信号处理与数据分析第三章作业答案(A).邱天爽.
《信号与系统分析基础》第3章部分习题解答

第三章习题解答3.2 求下列方波形的傅里叶变换。
(a) 解:1102()()11()2j t j t j t j j a F j f t e dt e e dt j e S e j ωτωτωωτωτωωωττω+∞--∞----=-=⋅=-==⎰⎰(b) 解:200022()11()1[](1(1)1(1)j t t j t j t j t j j j j tF e dttde j j te e dt j j e e ej eτωωττωωωτωτωτωτωττωτωωτωτωωττω--------==⋅⋅-=--=+-=+-⎰⎰⎰(c) 解:13112211()()22111()()2211()cos21()21()21112()2()22j t j t j t j t j t j t j t j tF t e dte e e dt e e dt e ej j ωππωππωωππωωπωππωω-------+---+--=⋅=+⋅=+=--+⎰⎰⎰()()()()22221111[][]2222j j j j e e e e j j ππππωωωωππωω----++=⋅--⋅--+2222sin()sin()cos ()cos ()cos 2222()()2222ππππωωωωωωπωππππωωωω-+⋅++⋅-⋅=+==-+--3.3依据上题中a,b 的结果,利用傅里叶变换的性质,求题图3.3所示各信号的傅里叶变换. (b) 解:262()()()f t g t g t =+,而()()2g t Sa τωττ↔2()6(3)2()F Sa Sa ωωω∴=+如利用3.2中(a)的结论来解,有:211'()(3)(1)f t f t f t ττ=+++,其中6,'2ττ==.3211'()()()6(3)2()j j F e F e F Sa Sa ωωττωωωωω∴=⋅+⋅=+(如()()f t F ω↔,则00()()j t f t t eF ωω±↔)(c) 解:32222()2()2(),1f t f t f t τττ=++-+= 由3.2(b)知,2221()(1)j j F e j e ωτωτωωττω--=+-32222222222222()2()2(),1112(1)2(1)222222444cos (1cos )j j j j j j j j j j F e F e F e e j e e e j e je je ωτωτωωωωωωωωωωωτωωωωωωωωωωωωωωω-----∴=+-==⋅⋅+-+⋅⋅--=+-+--=-=-3.4利用对称性求下列各函数的傅里叶变换.(2) 222(),.f t t tαα=-∞<<+∞+ 解:222t e αααω-↔+ ,由对称性,2222et αωαπα-↔+(3)2()f t444444444244()(2)(2)1(2)()21111()(2)(2)[()]*[()][()()]22282,()()0.22,()()2;26,()()f t Sa t Sa t Sa t g f t Sa t Sa t g g g g g g g g d g g d πππππππωππππππππωππωωωωππωπωωπωπωωυωππωπωωυ-=⋅↔=⋅↔=*<-*=-<<*==+<<*=⎰解:而,利用频域卷积特性,得:积分:2444246.6,()()0g g πωππππωππωωπωω-=-+=->*=⎰3.8(3) ()(2)()2()dF t f t j F d ωωω-↔-(6) (25)f t -;由1[()]()j b a F f at b e F a a ωω--=⋅,2,5,a b == 2.51(25)()22j f t e F ωω-∴-↔⋅3.9 计算下列各信号的傅里叶变换.(2) 3()2(32)()2[2()],2u t t u t t δδδ+-=+-是偶函数332232()1,1[()]().2, 3.112(32)21,()().21()2(32)()j b aj j j t F f at b e F a aa b t e e u t j u t t e j ωωωωδωδπδωωδπδωω----↔-===∴-↔⋅⋅⋅=↔+∴+-↔++ 由(7) 33(2)63(3)9[(2)(3)](2)(3)tt t e u t u t eu t e e u t e --+---+--=⋅+-⋅-33(2)23(3)31().11();(2)331(3)3t t t j t j e u t j e u t e u t e j j e u t e j αωωαωωωω---+---↔+∴↔+↔++-↔+ 同理:32(3)3(3)1[(2)(3)]()3t j j e u t u t e e j ωωω-+-+∴+--↔-+3.13 已知阶跃函数和正弦、余弦函数的傅里叶变换如下:0000001[()]()[c o s ][()()][s i n ][()()]F u t j F t F t j πδωωωπδωωδωωωπδωωδωω=+=++-=+-- 求单边正弦函数和单边余弦函数的傅里叶变换。
信号分析与处理第3章习题答案[山东大学]
![信号分析与处理第3章习题答案[山东大学]](https://img.taocdn.com/s3/m/a66d5821a5e9856a5612605d.png)
j 2 n
j 2 n
n
j 2 = X (e )
1
j 3-3 已知 X(e ) =
| ω | < ω0
0
j 求 X(e ) 的傅里叶反变换
ω0≤ | ω | ≤π
1 解:x(n) = 2
= =
X (e
j
)e jn d
1 2
e
0
0
jn
d
1 0 e jn | 0 2jn
n 0
3
3
nk ne j 2N
2
∴ X (0) cos
n 0 3
ne j 0 1 0 1 0 0
2
X (1) cos
n 0 3
n ne j 2 1 0 1 0 2
2
X (2) cos
n 0
ne j n 1 0 1 0 0
n 0 3
j n 2
1 (2 j ) 1 3 j 2 j
X (2) x(n)e j n 1 (2) (1) (3) 5
n 0 3
X (3) x(n)e
n 0
j
3 n 2
1 2 j 1 (3 j ) 2 j
n
x(2n)e
m 2n
m
x(m)e
jm
2
jm jm 1 2 2 m取整数 [ x(m)e (1) m x(m)e ] 2 m jm j 1 1 2 2 m x ( m ) e x ( m ) ( e ) = + 2 m 2 m
测试技术与信号分析处理 课后习题解答 第三章

3.7 用一个时间常数未0.35S 的一阶装置去测量周期分别为1S 、2S 、5S 的正弦信号,问A (ω)误差为多少?解:τ1 =1S, τ2 =2S, τ3 =5Sω1 =2π/1=2 , ω2 =2π/2= , ω3 =2π/5由式(3.16) A(ω)=1)(12+τω 得幅值比:A 1(ω)=1)1/235.0(12+⨯π =0.413A 2(ω)=1)2/235.0(12+⨯π =0.673A 3(ω)= 1)5/235.0(12+⨯π =0.915误差1 = [1-A 1(ω)]×100%=(1-0.41) ×100% = 58.6%误差2 = [1- A 2(ω)]×100%=(1-0.67)×100% = 32.7%误差3 = [1- A 3(ω)]×100%=(1-0.92) ×100% = 8.5%3.8 求周期信号x(t)=0.5cos10t +0.2cos(100t-45°)通过传递函数为 H(s) = 1005.01+S 的装置后所得到的稳态响应。
解:把原信号分成两个信号:x 1( t ) = 0.5 cos10t , x 2 ( t ) = 0.2cos(100t-45°)ω1= 10S -1, ω2=100S -1由一阶系统的幅频特性 A(ω)=1)(12+τω , 知第一个信号的幅值比 A 1(ω)=1)10005.0(12+⨯ = 0.99875输出幅值A 0=A 1(ω) ×0.5 = 0.99875×0.5 = 0.499第二个信号的幅值比:A 2(ω) =1)100005.0(12+⨯ =0.89443φ1(ω)= -arc tan τω1= -arc tan(10×0.005)= - 2.86° .φ2(ω)= -arc tan τω2= -arc tan(100×0.005)= 26.57°所以,周期信号的稳态响应为:x (t) = 0.499cos(10 t - 2.86°)+0.179cos(100 t - 71.57°)3.9 想用一个一阶系统作100Hz 正弦信号的测量,如要求限制振幅误差在5%以内。
信号处理与数据分析 邱天爽作业答案(Part2)

对于 n 0 ,则有
y ( n)
pn
( 3)
1
p 1
1 1 1 1 3n ( ) n 1 ( ) p ( ) n 1 1 2 3 3 p 0 3 1 3
因此:
3n ,n 0 y (n) 2 ( 1 ), n 0 2
(a)画出 x(t ) 和 h(t ) 的图形如下图所示: 0 1
利用该图形,得到 y(t ) x(t ) h(t ) 如图所示:
因此,
t ,0 t , t 1 y (t ) 1 t ,1 t (1 ) 0, otherwise
k
( 3)
1
1
1
k
u ( n k 1)
k 1
( 3 ) u (n k 1)
k
用 p 代替 k -1 则,
1 y ( n ) ( ) p 1 u ( n p ) p0 3
对于 n 0 ,则有
1 1 1 1 y ( n ) ( ) p 1 1 3 3 2 p 0 1 3
2.(P24,课后习题 1.7)计算卷积并画出结果曲线
1 x ( n) u ( n 1), h( n) u ( n 1) 3
-n
解:利用定义可知,
y ( n) x ( n) h( n)
k
x ( k ) h( n k )
1 ( ) k u ( k 1)u ( n k 1) k 3
1.4
1.2
1
0.8
0.6
0.4
0.2
0 -20
数字信号处理第三章习题答案

x1(n)
x2(n)
(b)
y (n)
(c)
(a) x1(n) (b) x2 (n)
(c) y(n) x1(n) x2 (n)
5.如果X(k)=DFT[ x(n)],证明DFT的初值定理
x(0)
1
N 1
X (k)
N k0
证明 由IDFT定义式
x(n)
1 N
N 1
1, 0 n 4 x2 (n) 1, 5 n 9 作图表示 x1(n) 、 x2 (n) 和 y(n) x1(n) ,x2 (n)
循环卷积区间长度L=10。
解 x1(n) 、 x2 (n) 和 y(n) x1(n) x2 (n) 分别如题3解图
(a)、(b)、(c)所示。
2
N
2
N
k) k)
N] 2 ,k 2]
0,1,L
,N
1
1 e j0N
或
X7 (k)
1
e
j (0
2 N
k
)
,k
0,1,L
,N
1
(9) 解法一
x9 (n)
cos(0n)RN
(n)
1 [e 2
j0n
e
] j0n
N 1
X9 (k) x9 (n)WNkn n0
fl(n)长度为27,f(n)长度为20.前面已推出二者的关系为
f (n) fl (n 20m) R20 (n) m
只有在如上周期延拓序列中无混叠的点上,才满足f(n)=fl(n),所以
f (n) fl (n) x(n) y(n), 7 n 19
信号处理与数据分析 邱天爽作业答案第四章

号恢复 y(t ) 的采样周期 T 的范围。 解: y(t ) 利用傅里叶变换的性质,我们可以得到:
Y ( j)=X 1 ( j)X 2 ( j)
因此 Y ( j )=0, 1000 。这说明 y(t ) 的奈奎斯特采样频率为 2 1000 2000 ,采样周期最多维
2 2000 10 3 sec,因此采样周期 T 必须满足 T 103 sec,才能从采样信号中恢复 y(t ) 。
1 X ( j)=75X ( j) ,因此 0 的最大值为 50 。 T
3.( 书 稿 4.15) 设 x1 ( t ) 和 x2 ( t ) 均 为 带 限 信 号 , 它 们 的 频 谱 满 足 X 1 ( j) 0, | | 1000 ,
X 2 ( j) 0, | | 2000 。若 y (t ) x1 (t ) x2 (t ) ,对 y(t ) 进行单位冲激序列采样,试给出保证能从采样后信
sin(4000 t ) x (t ) t (3)
2
,因此采样频率至少为 2(4000 ) 8000 。
4000
,因此采样频率至少为 2(4000 ) 8000 。
4000
(3) x(t ) 对应的 X ( j) 可以看作两个举行脉冲的卷积,且两脉冲均在 至少为 2(8000 ) 16000 。
100
100
通过冲击序列采样的结果为:
G ( j)= 1 X ( j( ks )) T
其中 T 2 / s 1 / 75 ,因此 G(j) 如下图所示
250
100
100
250
ቤተ መጻሕፍቲ ባይዱ
很显然,当不存在频谱交叠时,即 50 , G ( j)=
信号分析第三章答案

第三章习题参考解答3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。
解 (a) ⎰-=Ttjk dt et x Tk X 011)(1)(ωω⎰-=τω011dt AeTtjk 2121τωτωτk Sae T A k j -= )2(1Tπω=t jk k j k e e k Sa TA t x 11212)(ωωττωτ⋅=∴-∞-∞=∑3.1解 (b) ⎰-=Tt jk dt e t x Tk X 011)(1)(ωω⎰-=Tt jk dt te T A T011ω⎰--⋅=T t jk e td jk T A 012][11ωω ⎰-+-=T t jk dt e T jk Ak j A 02112ωωπkjA π2= )2(1T πω= ⎰=Tdt t x TX 0)(1)0(2A =∑∞≠-∞=+=∴)0(122)(k k t jk e kjA At x ωπ解 (c) ⎰-=Ttjk dt et x Tk X 011)(1)(ωωdt e TTtjk T T ωπ--⋅=⎰442cos1dt e e Tt k j t k j T T ][21111)1()1(44ωω+---+=⎰][)1(121][)1(1214)1(4)1(14)1(4)1(11111Tk j Tk j Tk j Tk j e ek j T e e k j T ωωωωωω++-----⋅+-⋅+--⋅=2)1sin()1(212)1sin()1(21ππππ--+++=k k k k π2)1(412)1(41-++=k Sa k Sa t jk k e k Sa k Sat x 1)2)1(2)1((41)(ωππ-++=∴∑∞-∞= )2(1T πω=解 (d) ⎰--=221)(1TT t jk n dt e t TF ωδT1=∑∞-∞==∴k tjk eTt x 11)(4ω3.2 求题图3.2所示信号的傅里叶变换。
信号处理与数据分析 邱天爽作业答案第二章(Part2)

3.
出 A 的值。 解:我们知道 H ( j)
1 j 1 j 1 2 1 2 1 ,因此 A 1 。
X (e j )
n 0
x ne
j n
n
1 2
n 1
e j n 1 2
n 1
n 1
eቤተ መጻሕፍቲ ባይዱ j n
1 1 1 e j j 2 1 1 2 e 1 1 2 e j 0.75e j 1.25 cos 3e j 5 4cos
1.
(书稿 2.22)计算下列各式的离散时间傅里叶变换:
1 (1) x ( n) 2
n 1
u ( n 1) ;
1 (2) x ( n) 2
| n 1|
;
(3) x(n) (n 1) (n 1)
解:
(1) x(n) 的离散时间变换为:
X (e j )
n
x(n)e
j n
因此,
FT x(n) X (e j )
由本题(1)可知:
FT x (n) X (e j )
所以,
FT x (n) X (e j )
如若为实信号则有: X (e j )=X (e j ) (书稿 2.31) 一因果稳定 LTI 系统的频率响应为: H j 1 j 。试证明 H j A ,并求
* (2) x ( n)
解: (1)因为
X (e j )
n
x(n)e
j n
我们可以写成:
X (e j )
信号分析第三章答案

第三章习题参考解答3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。
解(a)⎰-=T tjk dtetxTkX11)(1)(ωω⎰-=τω11dtAeTtjk2121τωτωτkSaeTA kj-=)2(1Tπω=解 (b) ⎰-=T tjk dtetxTkX11)(1)(ωω⎰-=T tjk dtteTAT011ω⎰--⋅=T tjketdjkTA12][11ωω解 (c) ⎰-=T tjk dtetxTkX11)(1)(ωωdteTTtjkTTωπ--⋅=⎰442cos1dteeTtkjtkjTT][21111)1()1(44ωω+---+=⎰解 (d)⎰--=221)(1TTtjkndtetTFωδT1=3.2 求题图3.2所示信号的傅里叶变换。
解 (a)dtAeX t j⎰--=221)(ττωω2ωττSaA=解 (b)设)()('2txtg=,).()("2'2txtg=由傅氏变换的微积分性质知:解 (c)TtTtAtxεεcos)]4()4([)(3--+=利用傅氏变换性质知:解 (d)ωωωjTTjAeeTSaTATtxF---=2'42)]([]2[)(224ωωωωωTjTjeTSaejAX---=∴或TjTj ejAeTAXωωωωω----=)1()(24解 (e)ωωωωω43454242)(TjTjeTSaATeTSaATX---=题图3.23.1解 (f) ⎰∞--=06)(dt e e X t j t ωαω∞+-+-=0)(1t j e j ωαωαωαj +=13.3 若已知)()]([ωX t x F =,试求下列信号的傅里叶变换。
(1) )2(t tx解 ωωd dX jt tx F )()]([= (2) )3(-t tx解 ωω3)()]3([j e X t x F -=-(3) )3(t x -解 ωω3)()]3([j e X t x F =+(4) )3()3(--t x dtdt 解 )()](['ωωX j t x F =(5) )(b at x +解 ωωjb e X b t x F )()]([=+(6)⎰∞-+td x ττ)23(解 令v =+23τ 则有:)23(31)(23+=⋅⎰+∞-t g dv v x t , dv v x t g t⎰∞-=)(31)( )]0()()([31)]([X j X t g F ωπδωω+=,ωωπδωω2)]0()()([31)]2([j e X j X t g F +=+3.4 在题图3.2(b)中取τ=T ,将)(2t x 进行周期为T 的周期延拓,得到周期信号)(t x T ,如题图3.4(a)所示;取)(t x T 的12+N 个周期构成截取函数)(t x N ,如题图3.4(b)所示。
数字信号处理》课后作业参考答案

第3章 离散时间信号与系统时域分析3.1画出下列序列的波形(2)1()0.5(1)n x n u n -=- n=0:8; x=(1/2).^n;n1=n+1; stem(n1,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');(3) ()0.5()nx n u n =-()n=0:8; x=(-1/2).^n;stem(n,x);axis([-2,9,-0.5,3]); ylabel('x(n)'); xlabel('n');3.8 已知1,020,36(),2,780,..n n x n n other n≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪⎩,14()0..n n h n other n≤≤⎧=⎨⎩,求卷积()()*()y n x n h n =并用Matlab 检查结果。
解:竖式乘法计算线性卷积: 1 1 1 0 0 0 0 2 2)01 2 3 4)14 4 4 0 0 0 0 8 83 3 3 0 0 0 0 6 62 2 2 0 0 0 0 4 41 1 1 0 0 0 02 21 3 6 9 7 4 02 6 10 14 8)1x (n )nx (n )nMatlab 程序:x1=[1 1 1 0 0 0 0 2 2]; n1=0:8; x2=[1 2 3 4]; n2=1:4; n0=n1(1)+n2(1);N=length(n1)+length(n2)-1; n=n0:n0+N-1; x=conv(x1,x2); stem(n,x);ylabel('x(n)=x1(n)*x2(n)');xlabel('n'); 结果:x = 1 3 6 9 7 4 0 2 6 10 14 83.12 (1) 37πx (n )=5sin(n) 解:2214337w πππ==,所以N=14 (2) 326n ππ-x (n )=sin()-sin(n)解:22211213322212,2122612T N w T N w N ππππππ=========,所以(6) 3228n π-x (n )=5sin()-cos(n) 解:22161116313822222()T N w T w x n ππππππ=======,为无理数,所以不是周期序列所以不是周期序列3.20 已知差分方程2()3(1)(2)2()y n y n y n x n --+-=,()4()nx n u n -=,(1)4y -=,(2)10,y -=用Mtalab 编程求系统的完全响应和零状态响应,并画出图形。
信号处理与数据分析第十章作业答案(A).邱天爽.

习题10.5试说明周期图谱估计方法。
解:周期图(periodogram )是一种经典的功率谱密度估计方法,其主要优点是能应用快速傅里叶变换算法来进行谱估计。
当序列的长度足够长时,使用改进的周期图法,可以得到较好的功率谱估值,因而应用很广。
周期图的直接计算公式为:j j *j j 2per 11(e )(e )(e )|(e )|P X X X N Nωωωω==。
此外,功率谱密度还可以根据自相关函数估计的傅里叶变换来进行计算,称为经典谱估计的间接法,又称为BT 法,其计算公式为:j (2)j j 2per 1ˆ(e )()e |(e )|m N m P R m X Nωωω+∞−=−∞==∑,其中(2)ˆ()N R m 为自相关函数的有偏估计。
习题10.18设()x n 为一平稳随机信号,且是各态历经的,现用式()()()1||01ˆ||N m N N n r m x n x n m N m −−==+−∑ 解:估计其自相关函数,求此估计的均值和方差。
偏差的定义:ˆˆbia[()][()}()]rm E r m r m =− 式中1010101ˆ[()][()()]1 [()()]1 () ()N m N N n N m N N n N M n E r m E x n x n m N mE x n x n m N mr m N mr m −−=−−=−−==+−=+−=−=∑∑∑ 所以ˆbia[()]0rm =,即本题的自相关函数的估计是无偏估计。
由定义222ˆˆˆˆˆvar[()][()[()]][()][()]rm E r m E r m E r m E r m =−=−,其中 22ˆ[()]()E r m r m = 所以:1||22(1||)ˆˆvar[()][()()()](||)N m k N m N r m rk r k m r k m N m −−=−−−≈++−−∑。
数字信号处理 答案 第三章

解: x1 ( n) 和 x2 (n) 的图形如图 P3.7_1 所示:
3.8 图 P3.8 表示一个 4 点序列 x( n) 。 (1)绘出 x( n) 与 x( n) 的线性卷积结果的图形。 (2)绘出 x( n) 与 x( n) 的 4 点循环卷积结果的图形。 (3)绘出 x( n) 与 x( n) 的 8 点循环卷积结果的图形,并将结果与(1)比较,说明线性卷积与循环卷 积之间的关系。
j [(2π k /10) + (π /10)]
={
3.7
N ,k=m或 k=−m 2 0,其 他
图 P3.7 表示的是一个有限长序列 x( n) ,画出 x1 ( n) 和 x2 (n) 的图形。 (1) x1 ( n) = x ⎡ ⎣( n − 2 ) ⎤ ⎦ 4 R4 (n)
(2) x2 ( n) = x ⎡ ⎣( 2 − n ) ⎤ ⎦ 4 R4 (n)
解: (1) X ( k )
= ∑ δ (n)WNnk = δ (0) = 1, 0 ≤ k ≤ N − 1
n=0
N −1
(2) X ( k ) =
∑ δ [(n − n )]
n =0 0
N −1
N
RN (n)WNnk = WNn0 k , 0 ≤ k ≤ N − 1
(3) (4)
X (k ) = ∑ a W
− jω N
−j
N ω 2
j
N ω 2
−j
N ω 2
⎛N ⎞ sin ⎜ ω ⎟ N −1 ) ⎝ 2 ⎠ e− j 2 ω = sin
ω
2
⎛N ⎞ sin ⎜ ω ⎟ ⎝ 2 ⎠ , ϕ (ω ) = − N − 1 ω | X (e jω ) |= ω 2 sin 2
信号分析与处理 中国电力出版社第三章习题解答第二版

习题33-1 如题3-1图所示电路,已知12R =Ω,24R =Ω,1L H =,0.5C F =,()2()t S u t e t V ε-=,列出()i t 的微分方程,求其零状态响应。
(S u t ()t题3-1图解:设通过电容C 的电流为)(t i c ,根据KVL 定律列写回路方程,可得)())()(()()()(12t u t i t i R dtt di Lt i t R s c =+++ )()()()())()())()((2212111212t u dt t i d CL R dt t di C R R t i R dt t di L t i R dtt di L t i R dt dCi s c =+++++= 整理得,)(2)(6)(5)(22t e t i dt t di dtt i d tε-=++ 两边求拉斯变换,在零状态响应下312211)3)(2)(1(2)(12)()65(2+++-+=+++=+=++s s s s s s s i s s i s s求拉斯反变换得)()2()(32t e e e t i t t t ε---+-=3-2 已知描述系统的微分方程和初始状态如下,试求系统的零输入响应、零状态响应和全响应。
(1)22()()43()()d y t dy t y t x t dt dt ++=,(0)(0)1y y '==,()()x t t ε= (2)22()()()44()3()d y t dy t dx t y t x t dt dt dt++=+,(0)1y =,(0)2y '=, ()()t x t e t ε-=解:(1)求零状态响应)(t y zi当激励为零时,0)(3)(4)(22=++t y dt t dy dt t y d特征方程,0342=++λλ,解特征方程根,3,121-=-=λλ,则齐次解为t t zi e c e c t y 321)(--+=,代入初始条件:1)0()0(21=+==c c y y zi ,13)0()0(21''=--==c c y y zi ,解得1,21-==c c ,即零输入响应)()2()(3t e e t y t t zi ε---= 求零状态响应)(t y zs ,)()(t t x ε=,设方程的特解,0)(c t y p =,将其代入微分方程得,31)(=t y p )()31(321t e c e c y t t zs ε++=--,代入初始条件,031)0()0(21=++==c c y y zs03)0()0(21''=--==c c y y zs ,解得61,2121=-=c c零状态响应,)()612131(3t e e y tt zs ε--+-=; 全响应,).()652331(3t e e y y y tt zi zs ε---+=+= (2)求零输入响应)(t y zi当激励为零时,齐次微分方程,0)(4)(4)(2=++t y dtt dy dt t y d 特征方程,0442=++λλ,解得特征根,221-==λλ,则齐次解t zi e t c c t y 221)()(-+=,代入初始条件,4,2)0(,1)0(2'1====c y c y即零输入响应,)()14()(2t e t t y t zi ε-+=; 求零状态响应)(t y zs ,)()(t e t x t ε-=;设方程的特解,tp e c t y -=0)(,代入微分方程得,tp e t y -=2)(t t zs e e t c c y --++=2)(221,代入初始条件,2,02)0(11-==+=c c y zs1,01)0(22'-==+=c c y zs零状态响应,)(]2)2([2t e e t y t t zs ε--++-=; 全响应,)(]2)13[(2t e e t y y y t tzs zi ε--++=+=。