊥平面SBC.类题通法证明面面垂直的方法(1)定义法:即说明两个半平面所成的二面角是直二面角;(2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为“线面垂直”;(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面.活学活用1.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.题型二二面角例2已知D,E分别是正三棱柱ABC-A1B1C1的侧棱AA1和BB1上的点,且A1D=2B1E=B1C1.求过D,E,C1的平面与棱柱的下底面A1B1C1所成的二面角的大小.类题通法解决二面角问题的策略清楚二面角的平面角的大小与顶点在棱上的位置无关,通常可根据需要选择特殊点作平面角的顶点.求二面角的大小的方法为:一作,即先作出二面角的平面角;二证,即说明所作角是二面角的平面角;三求,即利用二面角的平面角所在的三角形算出角的三角函数值,其中关键是“作”.活学活用2.如图所示,在△ABC中,AB⊥BC,SA⊥平面ABC,DE垂直平分SC,且分别交AC,SC 于点D,E,又SA=AB,SB=BC,求二面角E-BD-C的大小.题型三线面、面面垂直的综合问题例3如图,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,P A=PC=2a,求证:(1)PD⊥平面ABCD;(2)平面P AC⊥平面PBD;(3)二面角P-BC-D是45°的二面角.类题通法本题是涉及线面垂直、面面垂直、二面角的求法等诸多知识点的一道综合题,解决这类问题的关键是转化:线线垂直⇒线面垂直⇒面面垂直.活学活用3.已知△ABC为正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中点.求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.随堂即时演练1.如图,已知α∩β=CD,EA⊥α,垂足为A,EB⊥β,垂足为B,∠AEB=45°,那么二面角α -CD-β的平面角等于()A.30°B.60°C.90°D.135°2.对于直线m,n和平面α,β,能得出α⊥β的一组条件是()A.m⊥n,m∥α,n∥βB.m⊥n,α∩β=m,n⊂βC.m∥n,n⊥β,m⊂αD.m∥n,m⊥α,n⊥β3.如图所示,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,其原理是______________________________________________.4.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,P A=6,那么二面角P-BC-A的大小为________.5.在四面体ABCD中,BD=2a,AB=AD=CB=CD=AC=a,求证:平面ABD⊥平面BCD.参考答案知识点一二面角问题1:【答案】可以是锐角、直角、钝角、平角.问题2:【答案】可以.问题3:【答案】0°≤θ≤180°.导入新知二面角(1)两个半平面直线AB 半平面α和βα-AB-βP-AB-Q α-l-βP-l-Q(2)①半平面α和β内二面角的平面角②直角知识点二平面与平面垂直问题1:【答案】垂直.问题2:【答案】可以,只需在一平面内找一直线垂直于另一平面即可.导入新知1.(1)直二面角(2) α⊥β2.(1)垂线常考题型题型一面面垂直的判定例1 证明:法一:(利用定义证明)∵∠BSA=∠CSA=60°,SA=SB=SC,∴△ASB和△ASC是等边三角形,则有SA=SB=SC=AB=AC,令其值为a,则△ABC和△SBC为共底边BC的等腰三角形.取BC的中点D,如图所示,连接AD,SD,则AD⊥BC,SD⊥BC,∴∠ADS为二面角A-BC-S的平面角.在Rt△BSC中,∵SB=SC=a,∴SD=22a,BD=BC2=22a.在Rt△ABD中,AD=22a,在△ADS中,∵SD2+AD2=SA2,∴∠ADS=90°,即二面角A-BC-S为直二面角,故平面ABC⊥平面SBC.法二:(利用判定定理)∵SA=SB=SC,且∠BSA=∠CSA=60°,∴SA=AB=AC,∴点A在平面SBC上的射影为△SBC的外心.∵△SBC为直角三角形,∴点A在△SBC上的射影D为斜边BC的中点,∴AD⊥平面SBC.又∵AD⊂平面ABC,∴平面ABC⊥平面SBC.活学活用1.证明:(1)在直三棱柱ABC-A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2)在直三棱柱ABC-A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.题型二二面角例2解:如图所示,在平面AA1B1B内延长DE和A1B1交于点F,则F是平面DEC1与平面A1B1C1的公共点.于是C1F为这两个平面的交线.因而,所求二面角即为二面角D-C1F-A1.∵A1D∥B1E,且A1D=2B1E,∴E,B1分别为DF和A1F的中点.∵A1B1=B1C1=A1C1=B1F,∴FC1⊥A1C1.又∵CC1⊥平面A1B1C1,FC1⊂平面A1B1C1,∴CC1⊥FC1.又∵A1C1,CC1为平面AA1C1C内的两条相交直线,∴FC1⊥平面AA1C1C.∵DC1⊂平面AA1C1C,∴FC1⊥DC1.∴∠DC1A1是二面角D-C1F-A1的平面角.由已知A1D=A1C1,则∠DC1A1=45°.故所求二面角的大小为45°.活学活用2.解:∵E为SC中点,且SB=BC,∴BE⊥SC.又DE⊥SC,BE∩DE=E,∴SC⊥平面BDE,∴BD⊥SC.又SA⊥平面ABC,可得SA⊥BD,SC∩SA=S,∴BD⊥平面SAC,从而BD⊥AC,BD⊥DE,∴∠EDC为二面角E-BD-C的平面角.设SA=AB=1,在△ABC中,∵AB⊥BC,∴SB=BC=2,AC=3,∴SC=2.在Rt△SAC中,∠DCS=30°,∴∠EDC=60°,即二面角E-BD-C为60°.题型三线面、面面垂直的综合问题例3证明:(1)∵PD=a,DC=a,PC=2a,∴PC2=PD2+DC2.则PD⊥DC.同理可证PD⊥AD.又∵AD∩DC=D,且AD,DC⊂平面ABCD,∴PD⊥平面ABCD.(2)由(1)知PD⊥平面ABCD,又∵AC⊂平面ABCD,∴PD⊥AC.∵四边形ABCD是正方形,∴AC⊥BD.又∵BD∩PD=D,且PD,BD⊂平面PBD,∴AC⊥平面PBD.又∵AC⊂平面P AC,∴平面P AC⊥平面PBD.(3)由(1)知PD⊥BC,又∵BC⊥DC,且PD,DC为平面PDC内两条相交直线,∴BC⊥平面PDC.∵PC⊂平面PDC,∴BC⊥PC.则∠PCD为二面角P-BC-D的平面角.在Rt△PDC中,∵PD=DC=a,∴∠PCD=45°,即二面角P-BC-D是45°的二面角.活学活用3.证明:(1)设BD=a,作DF∥BC交CE于F,则CF=DB=a.因为CE⊥平面ABC,所以BC⊥CF,DF⊥EC,所以DE=EF2+DF2=5a.又因为DB⊥平面ABC,所以DA=DB2+AB2=5a,所以DE=DA.(2)取CA的中点N,连接MN,BN,则MN 12CE DB.所以四边形MNBD为平行四边形,所以MD∥BN.又因为EC⊥平面ABC,所以EC⊥BN,EC⊥MD.又DE=DA,M为EA中点,所以DM⊥AE.又EC∩AE=E,所以DM⊥平面AEC,所以平面BDM⊥平面ECA.(3)由(2)知DM⊥平面AEC,而DM⊂平面DEA,所以平面DEA⊥平面ECA.随堂即时演练1.【答案】D2.【答案】C3.【答案】面面垂直的判定定理4.【答案】90°5.证明:如图所示,∵△ABD与△BCD是全等的等腰三角形,∴取BD的中点E,连接AE,CE,则AE⊥BD,BD⊥CE.∴∠AEC为二面角A-BD-C的平面角.在△ABD中,AB=a,BE=12BD=22a,AE=AB2-BE2=22a.同理CE=2 2a.在△AEC中,AE=CE=22a,AC=a,由于AC2=AE2+CE2,∴AE⊥CE,即∠AEC=90°,∴平面ABD⊥平面BCD.。
2.3.2平面与平面垂直的判定(教案)
“平面与平面垂直的判定”教案一、题目:平面与平面垂直的判定二、课程分析:直线与平面垂直的是直线与平面相交中的一种特殊情况,它是空间中线线垂直位置关系的拓展。
它既是后面学习面面垂直的基础,又是连接线线垂直和面面垂直的纽带!因此线面垂直是空间中垂直位置关系间转化的重心,它是点、直线、平面间位置关系中的核心概念之一。
三、学情分析:在本节课之前学生已学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质,具备了学习本节课所需的知识。
同时已经有了“通过观察、操作等数学活动抽象概括出数学结论”的体会,参与意识、自主探究能力有所提高,对空间概念建立有一定基础。
但是,对于我们十一中的学生而言,他们的抽象概括能力、空间想象力还有待提高。
四、教学目标:1、知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
2、过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
3、情态与价值通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力。
五、教学重点:平面与平面垂直的判定。
教学难点:如何度量二面角的大小。
六、设计理念:七、教学流程:(一)、前提测评1、二面角的概念及记法表示(如下表所示)2、平面与平面垂直的判定定理:__________________________________________________ ______________;这个定理说明要证明平面与平面垂直,可通过证明___________________垂直来实现。
(二)、目标展示(略)(三)、导学达标新知探究一:二面角的定义及相关概念半平面:二面角:二面角的表示:二面角的画法:(1)卧式法(2)立式法新知探究二:二面角的平面角的定义(怎样来度量二面角?)二面角的平面角:问题1:二面角的平面角必须满足哪几个条件?二面角的大小可以用它的平面角来度量,二面角的平面角是几度,就说这个二面角是几度。
平面与平面垂直的判定教案
平面与平面垂直的判定教案教学目标:1. 理解平面的概念及性质,掌握平面与平面垂直的判定方法。
2. 能运用平面与平面垂直的判定方法解决实际问题,提高空间想象能力和逻辑推理能力。
3. 通过对平面与平面垂直的判定方法的学习,培养学生数学思想和方法的应用意识。
教学重、难点:1. 教学重点:平面与平面垂直的判定方法及其应用。
2. 教学难点:如何灵活运用平面与平面垂直的判定方法解决实际问题。
教学准备:1. 多媒体课件:包含判定定理的证明过程、图形示例等内容的PPT 或视频资料。
2. 几何画板:学生可利用几何画板进行自主探究和实践,绘制相关图形,加深理解。
3. 白板讲解:利用白板或黑板进行现场讲解和互动问答,提高教学效果。
4. 学生练习册:根据教学目标和内容,设计相应的练习册或习题集,供学生练习使用。
教学方法和手段:1. 课堂讲解:教师精讲判定定理及其应用,注意逻辑清晰,表达准确。
2. 小组讨论:学生针对课堂练习或实际问题的讨论,促进互相学习和交流。
3. 互动问答:教师鼓励学生提问,通过回答问题了解学生对知识的掌握情况,并及时调整教学策略。
4. 多媒体辅助:使用多媒体课件展示图形和实例,增强视觉效果,帮助学生更好地理解。
5. 工具应用:引导学生使用几何画板等工具进行自主探究和实践,提高教学效率。
教学过程:1.概念讲解教师引导学生复习平面的概念及性质,强调平面的基本属性,为后续学习做好铺垫。
2. 定理介绍教师介绍平面与平面垂直的判定方法,即“一面四点两线”判定定理。
指出定理的现代形式如下:如果一个平面内的四条直线与另一个平面内的四条直线对应平行,那么这两个平面垂直。
并深入讲解该定理的证明过程及应用范围。
3. 范例分析教师通过实例讲解如何运用判定方法解决实际问题。
如:通过观察教室墙面和地面的关系,引导学生用判定方法判断两个平面是否垂直,并指导学生在练习本上画出相应的图形,锻炼学生的实际应用能力。
4. 课堂练习教师布置与课堂内容同步的作业,学生完成后进行展示和交流。
2.3.2平面与平面垂直的判定
2.3.2 平面与平面垂直的判定【教学目标】(1)理解面面垂直的定义,掌握面面垂直的判定定理,初步学会用定理证明垂直关系;(2)熟悉线线垂直、线面垂直、面面垂直的转化.【教学重点】理解平面与平面垂直的判定定理及其应用。
【教学难点】平面与平面垂直的判定定理的应用【教学过程】一.问题导入问题1如果你是设计师,请你想一个办法,使建筑工人所砌墙面与水平地面垂直。
问题2平面与平面垂直的判定定理是什么?请你用文字语言、图形语言、符号语言分别表示。
二.例题精析例1. 如图,AB 是圆O 的直径,PA 垂直于圆O 所在的平面于C A ,是圆O 上不同于B A ,的任意一点. 求证:(1)平面PAB ⊥平面ABC ;(2)平面PAC ⊥平面PBC .变式1 在例1中若AE ⊥PC,F 是PB 上的动点,判断平面AEF 与平面PBC 的关系,并说明理由.三.巩固练习练习1:如图在直三棱柱111ABC A B C -中,1111A B A C =,E D ,是1,CC BC 上的点(点D 不同于点C ),且AD DE ⊥.求证:平面ADE ⊥平面11BCC B .四.课堂小结【课后作业】一、选择题1.过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.正方体ABCD-A1B1C1D1的六个面中,与平面BC1垂直的面的个数是()A.1 B.2 C.3 D.43.设l是直线,α,β是两个不同的平面,下列结论中正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β4.四边形ABCD是正方形,以BD为棱把它折成直二面角A-BD-C,E为CD的中点,则∠AED的大小为()A.45°B.30°C.60°D.90°5.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论中不成立的是( )A.BC∥面PDF B.DF⊥面PAEC.面PDF⊥面ABC D.面PAE⊥面ABC6.如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.求证:平面AEC⊥平面PDB.。
2.3.2平面与平面垂直的判定
平面与平面垂直的判定
【例 2】 如图,在底面为直角梯形的四棱锥 P ABCD
中,AD∥BC,∠ABC=90°,PA⊥平面 ABCD,AC =E,AD=2,AB=2 BD
3 ,BC=6.求证:平面 PBD⊥平面 PAC.
名师导引:证明平面 PBD⊥平面 PAC 的突破口在哪 里?(在一个平面内找一条直线垂直于另外一个平面) 证明:∵PA⊥平面 ABCD,BD 平面 ABCD, ∴BD⊥PA.
(A)①③ (B)②④ (C)③④ (D)①② 解析:对①,显然混淆了平面与半平面的概念,是错 误的;对②,由于 a,b 分别垂直于两个面,所以也垂 直于二面角的棱,但由于异面直线所成的角为锐角 (或直角),所以应是相等或互补,是正确的;对③, 因为不垂直于棱,所以是错误的;④是正确的.故 选 B.
二面角的平面角
2:二面角的大小如何度量?
2:如图,在二面角α l β 的棱 l 上任取一点 O,以点 O 为垂足,在半平面α 和 β 内分别作垂直于棱 l 的射线 OA,OB,则射线 OA 和 OB 构成的∠AOB 叫做二面角的平面角. 平面角是直角的二面角叫直二面角.
【质疑探究 1】 (1)∠AOB 的大小与点 O 在 l 上 的位置有关吗?为什么? (无关,同一半平面内垂直于棱的射线是平行的, 一个角的两边与另一个角的两边平行且同向, 那么这两个角相等) (2)二面角大小的范围是多少? ([0°,180°])
二面角的定义
1:实例(1)的角的大小是多少?实 例(1)与(2)中角的形状如何? (角的大小为 90°,角的形状都是两个半平面 的夹角)
1:从一条直线出发的两个半平面 所组成的图形叫做二面角,这条直线叫二面角 的棱,这两个半平面叫二面角的面.图中的二面 角可记作:二面角α AB β 或α l β 或 P AB Q.
2.3.2平面与平面垂直的判定课件人教新课标
① 二面角的两个面重合: 0o;
4.二面角的大小
二面角的大小可以用它的平面角来度量.即二面角的平面角是多少度,就说这个二面角是多少度.
① 二面角的两个面重合: 0o;
② 二面角的两个面合成一个平面:180o;
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 平面与垂直,记作⊥.
例1 如图,AB是⊙O的直径, PA垂直于⊙O所在的平面,C是圆周上不同于A, B的任意一点,求证:平面PAC⊥平面PBC.
例1 如图,AB是⊙O的直径, PA垂直于⊙O所在的平面,C是圆周上不同于A, B的任意一点,求证:平面PAC⊥平面PBC.
(1)定义法 根据定义作出来
(2)垂面法 作与棱垂直的平面与 两半平面的交线得到
l
ABO来自lOA
B
A
O
l
D
(3)
5. 二面角的平面角的作法
6. 平面与平面垂直
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 平面与垂直,记作⊥.
6. 平面与平面垂直
2.3.2平面与平面垂直的判定
两直线所成角的取值范围:
平面的斜线和平面所成的角的取值范围:
直线和平面所成角的取值范围:
复习回顾
两直线所成角的取值范围:[ 0o, 90o ].
平面的斜线和平面所成的角的取值范围: (0o, 90o).
直线和平面所成角的取值范围:[ 0o, 90o ].
怎样度量二面角的大小?能否转化为两相交直线所成的角?
4.二面角的大小
怎样度量二面角的大小?能否转化为两相交直线所成的角?
课件11:2.3.2 平面与平面垂直的判定
课堂探究 类型一 平面与平面垂直的判定 例1 如图,已知∠BSC=90°,∠BSA=∠CSA=60°, 又SA=SB=SC,求证:平面ABC⊥平面SBC.
课堂探究
证明:证法一:利用定义证明. ∵∠BSA=∠CSA=60°,SA=SB=SC, ∴△ASB 和△ASC 是等边三角形, 则有 SA=SB=SC=AB=AC, 令其值为 a,则△ABC 和△SBC 为共底边 BC 的等腰三角形.
素养提升 1.对二面角的平面角的三点说明 (1)二面角的平面角可以表示二面角的大小,二面角的平 面角是多少度,就说这个二面角是多少度. (2)构成二面角的平面角的三要素:“棱上”“面内”“垂 直”.二面角的平面角的大小是唯一确定的,与棱上点的 位置无关,解题时可以把平面角的顶点选在有利于解题 的特殊位置上.
跟踪训练 1 如图,四边形ABCD是正方形,O是正方形的 中心,PO⊥底面ABCD,E是PC的中点.
求证:(1)PA∥平面BDE; (2)平面PAC⊥平面BDE.
证明:(1)连接OE,AC,则O是AC的中点, 又E是PC的中点,所以OE∥AP, 又因为OE⊂平面BDE,PA⊄平面BDE.所以PA∥平面BDE. (2)因为PO⊥底面ABCD,所以PO⊥BD, 又因为AC⊥BD,且AC∩PO=O, 所以BD⊥平面PAC,而BD⊂平面BDE, 所以平面PAC⊥平面BDE.
课堂探究
如图,取 BC 的中点 D,连接 AD,SD,
则 AD⊥BC,SD⊥BC,
∴∠ADS 为二面角 A-BC-S 的平面角.在 Rt△BSC 中,
∵SB=SC=a,∴SD=
22a,BD=B2C=
2 2 a.
课堂探究
在
Rt△ABD
中,AD=
2 2 a.
2.3.2 两平面垂直的判定与性质(公开课)
若 l ⊥ m , l ⊥ n , m ∩ n =B, m , n , P, 则 l ⊥ .
图形语言:
教学目标
知识与技能
(பைடு நூலகம்)理解二面角的有关概念,会作二面角的平面 角,能求简单二面角平面角的大小; (2)理解面面垂直的定义,掌握面面垂直的判定 定理,初步学会用定理证明垂直关系; (3)熟悉线线垂直、线面垂直的转化.
表示法
2、二面角的平面角
在二面角 l 的棱 l 上任取一点 O ,以点 O 为垂足, 在半平面 和 内分别作垂直于棱 l 的射线 OA, OB ,则射线 OA 和 OB 构成的 AOB 叫做二面角的平面角.
A A
l
10
O
B
l
B
O
2、二面角的平面角
注 意
1)平面角的顶点在棱上; 2)平面角的两边分别在两个半平面内; 3)平面角的边都要垂直于二面角的棱.
学做导过程
角
1、二面角的定义及记法
二面角
A
图形 顶点 O
边
边 B
A 棱l B
面 面
定义
从一点出发的两条射线 (半直线)所组成的图 形叫做角. 边—点—边 (顶点) ∠AOB
从一条直线出发的两个 半平面所组成的图形叫 做二面角. 面—直线—面 (棱) 二面角—l— 或二面角—AB—
构成
α
你发现了 什么?
大胆猜想: 一个平面过另一个平面的垂线, 则这两个平面垂直. α 已知AB , AB ,求证: A
证明:∵AB⊥β,CD在β内 ∴AB⊥CD
β C B D E
在平面β内过点B作直线BE⊥CD
∴ ∠ABE是二面角α—CD — β的平面角
2.3.2平面与平面垂直的判定
2.3.2平面与平面垂直的判定导学案制作人:申肖静张聪【学习目标】:(1)正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)掌握两个平面垂直的判定定理及其简单的应用;【导课】1.二面角的定义:2.二面角的表示:3.二面角的平面角;【自主学习,完成尝试题】一、二面角的平面角∠AOB的特点:1)角的顶点在;(2)角的两边分别在;(3)角的两边分别和棱。
特别指出:①二面角的大小是用平面角来度量的,其范围是;②二面角的平面角的大小与棱上点(角的顶点)的选择无关,是有二面角的惟一确定;③二面角的平面角所在的平面和棱是的二、两个平面互相垂直两个平面互相垂直:两个互相垂直的平面画法:平面 与β垂直,记作:定理: 。
1【励志良言】世界上不可能的事情,是想出来的;世界上可能的事【合作学习,完成探究题】例2、已知直线PA垂直于圆O所在的平面,A为垂足,AB为圆O的直径,C是圆周上异于A、B的一点。
的?探究2、有哪些直线和平面垂直?探究3、有哪些平面相互垂直?求证:平面PAC 平面PBC关键:找与平面垂直的线.【师生互动】(展一展,议一议,评一评)经过展、议、评,你有什么收获吗?写下来把!【励志良言】世界上不可能的事情,是想出来的;世界上可能的事 2【励志良言】世界上不可能的事情,是想出来的;世界上可能的事3 【课堂小结】本节课我们讲了二面角的概念,二面角平面角的定义。
两个平面垂直的定义、画法及判定方法. 判定方法有两种,一是利用定义二是利用判定定理,如何应用两个平面垂直的判定定理,把面面垂直的问题转化为线面垂直的问题是本节课学习的关键。
【巩固提升】1.过平面α外两点且垂直于平面α的平面( )()A 有且只有一个 ()B 不是一个便是两个()C 有且仅有两个 ()D 一个或无数个2.若平面α⊥平面β,直线n ⊂α,m ⊂β,m n ⊥,则( )()A n ⊥β ()B n ⊥β且m ⊥α ()C m ⊥α ()D n ⊥β与m ⊥α中至少有一个成立3.对于直线,m n 和平面,αβ,α⊥β的一个充分条件是( )()A m n ⊥,//,//m n αβ()B ,,m n m n αβα⊥=⊂()C //,,m n n m βα⊥⊄ ()D ,,m n m n αβ⊥⊥⊥ 4.设,,l m n 表示三条直线,,,αβγ表示三个平面,给出下列四个命题:①若,l m αα⊥⊥,则//l m ;②若,m n β⊂是l 在β内的射影,m l ⊥,则m n ⊥;③若,//m m n α⊂,则//n α; ④若,αγβγ⊥⊥,则//αβ. 其中真命题是( )()A ①② ()B ②③ ()C ①③ ()D ③④5:已知平面α∩平面β=直线a ,α、β垂直于平面γ,又平行于直线b ,求证:(1) a ⊥γ;(2)b ⊥γ.。
2.3.2平面与平面的垂直的判定
B
两个面组成的图形?
O
A
角
引入
1、二面角:从一条直线引出的两个半平面所组 成的图形叫做二面角.这条直线叫做二面角的 棱,这两个半平面叫做二面角的面.
面 面 棱
面 面 棱
2、二面角的表示方法
A
C
B 二面角-AB-
l
二面角- l-
B D
A
二面角C-AB- D
F
E
A
B
D
C
二面角C-AB- E
1、定义:两个平面相交,如果它们所成的二面 角是直二面角,则两个平面垂直.
记作α⊥β
性质:
1. 凡是直二面角都相等
2. 两个平面相交,可引成四个二面角,如果其中有一个 是直二面角,那么其他各个二面角都是直二面角
思考 两个平面相交,如果其中一个平
面内只有一条直线垂直于另一个平面,能否 得到两个平面垂直?
线面垂直
D
A
C
B
面面垂直
举例
例3. 如图示,AB是圆O的直径,PA垂直
于圆O所在平面,C是圆周上不同于A、B
的任意一点
P
求证:平面PAC⊥平面PBC
A
OB
C
小结
1. 二面角以及平面角的有关概 念; 2. 两个平面垂直的判定定理的 内容,它与直线与平面垂直的 判定定理有何关系?
作业
1. 自二面角内一点分别向两个面引垂 线,求证:它们所成的角与二两角的 平面角互补. 2. 在表示二面角的平面角时,为何要 求“OA⊥L、OB⊥L”?为什么 ∠AOB 的大小与点O在L上的位置无 关? 3. 习题P81页 5题
已知:AB⊥β AB
求证: ⊥β
2.3.2 平面与平面垂直的判定
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3
组就可以了,记忆效率也会大大提高。
如何利用规律实现更好记忆呢?
超级记忆法-记忆
规律 记忆后
选择巩固记忆的时间 艾宾浩斯遗忘曲线
超级记忆法-记忆 规律 TIP1:我们可以选择巩固记忆的时间!
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影
响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
说明该平面角是直角.
(一般通过计算完成证明)
(2)判定定理: 要证两个平面垂直,只要在其中一个平面内找到
另一个平面的一条垂线. (线面垂直面面垂直)
线线垂直 线面垂直 面面垂直
不如意的时候不要尽往悲伤里钻,想 想有笑声的日子吧!
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
TIP2:越夸张越搞笑,越有助于刺激我们的大脑,帮助我们记忆,所以不妨在 编 故事时,让自己脑洞大开,尝试夸张怪诞些~
平面与平面垂直的判定教案
平面与平面垂直的判定教案
一、教学目标:
1.理解平面与平面垂直的概念;
2.掌握判断平面与平面垂直的基本方法;
3.能够应用所学知识解决相关问题。
二、教学重难点:
1.掌握平面与平面垂直的判定方法;
2.理解垂直平面间的特点;
3.掌握将垂直平面相关知识运用于实际问题的能力。
三、教学过程:
步骤一:导入与激发学生兴趣(5分钟)
1.引入平面与平面垂直的概念:请学生说出自己了解的平面与平面垂直的特点和判断条件。
2.引导学生思考问题:为什么需要判断平面与平面是否垂直?在哪些实际问题中会用到这个概念?
3.引入本课的主要内容:本课将学习平面与平面垂直的判断方法及其应用。
步骤二:教学内容展示(25分钟)
1.定义:平面与平面垂直是指两个平面的法向量相互垂直,即两个平面法向量的内积为0。
2.公式表示:假设平面1的法向量为n1,平面2的法向量为n2
3.实例演示:通过数学演算,展示平面与平面垂直的判定过程。
4.注意事项:在判断平面与平面垂直时,需要注意法向量的方向是否正确,正负号是否考虑周全。
步骤三:小组讨论与练习(20分钟)
1.分为小组进行讨论:每个小组选择一个实际问题,并结合判断平面与平面垂直的方法进行分析与解决。
2.小组展示与交流:每个小组选派一位代表进行展示,并与全班进行交流与讨论,分享解决问题的思路和方法。
步骤四:拓展与扩展(10分钟)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.2 平面与平面垂直的判定教学目标:1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法,会求简单的二面角的平面角:3.掌握两个平面互相垂直的概念,能用定义和定理判定面面垂直。
教学重点:二面角的概念和二面角的平面角的作法,面面垂直的判定教学难点:二面角的平面角的一般作法及面面垂直的判定教学过程:复习两平面的位置关系:(1)如果两个平面没有公共点,则两平面平行若α∩β=,则α∥β.(2)如果两个平面有一条公共直线,则两平面相交若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1导入新课思路1.(情境导入)为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝坚固耐用必须使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成一定的角度.为此,我们引入二面角的概念,研究两个平面所成的角.思路2.(直接导入)前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?今天我们一起来探究两个平面所成角问题.推进新课新知探究提出问题①二面角的有关概念、画法及表示方法.②二面角的平面角的概念.③两个平面垂直的定义.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常用直立式和平卧式两种画法:如图2(教师和学生共同动手).直立式:平卧式:(1) (2)图2二面角的表示方法:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、β内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作二面角P-AB-Q.图3如果棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内分别作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.图4再取棱上另一点O′,在α和β内分别作l的垂线O′A′和O′B′,则它们组成角∠A′O′B′.因为OA∥O′A′,OB∥O′B′,所以∠AOB及∠A′O′B′的两边分别平行且方向相同, 即∠AOB=∠A′O′B′.从上述结论说明了:按照上述方法作出的角的大小,与角的顶点在棱上的位置无关.由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.图中的∠AOB,∠A′O′B′都是二面角α—l—β的平面角.③直二面角的定义.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念相类似,也是用它们所成的角为直角来定义,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.直二面角的画法:如图5.图5④两个平面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:α⊥β.两个平面垂直的判定定理图形表述为:如图6.图6证明如下:已知AB⊥β,AB∩β=B,ABα.求证:α⊥β.分析:要证α⊥β,需证α和β构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由ABα,知AB、CD共面.∵AB⊥β,CDβ,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD,则∠ABE是二面角αCDβ的平面角.又AB⊥BE,即二面角αCDβ是直二面角,∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直.应用示例思路1例1 如图7,⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点.图7求证:平面PAC⊥平面PBC.证明:设⊙O所在平面为α,由已知条件,PA⊥α,BCα,∴PA⊥BC.∵C为圆周上不同于A、B的任意一点,AB是⊙O的直径,∴BC⊥AC.又∵PA与AC是△PAC所在平面内的两条相交直线,∴BC⊥平面PAC.∵BC平面PBC,∴平面PAC⊥平面PBC.变式训练如图8,把等腰Rt△ABC沿斜边AB旋转至△ABD的位置,使CD=AC,图8(1)求证:平面ABD⊥平面ABC;(2)求二面角CBDA的余弦值.(1)证明:由题设,知AD=CD=BD,作DO⊥平面ABC,O为垂足,则OA=OB=OC.∴O是△ABC的外心,即AB的中点.∴O∈AB,即O∈平面ABD.∴OD平面ABD.∴平面ABD⊥平面ABC.(2)解:取BD的中点E,连接CE、OE、OC,∵△BCD为正三角形,∴CE⊥BD.又△BOD为等腰直角三角形,∴OE⊥BD.∴∠OEC为二面角CBDA的平面角.同(1)可证OC⊥平面ABD.∴OC⊥OE.∴△COE为直角三角形.设BC=a,则CE=,OE=,∴cos∠OEC=.点评:欲证面面垂直关键在于在一个平面内找到另一个平面的垂线.例2 如图9所示,河堤斜面与水平面所成二面角为60°,堤面上有一条直道CD,它与堤角的水平线AB的夹角为30°,沿这条直道从堤脚向上行走到10 m时人升高了多少?(精确到0.1 m)图9解:取CD上一点E,设CE=10 m,过点E作直线AB所在的水平面的垂线EG,垂足为G,则线段EG的长就是所求的高度.在河堤斜面内,作EF⊥AB,垂足为F,并连接FG,则FG⊥AB,即∠EFG就是河堤斜面与水平面ABG所成二面角的平面角,∠EFG=60°,由此,得EG=EFsin60°=CEsin30°sin60°=10×≈4.3(m). 答:沿直道行走到10 m时人升高约4.3 m.变式训练已知二面角αABβ等于45°,CDα,D∈AB,∠CDB=45°.求CD与平面β所成的角.解:如图10,作CO⊥β交β于点O,连接DO,则∠CDO为DC与β所成的角.图10过点O作OE⊥AB于E,连接CE,则CE⊥AB.∴∠CEO为二面角αABβ的平面角,即∠CEO=45°.设CD=a,则CE=,∵CO⊥OE,OC=OE,∴CO=.∵CO⊥DO,∴sin∠CDO=.∴∠CDO=30°,即DC与β成30°角.点评:二面角是本节的另一个重点,作二面角的平面角最常用的方法是:在一个半平面α内找一点C,作另一个半平面β的垂线,垂足为O,然后通过垂足O作棱AB的垂线,垂足为E,连接AE,则∠CEO为二面角α-AB-β的平面角.这一过程要求学生熟记.思路2例1 如图11,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.图11(1)求证:平面PBD⊥平面PAC;(2)求点A到平面PBD的距离;(3)求二面角APBD的余弦值.(1)证明:设AC与BD交于点O,连接PO,∵底面ABCD是菱形,∴BD⊥AC.∵PA⊥底面ABCD,BD平面ABCD,∴的PA⊥BD.又PA∩AC=A,∴BD⊥平面PAC.又∵BD平面PBD,∴平面PBD⊥平面PAC.(2)解:作AE⊥PO于点E,∵平面PBD⊥平面PAC,∴AE⊥平面PBD.∴AE为点A到平面PBD的距离.在△PAO中,PA=2,AO=2·cos30°=,∠PAO=90°,∵PO=,∴AE=.∴点A到平面PBD的距离为.(3)解:作AF⊥PB于点F,连接EF,∵AE⊥平面PBD,∴AE⊥PB.∴PB⊥平面AEF,PB⊥EF.∴∠AFE为二面角APBD的平面角.在Rt△AEF中,AE=,AF=,∴sin∠AFE=,cos∠AFE=.∴二面角APBD的余弦值为.变式训练如图12,PA⊥矩形ABCD所在平面,M、N分别是AB、PC的中点. (1)求证:MN∥平面PAD;(2)求证:MN⊥CD;(3)若二面角PDCA=45°,求证:MN⊥平面PDC.图12 图13证明:如图13所示,(1)取PD的中点Q,连接AQ、NQ,则QN DC,AM DC,∴QN AM.∴四边形AMNQ是平行四边形.∴MN∥AQ.又∵MN平面PAD,AQ平面PAD,∴MN∥平面PAD.(2)∵PA⊥平面ABCD,∴PA⊥CD.又∵CD⊥AD,PA∩AD=A,∴CD⊥平面PAD.又∵AQ平面PAD,∴CD⊥AQ.又∵AQ∥MN,∴MN⊥CD.(3)由(2)知,CD⊥平面PAD,∴CD⊥AD,CD⊥PD.∴∠PDA是二面角PDCA的平面角.∴∠PDA=45°.又∵PA⊥平面ABCD,∴PA⊥AD.∴AQ⊥PD.又∵MN∥AQ,∴MN⊥CD.又∵MN⊥PD,∴MN⊥平面PDC.例2 如图14,已知直四棱柱ABCD—A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.图14(1)求证:直线MF∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1;(3)求平面AFC1与平面ABCD所成二面角的大小.(1)证明:延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.又∵MF平面ABCD,AN平面ABCD,∴MF∥平面ABCD.(2)证明:连接BD,由直四棱柱ABCD—A1B1C1D1,可知AA1⊥平面ABCD,又∵BD平面ABCD,∴A 1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A 1A=A,AC、A1A平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA∥BN且DA=BN,∴四边形DANB为平行四边形.故NA∥BD,∴NA⊥平面ACC1A1.又∵NA平面AFC1,∴平面AFC1⊥平面ACC1A1.(3)解:由(2),知BD⊥平面ACC1A1,又AC1平面ACC1A1,∴BD⊥AC1. ∵BD∥NA,∴AC1⊥NA.又由BD⊥AC,可知NA⊥AC,∴∠C1AC就是平面AFC1与平面ABCD所成二面角的平面角或补角.在Rt △C1AC中,tan∠C1AC=,故∠C1AC=30°.∴平面AFC1与平面ABCD所成二面角的大小为30°或150°.变式训练如图15所示,在四棱锥S—ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,且AB=2,SC=SD=2.图15(1)求证:平面SAD⊥平面SBC;(2)设BC=x,BD与平面SBC所成的角为α,求sin α的取值范围.(1)证明:在△SDC中,∵SC=SD=,CD=AB=2,∴∠DSC=90°,即DS⊥SC.∵底面ABCD是矩形,∴BC⊥CD.又∵平面SDC⊥平面ABCD,∴BC⊥面SDC.∴DS⊥BC.∴DS⊥平面SBC.∵DS平面SAD,∴平面SAD⊥平面SBC.(2)解:由(1),知DS⊥平面SBC,∴SB是DB在平面SBC上的射影.∴∠DBS就是BD与平面SBC所成的角,即∠DBS=α.C那么sinα=.∵BC=x,CD=2DB=,∴sinα=.由0<x<+∞,得0<sin α<.达标检测:1、把直角三角形ABC沿斜边上的高CD折成直二面角A-CD-B,如图,则互相垂直的平面有几对?2、如图、已知,图中那些平面互相垂直,为什么?3、在正方体ABCD-A1B1C1D1中证明:平面A1BD⊥平面ACC1A111 / 12课堂小结知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.作业课本习题2.3 A组1、2、3.- 12 - / 12。