高中数学必修三 课本习题答案(1).ppt

合集下载

人教版高中数学必修3课后解答答案之欧阳科创编

人教版高中数学必修3课后解答答案之欧阳科创编

第一章算法初步时间:2021.02.05 创作:欧阳科1.1算法与程序框图练习(P5)1、算法步骤:第一步,给定一个正实数.第二步,计算以为半径的圆的面积.第三步,得到圆的面积.2、算法步骤:第一步,给定一个大于1的正整数.第二步,令.第三步,用除,等到余数.第四步,判断“”是否成立. 若是,则是的因数;否则,不是的因数.第五步,使的值增加1,仍用表示.第六步,判断“”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度,令.第二步,取出的到小数点后第位的不足近似值,赋给;取出的到小数点后第位的过剩近似值,赋给.第三步,计算.第四步,若,则得到的近似值为;否则,将的值增加1,仍用表示.返回第二步.第五步,输出.程序框图:习题1.1 A组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为 m3,应交纳水费元,那么与之间的函数关系为我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量.第二步:判断输入的是否不超过7. 若是,则计算;若不是,则计算.第三步:输出用户应交纳的水费.程序框图:2、算法步骤:第一步,令i=1,S=0.第二步:若i≤100成立,则执行第三步;否则输出S.第三步:计算S=S+i2.第四步:i= i+1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x,设收取的卫生费为m元.第二步:判断x与3的大小. 若x>3,则费用为;若x≤3,则费用为.第三步:输出.程序框图:B组 1、算法步骤:第一步,输入..第二步:计算.第三步:计算.第四步:输出.程序框图:2、算法步骤:第一步,令n=1第二步:输入一个成绩r,判断r与6.8的大小.若r≥6.8,则执行下一步;若r<6.8,则输出r,并执行下一步.INPUT “a ,b=”;a ,b sum=a+b diff=a -b pro=a*b第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构. 1.2基本算法语句 练习(P24) 1、程序:INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C3、程序:练习(P29) 1、程序:2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 3、程序:INPUT “a ,b ,c=”;a ,b ,c p=(a+b+c)/2s=SQR(p*(p -a) *(p -b) *(p -c))INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEINPUT “Please input an integer :”;a IF a MOD 2=0 THEN PRINT “Even.” ELSE4、程序:4练习(P32)序:1、程序:2、程习题1.2 A组(P33)INPUT “n=”;n i=1 sum=0 WHILE i<=nsum=sum+(i+1)/i1、2、程序:习题1.2 B 组(P33) 13、程序:4、程序:INPUT “x=”;x IF x<1 THEN y=x ELSE IF x<10 THEN y=2*x -1 ELSEn=1 p=1000 WHILE n<=7 p=p*(1+0.5) n=n+1INPUT “a ,b ,c=”;a ,b ,c INPUT “r ,s ,t=”;r ,s ,t d=a*s -r*b IF d≠0 THEN x=(s*c -b*t)/d y=(a*t -r*c)/dINPUT “a ,b ,h=”;a ,b ,h p=a+b S=p*h/2INPUT “a=”;aINPUT “n=”;ntn=0sn=0i=1WHILE i<=ntn=tn+asn=sn+tn1.3算法案例练习(P45)1、(1)45;(2)98;(3)24;(4)17.2、2881.75.3、,习题1.3 A组(P48)1、(1)57;(2)55.2、21324.3、(1)104;(2)(3)1278;(4).4、习题1.3 B组(P48)1、算法步骤:第一步,令,,,,.第二步,输入.第三步,判断是否. 若是,则,并执行第六步.第四步,判断是否. 若是,则,并执行第六步.第五步,判断是否. 若是,则,并执行第六步.第六步,. 判断是否. 若是,则返回第二步.第七步,输出成绩分别在区间的人数.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等.第一章 复习参考题A 组(P50)1、(1)程序框图: 程序: 1、(2)程序框图: 程序:2、见习题1.2 B 组第1题解答. 3INPUT “x=”;xIF x<0 THEN y=0ELSEIF x<1 THEN y=1 ELSE y=x END IF END IF PRINT “y=”;y END INPUT “x=”;xIF x<0 THEN y=(x +2)^2ELSEIF x=0 THENy=4ELSEy=(x -2)^2END IFEND IFPRINT “y=”;yEND4、程序框图: 程序: 5(1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 mP35) 13和它的位数. 是偶数,令;如果INPUT “n=”;ni=1S=0WHILE i<=nS=S+1/ii=i+1WENDPRINT “S=”;SEND是奇数,令.第三步,令第四步,判断的第位与第位上的数字是否相等.若是,则使的值增加1,仍用表示;否则,不是回文数,结束算法.第五步,判断“”是否成立. 若是,则是回文数,结束算法;否则,返回第四步.第二章统计2.1随机抽样练习(P57)1、.抽样调查和普查的比较见下表:抽样调查普查节省人力、物力和财力需要大量的人力、物力和财力可以用于带有破坏性的检查不能用于带有破坏性的检查结果与实际情况之间有误差在操作正确的情况下,能得到准确结果抽样调查的好处是可以节省人力、物力和财力,可能出现的问题是推断的结果与实际情况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差.2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号.(2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生.3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本.练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差.2、(1)对这118名教师进行编号;(2)计算间隔,由于不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为,则编号为所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是(人),要得到28人的样本,占总体的比例为.于是,应该在男运动员中随机抽取(人),在女运动员中随机抽取(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案.习题2.1 B组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成.例如:(1)你最喜欢哪一门课程?(2)你每月的零花钱平均是多少?(3)你最喜欢看《新闻联播》吗?(4)你每天早上几点起床?(5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体练习(P71)1、说明:由于样本的极差为,取组距为,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图.2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为: 由该图可以看出30名工人的日加工零件个数稳定在120件左右.练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大. 练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量,标准差.(2)重量位于之间有14袋白糖,所占的百分比约为%.茎 叶10 7 811 0 2 2 2 3 6 6 6 7 7 8 12 0 0 1 2 2 3 4 4 6 6 7 8 8 130 2 3 43、(1)略. (2)平均分,中位数为,标准差.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:茎 叶(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数,样本标准差.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.0.0 7 0.2 4 0.3 9 0.5 4 0.6 1 0.7 2 0.8 1 2 4 0.9 15 8 8 1.0 2 2 8 1.1 4 1.2 0 0 6 9 1.3 1 7 1.4 0 4 1.5 8 1.6 2 8 1.8 5 2.12、作图略. 从图形分析,发现这批棉花的纤维长度不是特别均匀,有一部分的纤维长度比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断.4、说明:(1)对,从平均数的角度考虑;(2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑;(4)对,从平均数和标准差的角度考虑;5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为万元,那么其他员工的收入之和为(万元)每人平均只有 1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低.(2)不能,要看中位数是多少.(3)能,可以确定有%的员工工资在1万元以上,其中%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数,标准差;乙机床的平均数,标准差. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好.7、(1)总体平均数为199.75,总体标准差为95.26.(2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关.(3)(4)略习题2.2 B组(P82)1、(1)由于测试的标准差小,所以测试结果更稳定,所以该测试做得更好一些.(2)由于测出的值偏高,有利于增强队员的信心,所以应该选择测试.(3)将10名运动员的测试成绩标准化,得到如下的数据:A B C D E F G H I J0.00 1.50 2.00 -1.00 -1.50 -2.00 2.50 2.00 0.50 -0.50-1.33 1.33 1.33 -2 -2.33 -1.33 1.67 -1.67 -1.33 -1.67 从两次测试的标准化成绩来看,运动员G的平均体能最强,运动员E的平均体能最弱.2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同.练习(P92)1、当时,,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于,预报值能够等于实际值. 事实上:. (这里是随机变量,是引起预报值与真实值之间的误差的原因之一,其大小取决于的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强.习题2.3 A组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好.3、(1)散点图如下:(2)回归方程为:.(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高.习题2.3 B组(P95)1、(1)散点图如下:(2)回归方程为:.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为(万元).2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章复习参考题A组(P100)1、.2、(1)该组的数据个数,该组的频数除以全体数据总数;(2).3、(1)这个结果只能说明城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表城市其他人群的想法.(2)这两种调查的差异是由样本的代表性所引起的. 因为城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高.(2)组的样本标准差为,组的样本标准差为. 由于专业裁判给分更符合专业规则,相似程度应该高,因此组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快.说明:(4)可以模仿(1)(2)(3)的方法分析数据. 第二章 复习参考题B 组(P101) 1、频率分布如下表:从表中看出当把指标定为17.46千元时,月65%的推销员经过努力才能完成销 售指标.分组频数 频率 累计频率 2 0.04 0.04 4 0.08 0.12 3 0.06 0.18 8 0.16 0.34 13 0.26 0.6 11 0.22 0.82 3 0.06 0.88 3 0.06 0.94 1 0.02 0.9620.0412、(1)数据的散点图如下:(2)用表示身高,表示年龄,则数据的回归方程为.(3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm.(5)斜率与每年平均增长的身高之间之间近似相等.第三章概率3.1随机事件的概率练习(P113)1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面.(2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25.2、略3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1.练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次.练习(P121)1、0.72、0.6153、0.44、5、习题3.1 A组(P123)1、.2、(1)0;(2)0.2;(3)1.3、(1);(2);(3).4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为,在第二种下也为. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是.习题3.1 B组(P124)1、.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断. 3.2古典概率练习(P130)1、.2、.3、.练习(P133)1、,.2、(1);(2);(3);(4);(5);(6);(7);(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1);(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为,因此规则是公平的.游戏2:取两球同色的概率为,异色的概率为,因此规则是不公平的.游戏3:取两球同色的概率为,异色的概率为,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1);(2);(3)3、(1)0.52;(2)0.18.4、(1);(2);(3);(4).5、(1);(2).6、(1);(2);(3).习题3.2 B组(P134)1、(1);(2).2、(1);(2);(3).说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,。

人教版本高中数学必修课后习题包括答案详解.doc

人教版本高中数学必修课后习题包括答案详解.doc

SS 习< JR 5 M)1. iftffι⅛⅛V-⅛IWfh.第象隈如牢亠定建俛Λh直角不属F任何一个映JHfcIM •个象Itt的角不-淀忌怕X Hιff∣l∆^--Stffiffi.第二線限角不一定足钝Hl・说吗认俱-%ft∣,∖-I B Lfll,∖-Hlh- Λi -⅛IW⅛M的IOR联系.2- Ξ∙三■ &本題的Ii的込将塢边枷n的购的应川列Ji他刪删:何Jm:・MlIlX疥取叭把救科苗中的除数≡换底邸伞禺》|的天栽7. m(“同Jrf这甲余数丛和来确足7 A ⅛jβfc7k M 也IlSMMM→<这样的球习不«.RrIaII^・3. Cn弟一跟限仰:(2)t∏W^PHIħ: (3) ^ZWl(II⑷斜三钦限和・说IW礎作出辭宣枷∙n*ι⅛IifeflWi・国略.4. ⑴ M r iβl2∖⅛Wfth <2> 35¾*.鄭一魏IIIflh ⑶ 24δβ30r,第兰象Ruft・说明f½Λfft定范阳内h:l! ∙jfiτ⅛的角终ifiHl同的角・幷判应Ii弟儿规Rwl・5. (!)程IAl 如犷I 密+*•翱b∙上E 幼■ 一496*42'・—13⅛U2,. 223βlβ*s(2> {β∖β22fΓ"∙36n∙∖ ^feZh — 585o∙ -225°. 135二说閔川Ifcfr屋示法和符υfh边郴同的角的集合•并任納定范IH内找出X jflT⅛的仰终边柳同的用・嫁习£第♦页)1. (I) P (Z> ^t l ⑶攀≡的l⅛算.2. (I) I5*∣(2> 2IOβ* (3∙> 54B.说硼能Ia行锻HrqI磴的换口・:L(I) Ia I o二片托■ ⅛∈Z>; ⑵ W ∣α≡∣+*π. ⅛6Z∣.说明HIMttM边分别轴和N M上的励的第合.4. (1) Co⅛ O. 75* ∙<XJΛ V. 75: (Z) Ian L2*<mn∣ 1. 2.说明体会I吋数備仁河小位的角讨应的弓角播数値町能不同■并遷一步认讥购种TM业摘・注慰血:用卄傅器求加两敦{∣⅛之谕・嬰锐对汁©辟Ml的模式劇血他如求gw盯之派變将WIKu设ft‰≡}(MM>∣求Mw乔之ιi⅛・葵加fifi?式Ift氏为RAlXJl加和.XK n∖.说明適过分圳延川倫戍制和弧度剖F的狐氏公虫,冷合引人蠢廈制的必賞性•6. «1Efi 为1.2,说明进•步认肌弧度歡的您对他公朮I l (第爭页》AfaL (I) !K∖第二象Bi; (2) MΓ.第-ftm∣(3) 236∙SO∖第三桑Rh ⑷:««)'.第PM象IK・说明隐4:给定曲H内找出埒指定的#1终边栢同(flffh Jf判定链第儿象限你2. .(J I β A ∙ IKo∖*€ZL说明梅终站相同的Wl川IfcAA杀・:k ( I) {fl ∖ Ii tkΓ f i∙ ∙ 360∖ Fe■迅}・一30OiS 60β∣⑵lβlβ -75β+At 3βO∖⅛∈Zh -75*. 285*?仁和lfl∖ (i- -H2i e3(y+* * ⅛60β. Λ6Zh —IQ∙i'3θ∖ 255WI⑷ A∣" 475* M ∙3W∖ A∈2}i —215% IlS e I(5)少l ∕h !Xf+Ig6叭⅛∈Zh - 270\ 90'<β> l∕∣∣∕J -27tf÷* *3«0\ AeZh — 90*, 2704:⑺IWf H • 360% ⅛6Z}∙ - W. 180%⑻∖fi I β^ l♦W∙ ⅛∈Z∏ — 360\ 0\说明川集含&用医湘苻号i⅛srwtk与新定角坯边Hl的的角的処令.E⅛IHHffi∕ħ l≡⅛的角舞边的角・说朗川ITl度制郝SflCSn岀备歓限角的集S乩<l> CIft明IM 为(r< α<90*.所以Oφ< X l⅛0∖⑵J).说期冈为L 36O v<α<9(Γ4 ⅛ ∙ 364)∖>€去所以i ∙ l^<∣<W∙ M •卅汽底去和为侖暫时・专址?β XftKfft5∙v为偶数时.牙是第Tk醍角.G∙ MI"滕⅛MW⅛⅜于半枪辰的弧所对的側心轴为!孤度•而等『半栓枪的弦所坤的阪比爭#K.说朗 r解囊度的權念.C3> ?殊 (4) 8».说明值逬仃便勺弧股的抉算・& (1) - 2HΓχ <2> -GoO e l (3) 8O i 21*ι(4) 38. 2*.说朗⅛i8irΛltt 4i ∣∣r 的换讯9* 61:说删 4W5L⅛≡川如度制卜的如K 公式求出圈心角的弧度敷•禅将贏度换算为(ħ∏ΓWΛl⅛⅛≡∣llJfllftMF 的 *启%、比 10. 11 oil.说明HIU ⅛tt ∣ttWtn ⅛*∣t.再运用《1度SM 下的46氏公式•也mtι搖远川介度划卜的假氏公丸BfiLL <1) (M)<2)⅛⅛if 的懈心"I 为伉山可i⅛MOao ・“8(2 黄一&)•Wα=0. 764« ^Mo*.说明 本18楚一个故学实我活动.BSIW -««的⅛l 子”井Bt 有締出标假Il 的Jii 匕学生先生体軼.然斤何运川所学知U!5⅛现.大翁数囁子之所以見與为"本都構足J ∏.<i ∣H(⅛金分割 比)h⅛ιrr 理. Λ.<1>射针转Γ-t20∖等于一号瓠度I 分针转了一 I 440\筹于一知瓠此 <2> Kftitr rain i>H 就峙旳针疵合,"为常针肅合的Stflt. 闵为分 f FMi 转的如建度为6O =⅛ft Z∕min),Wl ⅛转的帥速度为⅛>=≡<rMIzminb所M I(⅛-3⅛)^2ΛN即■ 720 f = -W-*- >1 e HAmWndCilM≡作也歯Ifcfg 器®的图勲卿下買图)或表权 从∙ι<≡≡rwi⅛⅛Λrtmt 耳分件 毎次St 合所Ui 的IlJ泗.5«TCI)百:*0∙ 6)8.⅛ —・一⅛IW为1唯1敞转一人两;U的时IH为24X60 1 44O<min).所以豁r≤l 110.J JΔJi^22.故IMflAj分fl 一天内只会肛介眈次.说明通过时FIr分计的症转间題进一步胞认识弧度的槪念.并将问題引向深人.IHFIqttm想进行分折.化研丸时针勺分针一犬的顷合次数时•町利川讣靜器或i∣tT机・从楼股的闍形.我格中的数粧,躺IR的Wf折成城阳彖等角度.4<<n∣JlJEWWMife・3∙ ae>Γ< ^jγ. I5l.2π<m说啊通过胃轮的我动何IB进"步地认机银度的1«念W<K^Λ. '1KW轮转动-MlRr.小坷轮转动的务昱舄× 36O e≡ 864 "* =r a<l.III F大W½ft9转建为3 r«・所以小t⅛轮周忙一点毎I滾转过的捉艮是gx3×2<XIO.5=15l.≡lEUmL姊习(Ml5 35>说明匚知卅。

高中数学必修三课后习题答案

高中数学必修三课后习题答案

高中数学必修三课后习题答案高中数学必修三课后习题答案数学作为一门基础学科,对于学生的学习和发展具有重要的作用。

而在高中数学课程中,必修三是一个关键的阶段,它涵盖了许多重要的数学概念和技巧。

为了帮助学生更好地掌握这门学科,下面将提供一些高中数学必修三课后习题的答案,以供参考。

一、函数与导数1. 已知函数 f(x) = 2x^3 + 3x^2 - 12x + 5,求 f(-1) 的值。

解:将 x = -1 代入函数 f(x) 中,得到 f(-1) = 2(-1)^3 + 3(-1)^2 - 12(-1) + 5 = -2 + 3 + 12 + 5 = 18。

2. 已知函数 f(x) = x^3 - 4x^2 + 5x - 2,求 f'(x) 的表达式。

解:对函数 f(x) 求导,得到 f'(x) = 3x^2 - 8x + 5。

3. 已知函数 f(x) = 2x^2 - 3x + 1,求 f(x) 的极值点。

解:对函数 f(x) 求导,得到 f'(x) = 4x - 3。

令 f'(x) = 0,解得 x = 3/4。

将 x =3/4 代入 f(x) 中,得到 f(3/4) = 2(3/4)^2 - 3(3/4) + 1 = -1/8。

所以,函数 f(x) 的极值点为 (3/4, -1/8)。

二、三角函数与解三角形1. 已知sinθ = 3/5,且θ ∈ (0, π/2),求cosθ 的值。

解:由三角函数的定义可知,sinθ = 3/5,所以cosθ = √(1 - sin^2θ) = √(1 - (3/5)^2) = √(1 - 9/25) = √(16/25) = 4/5。

2. 已知sinα = 4/5,且α ∈ (π/2, π),求cosα 的值。

解:由三角函数的定义可知,sinα = 4/5,所以cosα = -√(1 - sin^2α) = -√(1- (4/5)^2) = -√(1 - 16/25) = -√(9/25) = -3/5。

高中数学必修三课后习题答案

高中数学必修三课后习题答案

高中数学必修三课后习题答案第一章 算法初步 1.1算法与程序框图练习(P5) 1、算法步骤:第一步,给定一个正实数r .第二步,计算以r 为半径的圆的面积2S r π=.第三步,得到圆的面积S .2、算法步骤:第一步,给定一个大于1的正整数n .第二步,令1i =.第三步,用i 除n ,等到余数r .第四步,判断“0r =”是否成立. 若是,则i 是n 的因数;否则,i 不是n 的因数. 第五步,使i 的值增加1,仍用i 表示.第六步,判断“i n >”是否成立. 若是,则结束算法;否则,返回第三步.练习(P19)算法步骤:第一步,给定精确度d ,令1i =.的到小数点后第i 位的不足近似值,赋给a 的到小数点后第i 位的过剩近似值,赋给b . 第三步,计算55b am =-.第四步,若m d <,则得到5a;否则,将i 的值增加1,仍用i 表示.返回第二步. 第五步,输出5a.程序框图:习题1.1 A 组(P20)1、下面是关于城市居民生活用水收费的问题.为了加强居民的节水意识,某市制订了以下生活用水收费标准:每户每月用水未超过7 m 3时,每立方米收费1.0元,并加收0.2元的城市污水处理费;超过7m 3的部分,每立方收费1.5元,并加收0.4元的城市污水处理费.设某户每月用水量为x m 3,应交纳水费y 元,那么y 与x 之间的函数关系为 1.2,071.9 4.9,7x x y x x ≤≤⎧=⎨->⎩我们设计一个算法来求上述分段函数的值.算法步骤:第一步:输入用户每月用水量x .第二步:判断输入的x 是否不超过7. 若是,则计算 1.2y x =;若不是,则计算 1.9 4.9y x =-.第三步:输出用户应交纳的水费y .程序框图:2、算法步骤:第一步,令i =1,S=0.第二步:若i ≤100成立,则执行第三步;否则输出S. 第三步:计算S=S+i 2.第四步:i = i +1,返回第二步.程序框图:3、算法步骤:第一步,输入人数x ,设收取的卫生费为m 元.第二步:判断x 与3的大小. 若x >3,则费用为5(3) 1.2m x =+-⨯;若x ≤3,则费用为5m =.第三步:输出m .程序框图:B 组 1、算法步骤:第一步,输入111222,,,,,a b c a b c ..第二步:计算21121221b c b c x a b a b -=-.第三步:计算12211221a c a c y ab a b -=-.第四步:输出,x y .程序框图:INPUT “a ,b=”;a ,bsum=a+b diff=a -b pro=a*b quo=a/bPRINT sum ,diff ,pro ,quoEND2、算法步骤:第一步,令n =1第二步:输入一个成绩r ,判断r 与6.8的大小. 若r ≥6.8,则执行下一步;若r<6.8,则输出r ,并执行下一步.第三步:使n 的值增加1,仍用n 表示.第四步:判断n 与成绩个数9的大小. 若n ≤9,则返回第二步;若n >9,则结束算法.程序框图:说明:本题在循环结构的循环体中包含了一个条件结构.1.2基本算法语句 练习(P24) 1、程序:2、程序:3、程序:练习(P29) 1、程序:INPUT “a ,b ,c=”;a ,b ,cIF a+b>c AND a+c>b AND b+c>a THEN PRINT “Yes.” ELSEPRINT “No.” END IF INPUT “a ,b ,c=”;a ,b ,cp=(a+b+c)/2 s=SQR(p*(p -a) *(p -b) *(p -c)) PRINT “s=”;s END INPUT “F=”;F C=(F -32)*5/9 PRINT “C=”;C END4、程序: INPUT “a ,b ,c=”;a ,b ,csum=10.4*a+15.6*b+25.2*c PRINT “sum =”;sum END2、本程序的运行过程为:输入整数x . 若x 是满足9<x <100的两位整数,则先取出x 的十位,记作a ,再取出x 的个位,记作b ,把a ,b 调换位置,分别作两位数的个位数与十位数,然后输出新的两位数. 如输入25,则输出52. 34练习(P32) 1 2习题1.2 A 组(P33)1、1(0)0(0)1(0)x x y x x x -+<⎧⎪==⎨⎪+>⎩23、程序: 习题1.2 B 组(P33) 1、程序:23 41.3算法案例 练习(P45) 1、(1)45; (2)98; (3)24; (4)17. 2、2881.75.3、2200811111011000=() ,820083730=() 习题1.3 A 组(P48) 1、(1)57; (2)55. 2、21324.3、(1)104; (2)7212() (3)1278; (4)6315().4、习题1.3 B 组(P48)1、算法步骤:第一步,令45n =,1i =,0a =,0b =,0c =.第二步,输入()a i .第三步,判断是否0()60a i ≤<. 若是,则1a a =+,并执行第六步. 第四步,判断是否60()80a i ≤<. 若是,则1b b =+,并执行第六步. 第五步,判断是否80()100a i ≤≤. 若是,则1c c =+,并执行第六步. 第六步,1i i =+. 判断是否45i ≤. 若是,则返回第二步.2、如“出入相补”——计算面积的方法,“垛积术”——高阶等差数列的求和方法,等等. 第二章复习参考题A组(P50)1、(1)程序框图:程序:1、(2)程序框图:程序:2、见习题1.2 B组第1题解答.INPUT “x=”;x IF x<0 THENy=0ELSEIF x<1 THENy=1ELSEy=xEND IFEND IFPRINT “y=”;y ENDINPUT “x=”;x IF x<0 THENy=(x+2)^2 ELSEIF x=0 THENy=4ELSEy=(x-2)^2 END IFEND IFPRINT “y=”;y END34、程序框图:程序:INPUT “t=0”;t IF t<0 THEN PRINT “Please input again.”ELSE IF t>0 AND t<=180 THENy=0.2ELSEIF (t -180) MOD 60=0 THENy=0.2+0.1*(t-180)/60ELSEy=0.2+0.1*((t-180)\60+1)END IFEND IFPRINT “y=”;yEND IF END INPUT “n=”;n i=1 S=0WHILE i<=n S=S+1/i i=i+1 WENDPRINT “S=”;S END5、 (1)向下的运动共经过约199.805 m (2)第10次着地后反弹约0.098 m (3)全程共经过约299.609 m 第二章 复习参考题B 组(P35)1、 2、3、算法步骤:第一步,输入一个正整数x 和它的位数n . 第二步,判断n 是不是偶数,如果n 是偶数,令2n m =;如果n 是奇数,令12n m -=. 第三步,令1i =i=100 sum=0 k=1 WHILE k<=10 sum=sum+i i=i /2 k=k+1 WEND PRINT “(1)”;sum PRINT “(2)”;i PRINT “(3)”;2*sum -100 ENDINPUT “n=”;n IF n MOD 7=0 THEN PRINT “Sunday ” END IF IF n MOD 7=1 THEN PRINT “Monday ” END IF IF n MOD 7=2 THEN PRINT “Tuesday ” END IF IF n MOD 7=3 THEN PRINT “Wednesday ” END IF IF n MOD 7=4 THEN PRINT “Thursday ” END IF IF n MOD 7=5 THEN PRINT “Friday ” END IF IF n MOD 7=6 THEN PRINT “Saturday ” END IF END第四步,判断x 的第i 位与第(1)n i +-位上的数字是否相等. 若是,则使i 的值增加1,仍用i 表示;否则,x 不是回文数,结束算法.第五步,判断“i m >”是否成立. 若是,则n 是回文数,结束算法;否则,返回第四步.第二章 统计 2.1随机抽样 练习(P57)1、.况之间有误差. 如抽取的部分个体不能很好地代表总体,那么我们分析出的结果就会有偏差. 2、(1)抽签法:对高一年级全体学生450人进行编号,将学生的名字和对应的编号分别写在卡片上,并把450张卡片放入一个容器中,搅拌均匀后,每次不放回地从中抽取一张卡片,连续抽取50次,就得到参加这项活动的50名学生的编号. (2)随机数表法:第一步,先将450名学生编号,可以编为000,001, (449)第二步,在随机数表中任选一个数. 例如选出第7行第5列的数1(为了便于说明,下面摘取了附表的第6~10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数1开始向右读,得到一个三位数175,由于175<450,说明号码175在总体内,将它取出;继续向右读,得到331,由于331<450,说明号码331在总体内,将它取出;继续向右读,得到572,由于572>450,将它去掉. 按照这种方法继续向右读,依次下去,直到样本的50个号码全部取出,这样我们就得到了参加这项活动的50名学生. 3、用抽签法抽取样本的例子:为检查某班同学的学习情况,可用抽签法取出容量为5的样本. 用随机数表法抽取样本的例子:部分学生的心理调查等.抽签法能够保证总体中任何个体都以相同的机会被选到样本之中,因此保证了样本的代表性.4、与抽签法相比,随机数表法抽取样本的主要优点是节省人力、物力、财力和时间,缺点是所产生的样本不是真正的简单样本. 练习(P59)1、系统抽样的优点是:(1)简便易行;(2)当对总体结构有一定了解时,充分利用已有信息对总体中的个体进行排队后再抽样,可提高抽样调查;(3)当总体中的个体存在一种自然编号(如生产线上产品的质量控制)时,便于施行系统抽样法.系统抽样的缺点是:在不了解样本总体的情况下,所抽出的样本可能有一定的偏差. 2、(1)对这118名教师进行编号;(2)计算间隔1187.37516k==,由于k不是一个整数,我们从总体中随机剔除6个样本,再来进行系统抽样. 例如我们随机剔除了3,46,59,57,112,93这6名教师,然后再对剩余的112位教师进行编号,计算间隔7k=;(3)在1~7之间随机选取一个数字,例如选5,将5加上间隔7得到第2个个体编号12,再加7得到第3个个体编号19,依次进行下去,直到获取整个样本.3、由于身份证(18位)的倒数第二位表示性别,后三位是632的观众全部都是男性,所以这样获得的调查结果不能代表女性观众的意见,因此缺乏代表性.练习(P62)1、略2、这种说法有道理,因为一个好的抽样方法应该能够保证随着样本容量的增加,抽样调查结果会接近于普查的结果. 因此只要根据误差的要求取相应容量的样本进行调查,就可以节省人力、物力和财力.3、可以用分层抽样的方法进行抽样. 将麦田按照气候、土质、田间管理水平的不同而分成不同的层,然后按照各层麦田的面积比例及样本容量确定各层抽取的面积,再在各层中抽取个体(这里的个体是单位面积的一块地).习题2.1 A组(P63)1、产生随机样本的困难:(1)很难确定总体中所有个体的数目,例如调查对象是生产线上生产的产品.(2)成本高,要产生真正的简单随机样本,需要利用类似于抽签法中的抽签试验来产生非负整值随机数.(3)耗时多,产生非负整数值随机数和从总体中挑选出随机数所对的个体都需要时间.2、调查的总体是所有可能看电视的人群.学生A的设计方案考虑的人数是:上网而且登录某网址的人群,那些不能上网的人群,或者不登录某网址的人群就被排除在外了. 因此A方案抽取的样本的代表性差.学生B的设计方案考虑的人群是小区内的居民,有一定的片面性. 因此B方案抽取的样本的代表性差.学生C的设计方案考虑的人群是那些有电话的人群,也有一定的片面性. 因此C方案抽取的样本的代表性.所以,这三种调查方案都有一定的片面性,不能得到比较准确的收视率.3、(1)因为各个年级学习任务和学生年龄等因素的不同,影响各年级学生对学生活动的看法,所以按年级分层进行抽样调查,可以得到更有代表性的样本.(2)在抽样的过程中可能遇到的问题如敏感性问题:有些学生担心提出意见对自己不利;又如不响应问题:由于种种原因,有些学生不能发表意见;等等.(3)前面列举的两个问题都可能导致样本的统计推断结果的误差.(4)为解决敏感性问题,可以采用阅读与思考栏目“如何得到敏感性问题的诚实反应”中的方法设计调查问卷;为解决不响应问题,可以事先向全体学生宣传调查的意义,并安排专人负责发放和催收调查问卷,最大程度地回收有效调查问卷.4、将每一天看作一个个体,则总体由365天组成. 假设要抽取50个样本,将一年中的各天按先后次序编号为0~364天用简单随机抽样设计方案:制作365个号签,依次标上0~364. 将号签放到容器内充分搅拌均匀,从容器中任意不放回取出50个号签. 以签上的号码所对应的那些天构成样本,检测样本中所有个体的空气质量.用系统抽样设计抽样方案:先通过简单随机抽样方法从365天中随机抽出15天,再把剩下的350天重新按先后次序编号为0~349. 制作7个分别标有0~7的号签,放在容器中充分搅拌均匀. 从容器中任意取出一个号签,设取出的号签的编号为a,则编号为7(050)a k k +≤<所对应的那些天构成样本,检测样本中所有个体的空气质量.显然,系统抽样方案抽出的样本中个体在一年中排列的次序更规律,因此更好实施,更受方案的实施者欢迎.5、田径队运动员的总人数是564298+=(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取256167⨯=(人),在女运动员中随机抽取281612-=(人).这样我们就可以得到一个容量为28的样本.6、以10为分段间隔,首先在1~10的编号中,随机地选取一个编号,如6,那么这个获奖者奖品的编号是:6,16,26,36,46.7、说明:可以按年级分层抽样的方法设计方案. 习题2.1 B 组(P64)1、说明:可以按年级分层抽样的方法设计方案,调查问卷由学生所关心的问题组成. 例如:(1)你最喜欢哪一门课程? (2)你每月的零花钱平均是多少? (3)你最喜欢看《新闻联播》吗? (4)你每天早上几点起床? (5)你每天晚上几点睡觉?要根据统计的结果和具体的情况解释结论,主要从引起结论的可能原因及结论本身含义来解释.2、说明:这是一个开放性的题目,没有一个标准的答案. 2.2用样本估计总体 练习(P71) 1、说明:由于样本的极差为364.41362.51 1.90-=,取组距为0.19,将样本分为10组. 可以按照书上的方法制作频率分布表、频率分布直观图和频率折线图. 2、说明:此题目属于应用题,没有标准的答案.3、茎叶图为:由该图可以看出30名工人的日加工零件个数稳定在120件左右. 练习(P74)这里应该采用平均数来表示每一个国家项目的平均金额,因为它能反应所有项目的信息. 但平均数会受到极端数据2000万元的影响,所以大多数项目投资金额都和平均数相差比较大.练习(P79)1、甲乙两种水稻6年平均产量的平均数都是900,但甲的标准差约等于23.8,乙的标准差约等于41.6,所以甲的产量比较稳定.2、(1)平均重量496.86x ≈,标准差 6.55s ≈.(2)重量位于(,)x s x s -+之间有14袋白糖,所占的百分比约为66.67%.3、(1)略. (2)平均分19.25x ≈,中位数为15.2,标准差12.50s ≈.这些数据表明这些国家男性患该病的平均死亡率约为19.25,有一半国家的死亡率不超过15.2,15.2x >说明存在大的异常数据,值得关注. 这些异常数据使标准差增大. 习题2.2 A 组(P81) 1、(1)茎叶图为:(2)汞含量分布偏向于大于1.00 ppm 的方向,即多数鱼的汞含量分布在大于1.00 ppm 的区域. (3)不一定. 因为我们不知道各批鱼的汞含量分布是否都和这批鱼相同. 即使各批鱼的汞含量分布相同,上面的数据只能为这个分布作出估计,不能保证平均汞含量大于1.00 ppm. (4)样本平均数 1.08x ≈,样本标准差0.45s ≈.(5)有28条鱼的汞含量在平均数与2倍标准差的和(差)的范围内.2比较短,所以在这批棉花中混进了一些次品.3、说明:应该查阅一下这所大学的其他招生信息,例如平均数信息、最低录取分数线信息等. 尽管该校友的分数位于中位数之下,而中位数本身并不能提供更多录取分数分布的信息.在已知最低录取分数线的情况下,很容易做出判断;在已知平均数小于中位数很多,则说明最低录取分数线较低,可以推荐该校友报考这所大学,否则还要获取其他的信息(如标准差的信息)来做出判断. 4、说明:(1)对,从平均数的角度考虑; (2)对,从标准差的角度考虑;(3)对,从标准差的角度考虑; (4)对,从平均数和标准差的角度考虑; 5、(1)不能. 因为平均收入和最高收入相差太多,说明高收入的职工只占极少数. 现在已知知道至少有一个人的收入为50100x =万元,那么其他员工的收入之和为4913.55010075ii x==⨯-=∑(万元)每人平均只有1.53. 如果再有几个收入特别高者,那么初进公司的员工的收入将会很低. (2)不能,要看中位数是多少.(3)能,可以确定有75%的员工工资在1万元以上,其中25%的员工工资在3万元以上.(4)收入的中位数大约是2万. 因为有年收入100万这个极端值的影响,使得年平均收入比中位数高许多.6、甲机床的平均数=1.5x 甲,标准差=1.2845s 甲;乙机床的平均数 1.2z y =,标准差0.8718z s =. 比较发现乙机床的平均数小而且标准差也比较小,说明乙机床生产出的次品比甲机床少,而且更为稳定,所以乙机床的性能较好. 7、(1)总体平均数为199.75,总体标准差为95.26. (2)可以使用抓阄法进行抽样. 样本平均数和标准差的计算结果和抽取到的样本有关. (3) (4)略 习题2.2 B 组(P82)1、(1)由于测试1T 的标准差小,所以测试1T 结果更稳定,所以该测试做得更好一些. (2)由于2T 测出的值偏高,有利于增强队员的信心,所以应该选择测试2T .2、说明:此题需要在本节开始的时候就布置,先让学生分头收集数据,汇总所收集的数据才能完成题目.2.3变量间的相关关系 练习(P85)1、从已经掌握的知识来看,吸烟会损害身体的健康. 但除了吸烟之外,还有许多其他的随机因素影响身体健康,人体健康是很多因素共同作用的结果. 我们可以找到长寿的吸烟者,也更容易发现由于吸烟而引发的患病者,所以吸烟不一定引起健康问题. 但吸烟引起健康问题的可能性大,因此“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法是不对的.2、从现在我们掌握的知识来看,没有发现根据说明“天鹅能够带来孩子”,完全可能存在既能吸引天鹅和又使婴儿出生率高的第3个因素(例如独特的环境因素),即天鹅与婴儿出生率之间没有直接的关系,因此“天鹅能够带来孩子”的结论不可靠.而要证实此结论是否可靠,可以通过试验来进行. 相同的环境下将居民随机地分为两组,一组居民和天鹅一起生活(比如家中都饲养天鹅),而另一组居民的附近不让天鹅活动,对比两组居民的出生率是否相同. 练习(P92)1、当0x =时,147.767y =,这个值与实际卖出的热饮杯数150不符,原因是:线性回归方程中的截距和斜率都是通过样本估计的,存在随机误差,这种误差可以导致预测结果的偏差;即使截距和斜率的估计没有误差,也不可能百分之百地保证对应于x ,预报值y 能够等于实际值y . 事实上:y bx a e =++. (这里e 是随机变量,是引起预报值y 与真实值(1)散点图如下: y 之间的误差的原因之一,其大小取决于e 的方差.)2、数据的散点图为:从这个散点图中可以看出,鸟的种类数与海拔高度应该为正相关(事实上相关系数为0.793). 但是从散点图的分布特点来看,它们之间的线性相关性不强. 习题2.3 A 组(P94)1、教师的水平与学生的学习成绩呈正相关关系. 又如,“水涨船高”“登高望远”等.2、(3)基本成正相关关系,即食品所含热量越高,口味越好.(4)因为当回归直线上方的食品与下方的食品所含热量相同时,其口味更好. 3、(1)散点图如下:(2)回归方程为:0.66954.933y x =+.(2)回归直线如下图所示:(3)加工零件的个数与所花费的时间呈正线性相关关系. 4、(1)散点图为:(2)回归方程为:0.546876.425y x =+.(3)由回归方程知,城镇居民的消费水平和工资收入之间呈正线性相关关系,即工资收入水平越高,城镇居民的消费水平越高. 习题2.3 B 组(P95) 1、(1)散点图如下:(2)回归方程为: 1.44715.843y x =-.(3)如果这座城市居民的年收入达到40亿元,估计这种商品的销售额为42.037y ≈(万元). 2、说明:本题是一个讨论题,按照教科书中的方法逐步展开即可.第二章 复习参考题A 组(P100)1、A .2、(1)该组的数据个数,该组的频数除以全体数据总数; (2)nmN. 3、(1)这个结果只能说明A 城市中光顾这家服务连锁店的人比其他人较少倾向于选择咖啡色,因为光顾连锁店的人使一种方便样本,不能代表A 城市其他人群的想法. (2)这两种调查的差异是由样本的代表性所引起的. 因为A 城市的调查结果来自于该市光顾这家服装连锁店的人群,这个样本不能很好地代表全国民众的观点.4、说明:这是一个敏感性问题,可以模仿阅读与思考栏目“如何得到敏感性问题的诚实反应”来设计提问方法.5、表略. 可以估计出句子中所含单词的分布,以及与该分布有关的数字特征,如平均数、标准差等.6、(1)可以用样本标准差来度量每一组成员的相似性,样本标准差越小,相似程度越高. (2)A 组的样本标准差为 3.730A S ≈,B 组的样本标准差为11.789B S ≈. 由于专业裁判给分更符合专业规则,相似程度应该高,因此A 组更像是由专业人士组成的.7、(1)中位数为182.5,平均数为217.1875.(2)这两种数字特征不同的主要原因是,430比其他的数据大得多,应该查找430是否由某种错误而产生的. 如果这个大数据的采集正确,用平均数更合适,因为它利用了所有数据的信息;如果这个大数据的采集不正确,用中位数更合适,因为它不受极端值的影响,稳定性好. 8、(1)略.(2)系数0.42是回归直线的斜率,意味着:对于农村考生,每年的入学率平均增长0.42%.(3)城市的大学入学率年增长最快. 说明:(4)可以模仿(1)(2)(3)的方法分析数据.第二章 复习参考题B 组(P101)1、频率分布如下表:从表中看出当把指标定为17.46千元 时,月65%的推销员 经过努力才能完成销 售指标.2、(1)数据的散点图如下:(2)用y 表示身高,x 表示年龄,则数据的回归方程为 6.31771.984y x =+. (3)在该例中,斜率6.317表示孩子在一年中增加的高度.(4)每年身高的增长数略. 3~16岁的身高年均增长约为6.323 cm. (5)斜率与每年平均增长的身高之间之间近似相等.第三章 概率3.1随机事件的概率 练习(P113) 1、(1)试验可能出现的结果有3个,两个均为正面、一个正面一个反面、两个均为反面. (2)通过与其他同学的结果汇总,可以发现出现一个正面一个反面的次数最多,大约在50次左右,两个均为正面的次数和两个均为反面的次数在25次左右. 由此可以估计出现一个正面一个反面的概率为0.50,出现两个均为正面的概率和两个均为反面的概率均为0.25. 2、略 3、(1)例如:北京四月飞雪;某人花两元钱买福利彩票,中了特等奖;同时抛10枚硬币,10枚都正面朝上.(2)例如:在王府井大街问路时,碰到会说中文的人;去烤鸭店吃饭的顾客点烤鸭;在1~1000的自然数任选一个数,选到的数大于1. 练习(P118)1、说明:例如,计算机键盘上各键盘的安排,公交线路及其各站点的安排,抽奖活动中各奖项的安排等,其中都用到了概率. 学生可能举出各种各样的例子,关键是引导他们正确分析例子中蕴涵的概率思想.2、通过掷硬币或抽签的方法,决定谁先发球,这两种方法都是公平的. 而猜拳的方法不太公平,因为出拳有时间差,个人反应也不一样.3、这种说法是错误的. 因为掷骰子一次得到2是一个随机事件,在一次试验中它可能发生也可能不发生. 掷6次骰子就是做6次试验,每次试验的结果都是随机的,可能出现2也可能不出现2,所以6次试验中有可能一次2都不出现,也可能出现1次,2次,…,6次. 练习(P121)1、0.72、0.6153、0.44、D5、B 习题3.1 A 组(P123) 1、D . 2、(1)0; (2)0.2; (3)1.3、(1)430.067645≈; (2)900.140645≈; (3)7010.891645-≈.4、略5、0.136、说明:本题是想通过试验的方法,得到这种摸球游戏对先摸者和后摸者是公平的结论. 最好把全班同学的结果汇总,根据两个事件出现的频率比较近,猜测在第一种情况下摸到红球的概率为110,在第二种下也为110. 第4次摸到红球的频率与第1次摸到红球的频率应该相差不远,因为不论哪种情况,第4次和第1次摸到红球的概率都是1 10.习题3.1 B组(P124)1、D.2、略. 说明:本题是为了学生根据实际数据作出一些推断. 一般我们假定每个人的生日在12个月中哪一个月是等可能的,这个假定是否成立,引导学生通过收集的数据作出初步的推断.3.2古典概率练习(P130)1、110. 2、17. 3、16.练习(P133)1、38,38.2、(1)113;(2)1213;(3)14;(4)313;(5)0;(6)213;(7)12;(8)1.说明:模拟的方法有两种.(1)把1~52个自然数分别与每张牌对应,再用计算机做模拟试验.(2)让计算机分两次产生两个随机数,第一次产生1~4的随机数,代表4个花色;第二次产生1~13的随机数,代表牌号.3、(1)不可能事件,概率为0;(2)随机事件,概率为49;(3)必然事件,概率为1;(4)让计算机产生1~9的随机数,1~4代表白球,5~9代表黑球.4、(1)16;(2)略;(3)应该相差不大,但会有差异. 存在差异的主要原因是随机事件在每次试验中是否发生是随机的,但在200次试验中,该事件发生的次数又是有规律的,所以一般情况下所得的频率与概率相差不大.习题3.2 A组(P133)1、游戏1:取红球与取白球的概率都为12,因此规则是公平的.游戏2:取两球同色的概率为13,异色的概率为23,因此规则是不公平的.游戏3:取两球同色的概率为12,异色的概率为12,因此规则是公平的.2、第一位可以是1~9这9个数字中的一个,第二位可以是0~9这10个数字中的一个,所以(1)190;(2)18919090-=;(3)9919010-=3、(1)0.52;(2)0.18.4、(1)12;(2)16;(3)56;(4)16.5、(1)25;(2)825.6、(1)920;(2)920;(3)12.习题3.2 B组(P134)1、(1)13;(2)14.2、(1)35;(2)310;(3)910.说明:(3)先计算该事件的对立事件发生的概率会比较简单.3、具体步骤如下:①建立概率模型. 首先要模拟每个人的出生月份,可用1,2,…,11,12表示月份,用产生取整数值的随机数的办法,随机产生1~12之间的随机数. 由于模拟的对象是一个有10个人的集体,故把连续产生的10个随机数作为一组模拟结果,可模拟产生100组这样的结果.②进行模拟试验. 可用计算器或计算机进行模拟试验.如使用Excel软件,可参看教科书125页的步骤,下图是模拟的结果:其中,A,B,C,D,E,F,G,H,I,J的每一行表示对一个10人集体的模拟结果. 这样的试验一共做了100次,所以共有100行,表示随机抽取了100个集体.③统计试验的结果. K,L,M,N列表示统计结果. 例如,第一行前十列中至少有两个数相同,表示这个集体中至少有两个人的生日在同一月. 本题的难点是统计每一行前十列中至少有两个数相同的个数. 由于需要判断的条件态度,所以用K,L,M三列分三次完成统计.其中K列的公式为“=IF(OR(A1=B1,A1=C1,A1=D1,A1=E1,A1=F1,A1=G1,A1=H1,A1=I1,A1=J1,B1=C1,B1=D1,B1=E1,B1=F1,B1=G1,B1=H1,B1=I1,B1=J1,C1=D1,C1=E1,C1=F1,C1=G1,C1=H1,C1=I1,C1=J1,D1=E1,D1=F1,D1=G1,D1=H1,D1=I1,D1=J1),1,0)”,L列的公式为“=IF(OR(E1=F1,E1=G1,E1=H1,E1=I1,E1=J1,F1=G1,F1=H1,F1=I1,F1=J1,G1=H1,G1=I1,G1=J1,H1=I1,H1=J1,I1=J1),1,0)”,M列的公式为“=IF(OR(K1=1,L1=1),1,0)”,M列的值为1表示该行所代表的10人集体中至少有两个人的生日在同一个月. N1表示100个10人集体中至少有两个人的生日在同一个月的个数,其公式为“=SUM(M$1:M$100)”. N1除以100所得的结果0.98,就是用模拟方法计算10人集体中至少有两个人的生日在同一个月的概率的估计值. 可以看出,这个估计值很接近1.3.3几何概率。

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

人教版高中数学必修三第一章第1节 1.1.1 算法的概念 课件(共65张PPT)

1.写出求方程 x 2 + bx + c = 0 的解的 一个算法 ,并画出算法流程图。
开始
计算△=b2 – 4 c
N
△≥0?
Y
输出无解
输出 x b
2a
结束
四、练习
2.任意给定3个正实数,设计一个算法,判断以这3个数为三 边边长的三角形是否存在.画出这个算法的程序框图.
算法步骤如下:
第一步:输入3个正实数 a,b,c;
计算机的问世可谓是20 世纪最伟大的科学 技术发明。它把人类社会带进了信息技术时代。 计算机是对人脑的模拟,它强化了人的思维智能;
21世纪信息社会的两个主要特征: “计算机无处不在” “数学无处不在”
21世纪信息社会对科技人才的要 求: --会“用数学”解决实际问题 --会用计算机进行科学计算
现算法代的研科究和学应用研正是究本课的程的三主题大!支柱
算法(2) 第一步,用2除35,得到余数1。因为余数 不为0,所以2不能整除35。
第二步,用3除35,得到余数2。因为余数 不为0,所以3不能整除35。
第三步,用4除35,得到余数3。因为余数 不为0,所以4不能整除35。
第四步,用5除35,得到余数0。因为余数 为0,所以5能整除35。因此,35不是质数
语句A
左图中,语句A和语句B是依次执 行的,只有在执行完语句A指定的
操作后,才能接着执行语句B所指
语句B
定的操作.
四、练习 2.设计一个求任意数的绝对值的算法,并画出程序框图。
2. 算法:
框图:
第一步:输入x的值;
第二步:若x≥0,则输出x; 若否,则输出-x;
开始 输入x
x≥0?

输出x

人教a版数学必修三课本习题答案

人教a版数学必修三课本习题答案

人教a版数学必修三课本习题答案在人教A版数学必修三的课本中,包含了许多章节和相应的习题,由于习题数量众多,我无法在这里提供所有习题的答案。

但是,我可以提供一个示例,展示如何解答某一类习题,以及如何查找习题答案。

# 示例习题解答习题类型:函数的单调性题目:判断函数 \( f(x) = x^2 + 2x + 3 \) 在实数集上的单调性。

解答步骤:1. 确定函数类型:\( f(x) = x^2 + 2x + 3 \) 是一个二次函数,其一般形式为 \( ax^2 + bx + c \)。

2. 分析系数:在这个函数中,\( a = 1 \),\( b = 2 \),\( c = 3 \)。

3. 判断开口方向:由于 \( a = 1 > 0 \),我们知道这个二次函数的图像是向上开口的抛物线。

4. 寻找对称轴:二次函数的对称轴是 \( x = -\frac{b}{2a} = -\frac{2}{2 \times 1} = -1 \)。

5. 判断单调性:对于向上开口的抛物线,函数在对称轴左侧是递减的,在对称轴右侧是递增的。

因此,\( f(x) \) 在 \( (-\infty, -1) \) 上递减,在 \( (-1, +\infty) \) 上递增。

结论:函数 \( f(x) = x^2 + 2x + 3 \) 在 \( (-\infty, -1) \) 上单调递减,在 \( (-1, +\infty) \) 上单调递增。

# 如何查找习题答案1. 课本附录:许多数学课本在附录部分提供了部分习题的答案。

2. 教师指导书:教师指导书中通常会包含所有习题的详细解答。

3. 在线资源:互联网上有许多教育资源网站,提供了各种习题的答案和解题指导。

4. 同学互助:与同学一起讨论和解答习题,可以相互学习和启发。

5. 教师咨询:如果遇到难题,可以向数学老师寻求帮助。

请注意,学习数学最重要的是理解概念和解题方法,而不是简单地寻找答案。

最新高中数学必修3课后习题答案教学讲义PPT

最新高中数学必修3课后习题答案教学讲义PPT

桑菊饮
组成:桑叶9克 菊花9克 杏仁9克 连翘9克 薄荷 6克(后下) 桔梗9克 甘草6克 芦根30克。
用法;水煎,分二次服。
功能:疏风清热,宣肺止咳。
主治:风温初起。症见咳嗽、发热不重、口微渴、苔 薄白、脉浮数。
临床应用;
1.本方长于宣肺止咳、疏风清热,故常用于外感风 热、咳嗽初起之证。如上呼吸道感染、急性气管炎 等均可加减运用。
桑叶、菊花;燥热喘热者伍桑草。 4.津枯血少便秘。配火麻仁、桃仁、当归。 用量:3-10。 禁忌:肺虚咳喘者忌用。
百部
来源:百部科草本植物直立百部的块根。
性味:甘、苦、平。
归经:入肺经。
功能:润肺止咳,灭虱杀虫。
主治与应用:
1.本品润而不燥,有较好的润肺止咳作用,对人型结核杆菌有 抑制作用。故最宜用于肺痨咳嗽,常合黄芩、白芨、沙参、 党参配用。
胖大海
别名: 安南子、通大海 性味: 甘,寒; 归肺、大肠经 功能: 清热润肺 ......
化痰止咳平喘方剂
止嗽散
组成:桔梗(炒) 荆芥 紫苑(蒸)百部 白前蒸各 1000克 甘草(炒)375克 陈皮(去白)500克。
用法:上七味为末,做成散剂。每日三次,每次10克;作 汤剂时,水煎服。用量按原方剂比例酌情增减。
分类:外感咳嗽和内伤咳嗽。
外感咳嗽 中医将发病急,病程短,并发感冒的
咳嗽。
病因:外邪袭肺,脏腑功能失调肺气逆.引起 咯吐痰液而发出的声音。
中医通常把外感咳嗽分为三型.
风寒咳嗽
风热咳嗽
风燥咳嗽
1.风寒咳嗽的主要症状是:咳嗽声重、气急、咽痒、 咳痰稀薄色白,常伴有鼻塞、流清涕、头痛、肢体 酸楚、怕冷、无汗等。舌苔薄白-多发于冬季及初 春。

高中数学必修3课后习题答案 精品优选公开课件

高中数学必修3课后习题答案 精品优选公开课件
如何才能想得开?哲学大师冯友兰曾提出“人生四重境界”说,其中最高那层境界正是道家境界,所以正是路径所在。 一是自然境界。有些人做事,可能只是顺着他的本能或者社会的风俗习惯,而对所做的事并不明白或者不太明白。这种“自然”并非道家那个自然,而是指混沌、盲目、原始,那些人云亦云、随波逐流的人就是这种人。
二是功利境界。有些人,会为了利己而主动去思考和做事,虽然未必不道德,却必定是功利的,而且很容易走向自私自利、损人利己。 三是道德境界。有的人,已经超越了自身,而开始考虑利人,譬如为了道义、公益、众生福祉而去做事。他们的眼界已经超越自身而投向了世间,胸中气象和站立高度已经抵达精神层次。 四是天地境界。当一个人的视野放到了整个天地宇宙,目光投向了万物根本,他就抵达了天人合一。这时他就已经不需要动脑子了,因为天地宇宙就是他的脑子,已经事事洞明,就像电脑连接到了互联网。这种境界,正是道家境界。这四重境界,境界越高就越想得开。想开到什么程度,则决定于人的视野放到多大,眼界拔到多高。人处平地,到处都会遮眼阻路;人登顶峰,世间便能一览通途。这就是想得开的秘密——眼界大了,心就宽了;站得高了,事就小了。想不开,往往都是画地为牢、作茧自缚。
眼光和思维所涉及的面,尽量往大了走、往高了去,则是人人可以努力靠近的。 综上:儒家拿得起、佛家放得下、道家想得开,合起来其实就是一句话:带着佛家的出世心态,凭着道家的超世眼界,去做儒家入世的事业。这也正是南怀瑾所说的人生最高境界:佛为心,道为骨,儒为表,大度看世界。车水马龙的闹市里,双眸里闪烁着都市的霓虹,衣服上沾满着汽车 曾经有一个人,她永远占据在你心最柔软的地方,你愿用自己的一生去爱她,这个人,叫“母亲”;有一种爱,它可以让你随意的索取、享用,却不要你任何的回报,不会向你抱怨,总是自己一个人默默地承受着这一切。这种爱,叫“母爱”!

高中人教版数学必修3课本练习_习题参考答案

高中人教版数学必修3课本练习_习题参考答案

高中数学必修③课本练习,习题参考答案新心希望教育:RenYongSheng 第一章算法初步1.1算法与程序框图1.1.1算法的概念(p5)1. 解;第一步:输入任意正实数r,第二步:计算第三步:输出圆的面积S2. 解;第一步:给定一个大于l的正整数;第二步:令;第三步:用除,得到余数;第四步:判断“”是否成立,若成立,则i是n的因数;否则,i不是n的因数;第五步:使的值增加l,仍用表示,即令;第六步,判断“”是否成立.若是,则结束算法;否则,返回第三步1.1.2程序框图与算法的基本逻辑(P19)1.解;算法步骤:第一步,给定精确地d,令i=1第二步,取出的到小数点后第i位的不足近似值,记为a;取出的到小数点后第i位的过剩近似值,记为b,第三步,计算第四步,若m<d,则执行第五步;否则,将i的值增加1,返回第二步.第五步,输出程序框图如下图所示:1.1算法与程序框图(P20)A 组解;题目:在国内寄平信(外埠),每封信的质量x(克)不超过60克时的邮费(单位:分)标准为,试写出计算邮费的算法并画出程序框图。

算法如下:第一步,输入质量数x。

第二步,判断是否成立,若是,则输出y=120,否则执行第三步。

第三步,判断是否成立,若是,则输出y=240,否则,输出y=360,算法结束。

程序框图如下图所示:(注释:条件结构)2.解:算法如下:第一步,i=1,S=0.第二步,判断是否成立,若成立,则执行第三步,否则,执行第四步。

第三步,,i=i+1,返回第二步。

第四步,输出S.程序框图如下图所示:(注释:循环结构)3. 解:算法如下:第一步,输入人数x,设收取的卫生费为y元。

第二步,判断x>3是否成立,若不成立,y=5,输出y;否则,输出y.程序框图如下图所示:(注释:条件结构)BB 组1. 解:分析:我们设计对于一般的二元一次方程组(其中)的通用算法:第一步,,得(即) (3)第二步,解(3),得 (4)第三步,将(4)代入(1),得,因此,只要输入相应的未知数的系数和常数项,就能计算出方程组的解,即可以输出x、y的值,用顺序结构即可。

高中数学人教A版必修三习题第一章-算法的概念含答案

高中数学人教A版必修三习题第一章-算法的概念含答案

答案:C
2.求过 P(a1,b1),Q(a ,b2)两点的直线斜率有如下的算法,请将算法补充完整: 2
S1 取 x1=a1,y1=b1,x2=a ,y2=b2. 2
S2 若 x1=x ,则输出斜率不存在;否则,________. 2
S 输出计算结果 k 或者无法求解信息.
3
解析:根据直线斜率公式可得此步骤.
第三步,依次从 2 到(n-1)检验能不能整除 n,若不能整除 n,则执行第四步;若能整
除 n,则执行第一步.
第四步,输出 n.
满足条件的 n 是( )
A.质数
B.奇数
C.偶数
D.约数
解析:此题首先要理解质数,只能被 1 和自身整除的大于 1 的整数叫质数.2是最小的
质数,这个算法通过对 2 到(n-1)一一验证,看是否有其他约数,来判断其是否为质数.
B 级 能力提升 1.结合下面的算法: 第一步,输入 x.
3
第二步,判断 x 是否小于 0,若是,则输出 x+2;否则,执行第三步.
第三步,输出 x-1.
当输入的 x 的值为-1,0,1 时,输出的结果分别为( )
A.-1,0,1
B.-1,1,0
C.1,-1,0
D.0,-1,1
解析:根据 x 值与 0 的关系选择执行不同的步骤.
第四步,得到方程组的解{x=10,)
y=20. 第五步,输出结果,鸡 10只,兔 20只.
4
答案:A
二、填空题
6.给出下列算法:
第一步,输入 x 的值.
第二步,当 x>4时,计算 y=x+2;否则执行下一步.
第三步,计算 y= 4-x.
第四步,输出 y.
当输入 x=0 时,输出 y=________.

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

高中数学必修3(人教A版)第一章算法初步1.1知识点总结含同步练习及答案

描述:例题:高中数学必修3(人教A版)知识点总结含同步练习题及答案第一章 算法初步 1.1 算法与程序框图一、学习任务1. 了解算法的含义,了解算法的基本思想,能用自然语言描述解决具体问题的算法.2. 了解设计程序框图表达解决问题的过程,了解算法和程序语言的区别;了解程序框图的三种基本逻辑结构,会用程序框图表示简单的常见问题的算法.二、知识清单算法 程序框图三、知识讲解1.算法算法(algorithm)是指按照一定规则解决某一类问题的明确和有限的步骤 .可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.描述算法可以有不同的方式.例如,可以用自然语言和数学语言加以描述,也可以借助形式语言(算法语言)给出精确的说明,也可以用框图直观地显示算法的全貌.算法的要求:(1)写出的算法,必须能解决一类问题,并且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步后能得到结果.下列对算法的理解不正确的是( )A.一个算法应包含有限的步骤,而不能是无限的B.算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的C.算法中的每一个步骤都应当是有效地执行,并得到确定的结果D.一个问题只能设计出一种算法解:D算法的有限性是指包含的步骤是有限的,故 A 正确;算法的确定性是指每一步都是确定的,故 B正确;算法的每一步都是确定的,且每一步都应有确定的结果,故 C 正确;对于同一个问题可以有不同的算法,故 D 错误.下列叙述能称为算法的的个数为( )描述:2.程序框图程序框图简称框图,是一种用程序框、流程线及文字说明来表示算法的图形.其中,起、止框是任何流程不可少的,表明程序的开始和结束.输入和输出框可用在算法中任何需要输入、输出的位置.算法中间要处理数据或计算,可分别写在不同的处理框内.一个算法步骤到另一个算法步骤用流程线连接.如果一个框图需要分开来画,要在断开处画上连接点,并标出连接的号码.①植树需要运苗、挖坑、栽苗、浇水这些步骤;②依次进行下列运算:,,,,;③从枣庄乘火车到徐州,从徐州乘飞机到广州;④ ;⑤求所有能被 整除的正整数,即 .A. B. C. D.解:B①、②、③为算法.1+1=22+1=33+1=4⋯99+1=1003x >x +133,6,9,12,⋯2345写出解方程组的一个算法.解:方法一:代入消元法. 第一步,由 得 ;第二步,将 代入 ,得 ,解得 ;第三步,将 代入方程 ,得 ;第四步,得到方程组的解为 .方法二:加减消元法.第一步,方程 两边同乘以 ,得 ;第二步,将第一步所得的方程与方程 作差,消去 ,得 ,解得 ;第三步,将 代入方程 ,得 ,解得 ;第四步,得到方程组的解为 .{2x +y =74x +5y =112x +y =7y =7−2x y =7−2x 4x +5y =114x +5(7−2x )=11x =4x =4y =7−2x y =−1{x =4y =−12x +y =7510x +5y =354x +5y =11y 6x =24x =4x =42x +y =72×4+y =7y =−1{x =4y =−1例题:画程序框图的规则(1)使用标准的图形符号.(2)框图一般按从上到下、从左到右的方向画.(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点.判断框是具有超过一个退出点的惟一符号.(4)判断框分两大类,一类判断框是“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果.(5)在图形符号内描述的语言要非常简练清楚.算法的三种基本逻辑结构顺序结构:语句与语句之间,框与框之间按从上到下的顺序进行.条件分支结构:在一个算法中,经常会遇到一些条件的判断,算法的流程条件是否成立有不同的流向,条件结构就是处理这种过程的结构.循环结构:在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.下列程序框图分别是解决什么问题的算法.解:(1)已知圆的半径,求圆的面积的算法.(2)求两个实数加法的算法.执行如图的程序框图,输出的 ______ .解:T =30四、课后作业 (查看更多本章节同步练习题,请到快乐学)某程序框图如图所示,若输出的 ,则判断框内为( )A. B. C. D.解:AS =57k >4?k >5?k >6?k >7?已知函数 ,对每次输入的一个值,都得到相应的函数值,画出程序框图.解:f (x )={2x +3,3−x ,x 2x ⩾0x <0x答案:1. 关于算法的说法中,正确的是 A .算法就是某个问题的解题过程B .算法执行后可以产生不确定的结果C .解决某类问题的算法不是唯一的D .算法可以无限地操作下去不停止C()答案:解析:2. 下列运算不属于我们所讨论算法范畴的是 A .已知圆的半径求圆的面积B .随意抽 张扑克牌算到二十四点的可能性C .已知坐标平面内两点求直线方程D .加减乘除法运算法则B注意算法需按照一定的顺序进行.()4答案:解析:3. 执行如图所示的程序框图,如果输入的 ,则输出的 属于 .A .B .C .D .D取 ,得输出的 ,即可判断.t ∈[−2,2]S ()[−6,−2][−5,−1][−4,5][−3,6]t =−2S =64. 某批发商按客户订单数额的大小分别给予不同的优惠折扣.计算客户应付货款的算法步骤如下: :输入订单数额 (单位:件);输入单价 (单位:元);:若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;若 ,则折扣率 ;:计算应付货款 (单位:元);:输出应付货款 .S 1x A S 2x <250d =0250⩽x <500d =0.05500⩽x <1000d =0.10x ⩾1000d =0.15S 3T =Ax (1−d )S 4T。

数学必修3课后习题答案

数学必修3课后习题答案

数学必修3课后习题答案数学必修3的课后习题答案可能因教材版本和地区而异,这里我将提供一些通用的解题思路和方法,以帮助学生理解数学概念并解决课后习题。

一、函数与方程1. 函数的基本概念:理解函数的定义域、值域、单调性、奇偶性等基本性质。

2. 函数的图像:学会根据函数的性质绘制其图像,如一次函数、二次函数、指数函数、对数函数等。

3. 方程的解法:掌握一元二次方程的求解方法,如因式分解法、配方法、公式法等。

二、三角函数1. 三角函数的定义:理解正弦、余弦、正切等三角函数的定义及其在单位圆上的意义。

2. 三角函数的基本性质:掌握三角函数的周期性、单调性、奇偶性等。

3. 三角恒等式:熟悉并能够证明基本的三角恒等式,如和差化积、积化和差等。

三、解析几何1. 直线与圆:理解直线方程和圆的方程,以及它们的位置关系。

2. 椭圆、双曲线和抛物线:掌握这些圆锥曲线的标准方程及其性质。

3. 坐标变换:学会使用坐标变换简化解析几何问题。

四、不等式1. 不等式的基本性质:理解不等式的基本解法,如移项、合并同类项等。

2. 绝对值不等式:掌握绝对值不等式的解法,了解其几何意义。

3. 不等式的证明:学会使用数学归纳法、反证法等方法证明不等式。

五、数列1. 数列的基本概念:理解数列的通项公式、前n项和等概念。

2. 等差数列与等比数列:掌握等差数列和等比数列的通项公式和求和公式。

3. 数列的极限:初步了解数列极限的概念,能够计算简单数列的极限。

六、复数1. 复数的表示:理解复数的代数形式和三角形式。

2. 复数的运算:掌握复数的加减乘除运算。

3. 复数的几何意义:了解复数在复平面上的表示。

结束语数学的学习是一个循序渐进的过程,课后习题的解答能够帮助学生巩固课堂所学知识。

希望上述内容能够帮助学生更好地理解和解决数学必修3的课后习题。

在解题过程中,鼓励学生独立思考,多尝试不同的解题方法,培养数学思维和解决问题的能力。

同时,也建议学生在遇到难题时,及时与老师或同学讨论,共同进步。

高中数学人教A版必修3第一章 1.1 1.1.2 第一课时 程序框图、顺序结构课件

高中数学人教A版必修3第一章 1.1 1.1.2 第一课时 程序框图、顺序结构课件
(2)顺序结构是任何一个算法都离不开的基本结构.故 选 A.
[答案] (1)D (2)A
程序框图的理解 框图符合标准化,框内语言简练化,框间流程方向 化.从上到下,从左到右,勿颠倒.起止框不可少,判断 框一口进,两口出.顺序结构处处有.
[活学活用] 在程序框图中,表示判断框的图形符号的是
()
解析:选 C 四个选项中的程序框依次为处理框,输入、输 出框,判断框和起止框.
()
解析:选 B 由处理框的定义知选 B. 3.在程序框图中,算法中间要处理数据或计算,可以分别
写在不同的
()
A.处理框内
B.判断框内
C.输入、输出框内
D.起、止框内
解析:选 A 处理框表示的意义为赋值、执行计算语句、
结果的传送,故选 A,其他选项皆不正确.
4.阅读如图所示的程序框图,输入 a1=3,a2=4,则输出的结
用顺序结构表示算法
[典例] 求底面边长为 4,侧棱长为 5 的正四棱锥的侧面
积及体积,为该问题设计算法,并画出程序框图. [解] 算法一:第一步,a=4,c=5.
第二步,计算
R=
2 2 a.
第三步,计算 h= c2-R2,S1=a2.
第四步,计算 V=13S1h.
第五步,计算 h′=
c2-a42.
(1)框图①中 x=4 的含义是什么? (2)框图②中 y1=x3+2x+3 的含义是什么? (3)框图④中 y2=x3+2x+3 的含义是什么? [解] (1)框图①的含义是初始化变量,令 x=4. (2)框图②中 y1=x3+2x+3 的含义:该框图是在执行① 的前提下,即当 x=4 时,计算 x3+2x+3 的值,并令 y1 等 于这个值. (3)框图④中 y2=x3+2x+3 的含义:该图框是在执行③ 的前提下,即当 x=-2 时,计算 x3+2x+3 的值,并令 y2 等于这个值.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档