数学建模工厂最优生产计划模型

合集下载

工厂生产的最优设计模型

工厂生产的最优设计模型

摘要本文利用线性规划知识建立数学模型,研究了在决策变量不同情况下,工厂计划和收益的变化。

问题一属于简单的线性规划模型,直接利用LINGO软件求解。

在求解问题二时,巧妙引入价格指数的概念,衡量价格变化与市场容量的关系,依然用模型一分析了价格变化对工厂计划和收益的影响。

在问题三中,根据各机床的停工维修时间不确定,利用0—1模型原理对模型一进行改进。

通过求解结果与问题一结果进行比较,讨论了停工时间灵活性的价值。

关键词:线性规划,价格指数,收益,最优解一、 问题重述某厂拥有4台磨床、2台立式钻床、3台卧式钻床、1台镗床和1台刨床,用以生产7种产品,记作1P 至7P 。

工厂收益规定为产品售价减去原材料费用之剩余。

表一:每种产品单件的收益及所需各机床的加工工时(以小时计)本月(一月)和随后的5各月中,下列机床停工维修: 表二:各月机床的维修情况表三:各种产品各月份的市场容量每种产品存货最多可到100件,存费为每件每月0.5元。

现无存货,要求到6月底每种产品有存货50件。

工厂每周工作6天,每天2班,每班8小时。

不需要考虑排队等待加工的问题。

1、为使收益最大,工厂应如何安排各月份各种产品的生产?2、研究市场价格的某种变化及引入新机床对计划和收益的影响。

3、若各机床的停工维修时间不作预先规定,而是选择最合适的月份维修。

除磨床外,每台机床在这6个月中的一个月必须停工维修;6个月中4台磨床有2台需要维修。

扩展工厂计划模型,使得可以对灵活安排机床维修时间作出决策。

停工时间的这种灵活性价值如何?二、模型假设1、忽略1—6月的天数差异,统一规定为每月为四周,28天;2、同种机床不存在性能差异;3、所有机床加工出的产品全部合格,无次品;4、用于产品的原材料的费用保持不变;5、每月末的存货量就是下月初的存货量;6、产品生产费与生产率无关,只取决于原材料费用。

三、符号说明a表示i P在j月的生产量;ijB表示k类机床在j月的工作台数;kjC表示生产1件i P需k类机床工作时间(小时);kiiL 表示单件iP 的收益(元); ije表示i P 在j 月的销售量(件);ijD表示i P 在j 月的市场容量;ijy表示i P 在j 月末的存货量;S 表示工厂的总收益;其中1,2,...7i =,1,2,...6j =。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

最优生产计划安排 数学 模型

最优生产计划安排  数学 模型

最优生产计划安排摘要优化问题可以说是人们在工程技术、经济管理和科学研究等领域中最常遇到的一类问题。

如调度人员要在满足物质需求和装载条件下安排成从各供应点到各需求点的运量和路线,是运输总费用最低;公司负责人需根据生产成本和市场需求确定产品价格。

针对优化问题可以通过建立优化模型确定优化目标和寻求的决策。

一般讲,一个经济管理问题凡满足以下条件就能够建立线性规划模型: (1) 要求解问题的目标函数能用数值指标来反映,且为线性函数; (2) 存在多种方案及有关数据;(3) 要求达到的目标是在一定约束条件下实现的,这些约束条件可以用线性等式或不等式来描述。

问题重述某厂生产三种产品I ,II ,III 。

每种产品要经过B A ,两道工序加工。

设该厂有两种规格的设备能完成A 工序,它们以21,A A 表示;有三种规格的设备能完成B 工序,它们以321,,B B B 表示。

产品I 可在B A ,任何一种规格设备上加工。

产品II 可在任何规格的A 设备上加工,但完成B 工序时,只能在1B 设备上加工;产品III 只能在2A 与2B 设备上加工。

已知在各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床设备的费用如下表,要求安排最优的生产计划,使该厂利润最大。

附表一基本假设与符号说明基本假设:每一类产品在A 工序加工的产品总量等于B 工序加工产品的总量,即每一件产品都经过完整的程序成为真正的成品而不是半成品。

符号说明:设产品I 在21,A A 321,,B B B 上加工的数量分别为11x 、12x 、13x 、14x 、15x;产品II 在21,A A ,1B 上加工的数量分别为212223,,x x x;产品III 在21,A B 上加工的数量分别为3234,x x 。

问题的分析运用数学建模方法处理一个优化问题,首先应确定优化的目标是什么,寻求的决策是什么,决策受到哪些条件的限制,然后用数学工具(变量、常量、函数等)表示它们。

数学模型 汽车厂生产计划

数学模型 汽车厂生产计划

例2 原油采购与加工
库存500吨 原油 吨 原油A 库存 库存1000吨 原油 吨 原油B 库存 汽油甲 售价 售价4800元/吨 元吨 (A≥50%) ≥ 汽油乙 售价 售价5600元/吨 元吨 (A≥60%) ≥
市场上可买到不超过1500吨的原油 : 吨的原油A: 市场上可买到不超过 吨的原油 • 购买量不超过 购买量不超过500吨时的单价为 吨时的单价为10000元/吨; 吨时的单价为 元 • 购买量超过 购买量超过500吨但不超过 吨但不超过1000吨时,超过 吨时, 吨但不超过 吨时 超过500吨的 吨的 部分8000元/吨; 部分 元 • 购买量超过 购买量超过1000吨时,超过 吨时, 吨的部分6000元/吨。 吨时 超过1000吨的部分 吨的部分 元 应如何安排原油的采购和加工 ?
x1 ≥ 80, x2 ≥ 80, x3 = 0
x1 ≥ 80, x2 = 0, x3 ≥ 80
x1 ≥ 80, x2 ≥ 80, x3 ≥ 80
x1 , x 2 , x 3 = 0
× ×
x1=80,x2= 150,x3=0,最优值 , , ,最优值z=610
• 若生产某类汽车,则至少生产80辆,求生产计划。 若生产某类汽车,则至少生产80辆 求生产计划。 80 方法2:引入 变量 变量, 方法 :引入0-1变量,化为整数规划 x1=0 或 ≥80 x2=0 或 ≥80 x3=0 或 ≥80
IP 的最优解 1=64,x2=168,x3=0,最优值 的最优解x , , ,最优值z=632
汽车厂生产计划
• 若生产某类汽车,则至少生产80辆,求生产计划。 若生产某类汽车,则至少生产80辆 求生产计划。 80
s. t. 1.5x1 + 3x2 + 5x3 ≤ 600

数学建模 机械生产

数学建模 机械生产

机械加工生产计划问题摘要文章所给的信息经过分析可以发现是线性规划问题,并且是最优方案的问题。

并且是求最大利润的问题。

对于问题一,首先由题目中的假设和表格对数据分析,以六个月的总利润作为目标函数,并以生产、销售、库存等件数的限制作为约束条件,从而建立整体的最优化模型。

用L IN G O计算得到生产-库存-销售的最优计划(表2-表4)。

并且得到的最大利润为3066033.00元。

在最优生产-库存-销售的计划前提下,与最大的销售量对比,得到表格5。

在促销的费用方面,我们考虑到促销的费用不能超过促销给公司带来的利润的增加,最终得到促销费用不能超过68725.00元。

问题二是建立在问题一的基础之上的,对销售上限和最优的生产量,最优销售量做对比分,对数据进一步处理。

得到表格6,库存费用的变化可能导致最优生产-库存-销售计划的变化。

问题三还是以最大利润为目标函数,对检修设备的方案改进,我们第一问的最优方案为基础,我们引入设备每个月创造利润最大化的原则即在某个月如果创造利润大于其他月,则不进行检修。

得到表7。

问题四我们建立最优模型的基础上,通过矩阵的求解,优化求解的过程,打破开始的检修确定方案改为检修未知,得到表8的最佳检修方案。

利润增加了13112.00元。

关键词:线性规划;L IN G O;整数规划;最优化方法;灵敏度分析1、问题重述机械加工厂生产五种产品。

并且工厂的设备有以下类别和台数:十台车床、四台台立钻、五台台水平钻、四台台镗床和两台台刨床。

表2给出了每种产品的利润(元/件,利润定义为销售价格与原料成本之差)以及生产单位产品需要的各种设备的加工时间情况;表3给出了从一月到六月的各种产品的市场销量上限;表4给出了六个月中五种设备要求的检修台数。

表5给出了一个一到六月份的检修计划表,设备如果在某个月被安排检修,则该设备全月不能用于生产。

每种产品的库存量均为50件,每件产品每月的库存费为5元,在一月初,所有产品都有50件库存,并且在六月底要求每种产品仍然还有50件库存,最大库存量为100件。

工厂生产计划问题的优化模型

工厂生产计划问题的优化模型

工厂生产计划问题的优化模型摘要企业内部的生产计划有各种不同的情况。

从空间层次看,工厂要根据外部需求和内部设备、人力、原料等条件,以最大的利润为目标制定产品的生产计划;从时间层次看,若在短时间内认为外部需求和内部资源等不随时间变化,可制订单阶段生产计划,否则就要制订多阶段生产计划。

实际生产中要考虑的除了成本费、存贮费等与产量有关的费用,还要考虑生产这种产品所需要的时间,生产设备的检修等等因素。

用数学规划的解决这种问题通常是最有效的方法。

针对工厂生产计划问题,本文首先全面分析了题目所给的信息和数据。

我们建立了动态优化模型——整数线性规划模型,以每月的生产量和库存量为决策变量,以市场最大需求量、库存面积、生产能力(即工时)的限制为约束条件,合理安排生产从而达到本季度利润最大的目标。

因此,我们在解决问题(1)时建立了整数线性规划模型I。

模型I问题(2每类机器的检修总台数不变,故我们主要是通过引入0——1变量来实现每月的检修模式安排,将模型I改进为模型II,使得该厂在本季度的获利最大。

模型II由于模型I方便而且还可以对模型进行灵敏度分析。

虽然并不能满足每月都能达到市场最大需求,但这是由机器的最大运转工时决定的。

对实际问题来说,还有很多的因素没有考虑,比如原料的供应、原料的成本、生产的产品是不是都符合标准等,模型还有待改进。

这类数学规划模型在生产计划问题上具有普遍性和推广性,对其它的工厂(或企业)的生产也适用,只要给出的数据足够,实际和精确,则模型得出的最优解将具有很强的实际意义。

关键词:动态规划;生产量;库存量;最大需求量;线性规划模型。

一、问题重述生产计划是工厂每个季度必须进行的重要的决策,它直接关系到该工厂该季度的经济效益和下一季度的发展战略,而工厂的计划又要包括外部需求、内部设备。

外部需求量的大小关系到该季度的直接的经济效益,内部设备的生产能力以及生产设备的检修等又直接影响到产品的供求是不是能够保持平衡,如果供大于求那么月末多余产品的贮存费用。

数学建模 运筹 炼油厂生产计划

数学建模 运筹 炼油厂生产计划

炼油厂最优化生产计划烟台大学文经学院目录一.问题的阐述二.模型的假设三.符号与假设四.模型的建立五.结果的分析六.模型的优缺点分析七.附录一.问题的阐述1.1背景分析随着的发展,石油短缺问题越来越引起人们的关注。

本问题是一个炼油厂生产计划最优化安排问题,目的是要求该炼油厂制定一个使总盈利为最大的计划。

该问题可归结为一个线性规划问题。

本问题以总利润为目标函数,以炼油厂各装置的生产能力,原料的供应以及市场需求方面的限制条件转化为目标函数的约束条件。

就出结果后,利用MATLAB和LINGo件求解,最后得出最大利润。

本问题具有很高的实用性和普遍性,问题中线性规划的思想可以将问题趋于简单化,在解题过程中具有很大的作用。

1.2问题简介炼油厂每天提供原油1和原油2两种原油,经过蒸馏后得到石脑油,轻油,重油,渣油,将这四种油再经过重整,裂解,渣油处理得到高档发动机油,普通档发动机油,煤油,燃料油,润滑油,再将最终产品出售。

1.2.1蒸馏过程原油进入蒸馏装置,每桶原油经过蒸馏装置后的产品及份额如表1-1所示。

表1 -11.2.2重整过程石脑油部分直接用于发动机油混合,部分输入重整装置。

1桶轻、中、重石脑油经重整后得到的重整汽油分别为0.6、0.52、0.45桶。

1.2.3裂解过程蒸馏得到的轻油和重油一部分直接用于煤油和燃料油的混合,一部分经裂解装置得到裂解汽油和裂解油。

一桶轻油经裂解后得到0.68桶裂解油和0.28桶裂解汽油;1桶重油裂解后的0.75桶裂解油和0.2桶裂解汽油。

其中裂解汽油用于发动机混合,裂解油用于煤油和燃料油的混合。

1.2.4渣油处理过程渣油可直接用于煤油和燃料油的混合,或用于生产润滑油。

1桶渣油经渣油处理过程后得到0.5桶润滑油。

轻、中、重石脑油的辛烷值分别为90、80和70。

汽油的辛烷值为115。

裂解汽油的辛烷值为105。

混合成的发动机油高档的辛烷值应不低于94,普通的辛烷值不应低于84。

混合物的辛烷值按混合前各油料辛烷值和所占比例线性加权计算。

企业最优生产的数学模型

企业最优生产的数学模型

企业最优生产的数学模型第九组:张乐 康倩妮 罗少梅 (西安航空学院,西安 710077)摘要本文针对企业及工厂应该怎样合理安排生产计划而获得最大利润做了简单分析,主要用于解决企业及工厂在各种互相矛盾,互相排斥的约束条件下如何安排生产获取最大利润,建立了生产量对利润影响的线性规划模型。

对于问题一,根据对影响利润的因素的初步分析,综合得出其主要因素有:每种产品的单件利润、生产单位各种产品所需的有关设备台时、生产量、最大需求量、库存量、每月的工作时间、设备维修。

综合考虑多种因素,利用线性规划来建立模型解决问题,即将每月各种产品的最大需求量、一月初无库存、任何时候每种产品的存储量均不能超过100件、六月末各种产品各储存50件作为约束条件,最大利润作为目标函数,利用lingo11.0软件求解,得出最大利润为:93.71518万元。

对于问题二,要求重新安排维修,并以最大利润作为前提,类比于问题一,并在问题一模型的基础上,添加ij b ,ij z 分别为第i 种设备在第j 个月工作的台数和第i 种设备在第j 个月维修的台数。

并定义ij p 为在不进行维修的情况下工作的台数,则ij p =ij z +ij b ;表示第i 种设备在第j 月维修的台数等于每种设备可以维修的台数s 。

关键词:线性规划、lingo 软件、最大利润问题的提出每个企业都希望在成本最低,工作时间最短的条件下获得最大利润,但各种约束条件总是互相制约,这就需要我们在考虑到实际情况时,酌情筛减。

已知某企业要生产7种产品,以,Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ来表示,并给出了每种产品的单件利润,生产单件每种产品的设备所耗费的时间及每种产品在各个月的最大需求量。

产品当月销售不了的每件每月存储费为5元,且任何时候每种产品的存储量均不能超过100件。

一月初无库存,要求六月末各种产品各存储50件,并且每月均有设备参与维修:一月维修1台磨床,二月维修2台水平钻,三月维修1台镗床,四月维修1台立钻,五月维修1台磨床和1台立钻,六月维修1台刨床和1台水平钻。

数学建模 生产计划问题

数学建模 生产计划问题

第一题:生产计划安排2)产品ABC的利润分别在什么范围内变动时,上述最优方案不变3)如果劳动力数量不增,材料不足时可从市场购买,每单位0.4元,问该厂要不要购进原材料扩大生产,以购多少为宜?4)如果生产一种新产品D,单件劳动力消耗8个单位,材料消耗2个单位,每件可获利3元,问该种产品是否值得生产?答:max3x1+x2+4x3! 利润最大值目标函数x1,x2,x3分别为甲乙丙的生产数量st!限制条件6x1+3x2+5x3<45! 劳动力的限制条件3x1+4x2+5x3<30! 材料的限制条件End!结束限制条件得到以下结果1.生产产品甲5件,丙3件,可以得到最大利润,27元2.甲利润在2.4—4.8元之间变动,最优生产计划不变3. max3x1+x2+4x3st6x1+3x2+5x3<45end可得到生产产品乙9件时利润最大,最大利润为36元,应该购入原材料扩大生产,购入15个单位4. max3x1+x2+4x3+3x4st6x1+3x2+5x3+8x4<453x1+4x2+5x3+2x4<30endginx1ginx2ginx3ginx4利润没有增加,不值得生产第二题:工程进度问题某城市在未来的五年内将启动四个城市住房改造工程,每项工程有不同的开始时间,工程周期也不一样,下表提供了这些项目的基本数据。

工程1和工程4必须在规定的周期内全部完成,必要时,其余的二项工程可以在预算的限制内完成部分。

然而,每个工程在他的规定时间内必须至少完成25%。

每年底,工程完成的部分立刻入住,并且实现一定比例的收入。

例如,如果工程1在第一年完成40%,在第三年完成剩下的60%,在五年计划范围内的相应收入是0.4*50(第二年)+0.4*50(第三年)+(0.4+0.6)*50(第四年)+(0.4+0.6)*50(第五年)=(4*0.4+2*0.6)*50(单位:万元)。

试为工程确定最优的时间进度表,使得五年内的总收入达到最大。

数学建模-最优化模型

数学建模-最优化模型
解 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
8 4 x 8 3 x 32 x 24 x 1 2 1 2
因检验员错检而造成的损失为:
( 8 25 2 % x 8 15 5 % x ) 2 8 x 12 x 1 2 1 2
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?

设剪去的正方形的边长为 x ,则水槽的容积为: (3 2 x) 2 x
2 建立无约束优化模型为:min y =- (3 2 x) x , 0< x <1.5
先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval
线性规划 整数规划 非线性规划
动态规划
多目标规划
对策论

两个引例
问题一:某工厂在计划期内要安排生产I、II两种产品, 已知生产单位产品所需的设备台时及A、B两种原材料的 消耗,如下表所示
I 设备 1 II 2 8台时
原材料A
原材料B
4
0
0
4
16kg
12kg
该工厂每生产一件产品I可获利2元,每生产一件产品 II可获利3元。问应如何安排计划使该工厂获利最多?
①前期分析:分析问题,找出要解决的目标,约束条件, 并确立最优化的目标。

数学建模——生产计划的制定

数学建模——生产计划的制定
x′′ =
其欧拉方程为 F − d F = 0 & x x
dt
k2 2k1
x(0) = 0, x(T ) = Q
k 2 2 4 k1 Q − k 2 T 2 x(t ) = t + t 4k1 4k1T
模型讨论
理论最优解
根据实际生产计划的意义,必须满足下面的条件:
∀t ∈ [ 0, T ] , x(t ) ≥ 0, x′(t ) ≥ 0
ts
如何求?
2.以哪种方式转换?
问题:
1.转换点
ts
如何求?
令f (t ) = λ (t ) g (t ) − e
f (t ) = 0 ⇔
−δ t
, 则f (ts ) = 0.
1 p p δ ( t −t ) = P (t ) = − ( − 1)e f δ δ g (t )
通常 2.以哪种方式转换?
ts dx ∫0 dt dt = ∫0 [−2 +
2 (1 + t )
1 2
1 2
]dt + ∫ (−2)dt , ∀t > ts
ts
t
x (t ) = 4(1 + t s ) + 96 − 2t
H
由自由边界条件
t =t f
= −ϕ t f
− δt f
λ (t f ) = e
x (t ) = 4(1 + t s ) + 96 − 2t
H = px (t )e −δt − λm(t ) + [λg (t ) − e −δt ]u(t )
⎧umax , λ g (t ) − e −δ t > 0 ⎪ 由于H关于u为线性函数,所以可见, u * (t ) = ⎨ 0, λ g (t ) − e −δ t < 0 ⎪ ⎩

数学建模-工厂最优生产计划模型

数学建模-工厂最优生产计划模型

数学建模与数学实验课程设计报告学院数理学院专业数学与应用数学班级学号学生姓名指导教师2015年6月工厂最优生产计划模型【摘要】本文针对工厂利用两种原料生产三种商品制定最优生产计划的问题,建立优化问题的线性规划模型。

在求解中得到了在不同生产计划下收益最优化的各产品的产量安排策略、最大收益,以及最优化生产计划的灵敏度分析。

对于问题一,通过合理的假设,首先根据题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。

由题目中所得,工厂原料及价格的约束条件下运用lingo软件算出最优生产条件下最大收益为1920元,其次是不同产品的产量。

对于问题二,灵敏度分析是研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。

对产品结构优化制定及调整提供了有效的帮助。

根据问题一所给的数据,运用lingo软件做灵敏度分析。

关键词:最优化线性规划灵敏度分析 LINGO一、问题重述某工厂利用两种原料甲、乙生产A1、A2、A3三种产品。

如果每月可供应的原料数量(单位:t),每万件产品所需各种原料的数量及每万件产品的价格如下表所示:(1)试制定每月和最优生产计划,使得总收益最大;(2)对求得的最优生产计划进行灵敏度分析。

二、模型假设(1)在产品加工时不考虑排队等待加工的问题。

(2)假设工厂的原材料足够多,不会出现原材料断货的情况。

(3)忽略生产设备对产品加工的影响。

(4)假设工厂的原材料得到充分利用,无原材料浪费的现象。

三、符号说明Xij(i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件);Max为最大总收益;A1,A2,A3为三种产品。

四、模型分析问题一分析:对于问题一的目标是制定每月和最优生产计划,求其最大生产效益。

由题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。

由题目中所得,工厂原料工厂原料及价格的约束,列出约束条件。

问题二分析:研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。

数学建模-最优生产计划安排

数学建模-最优生产计划安排

最优生产计划安排关键词:最优解有效解弱有效解线性加权摘要:企业内部的生产计划有各种不同情况,从空间层次来看,在工厂级要根据外部需求和内部设备,人力,原料,等条件,以最大利润为目标制定生产计划,在车间级则要根据产品的生产计划,工艺流程,资源约束及费用参数等,以最小成本为目标制定生产批量计划。

从空间层次来看,若在短时间内认为外部需求和内部资源等随时间变化,可以制定但阶段的生产计划,否则就要制定多阶段深产计划。

本模型则仅考虑设备,工艺流程以及费用参数的情况下,通过线性规划来为企业求解最有生产方案。

I问题的提出:某厂生产三种产品I∏I I I每种产品要经过A、B两道工序加工。

设该厂有两种规格的设备能完成A工序,他们以A1、A2表示;有三种规格的设备能完成B工序,它们以B1、B2、B3表示,产品I可以在A、B任何一种规格设备上加工;产品∏可在任何一种规格的A设备上加工,但完成B工序时只能在B1设备上加工;产品I I I只能在A2与B2设备上加工。

已知各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床的设备费用,如下表所示,要求安排最优的生产计划,使厂方利润最大。

II问题分析:这个问题的目标是获利最大,有两个方面的因素,一是产品销售收入能否最大,二是设备费用能否最小。

我们要做的决策是生产计划,决策受到的限制有:原材料费,产品价格,各种设备有效台时以及满负荷操作时机床的设备费用。

显然这是一个多目标线性规划问题。

III问题假设1不允许出现半成品,即每件产品都必须经过两道工序。

2不考虑加工过程中的损失。

符号设定:设Z为净利润,Z1为产品销售纯收入,Z2为设备费用,iλ为权植,(i=1,2)且121=+λλ设经过工序A1、A2、B1、B2、B3加工的产品I 的数量依次为Xi1(i=1--5); 设经过工序A1、A2、B1、B2、B3加工的产品∏的数量依次为Xi2(i=1--5); 设经过工序A1、A2、B1、B2、B3加工的产品I I I 的数量依次为Xi3(i=1--5)。

数学建模案例分析最优化方法建模动态规划模型举例

数学建模案例分析最优化方法建模动态规划模型举例

§6 动态规划模型举例以上讨论的优化问题属于静态的,即不必考虑时间的变化,建立的模型——线性规划、非线性规划、整数规划等,都属于静态规划。

多阶段决策属于动态优化问题,即在每个阶段(通常以时间或空间为标志)根据过程的演变情况确定一个决策,使全过程的某个指标达到最优。

例如:(1)化工生产过程中包含一系列的过程设备,如反应器、蒸馏塔、吸收器等,前一设备的输出为后一设备的输入。

因此,应该如何控制生产过程中各个设备的输入和输出,使总产量最大。

(2)发射一枚导弹去击中运动的目标,由于目标的行动是不断改变的,因此应当如何根据目标运动的情况,不断地决定导弹飞行的方向和速度,使之最快地命中目标。

(3)汽车刚买来时故障少、耗油低,出车时间长,处理价值和经济效益高。

随着使用时间的增加则变得故障多,油耗高,维修费用增加,经济效益差。

使用时间俞长,处理价值也俞低。

另外,每次更新都要付出更新费用。

因此,应当如何决定它每年的使用时间,使总的效益最佳。

动态规划模型是解决这类问题的有力工具,下面介绍相关的基本概念及其数学描述。

(1)阶段 整个问题的解决可分为若干个相互联系的阶段依次进行。

通常按时间或空间划分阶段,描述阶段的变量称为阶段变量,记为k 。

(2)状态 状态表示每个阶段开始时所处的自然状况或客观条件,它描述了研究过程的状况。

各阶段的状态通常用状态变量描述。

常用k x 表示第k 阶段的状态变量。

n 个阶段的决策过程有1+n 个状态。

用动态规划方法解决多阶段决策问题时,要求整个过程具有无后效性。

即:如果某阶段的状态给定,则此阶段以后过程的发展不受以前状态的影响,未来状态只依赖于当前状态。

(3)决策 某一阶段的状态确定后,可以作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。

描述决策的变量称为决策变量。

决策变量限制的取值范围称为允许决策集合。

用)(k k x u 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用)(k k x D 表示k x 的允许决策集合。

最优生产计划问题的数学模型

最优生产计划问题的数学模型

最优生产计划问题的数学模型李静静王云龙高琪一、摘要本题需要设计最优的生产计划,使生产花费的最少,即求四个月内生产准备费与存储费的和的最小值。

另外考虑到生产准备费是否够用和时间的问题,从而做出最佳的生产方案,是生产能够顺利进行,顺利竣工。

通过假设各月的生产量,1月产x百件,2月产y百件,3月产z百件,4月产(13-x-y-z)百件来建立数学模型,通过列方程、分析求解的过程,得出结论。

当生产准备费为500元/批时,求得有三种方案可以给工厂带来的效益,但考虑生产准备费可能不够用,不能使生产顺利竣工的问题,选择1月产300件,2月产500件,3月产500件时更加合理,工厂所花费最少费用为1700元。

当生产准备费为700元/批时,与准备费为500元/批时情况一样,选择1月产300件,2月产500件,3月产500件合理,由于生产准备费增加,再考虑到时间上的问题,第2种方案和第3种方案在两个月内就完成生产所需,用时更短,也可以采用,这三种方案工厂所花费最少费用都是2300元。

当生产准备费为300元/批时,求得1月产300件,2月产500件,3月产500件时工厂所花费费用最少为1100元。

当生产准备费为100元/批时,生产个月所需工厂所花费费用最少为400元。

二、问题重述某厂定期向市场供应某一种产品,每月底发货,未来4个月每月底的订单分别为4、5、3、2百件,工厂现有存货1百件。

生产准备费5百元/批,生产费1百元/百件,若产品跨月积压库存则有储存费1百元/百件每月。

4月底即五月初不要有库存,请给生产计划。

另外,若将生产准备分别改为7、3、1百元,如何计划?本题生产总量、生产费用已定,可变的只有批数,存储件数。

最优的生产计划就是使工厂所花费费用最少,忽略生产中可能出现的问题,即求生产准备费与存储费的和的最小值。

三、模型假设与符号说明假设1月产x百件;2月产y百件;3月产z百件;生产准备费分别为500元/批,300元/批,100元/批时的生产准备费和存储费之和为W、S、T。

数学建模-最优生产计划安排

数学建模-最优生产计划安排

最优生产计划安排关键词:最优解有效解弱有效解线性加权摘要:企业内部的生产计划有各种不同情况,从空间层次来看,在工厂级要根据外部需求和内部设备,人力,原料,等条件,以最大利润为目标制定生产计划,在车间级则要根据产品的生产计划,工艺流程,资源约束及费用参数等,以最小成本为目标制定生产批量计划。

从空间层次来看,若在短时间内认为外部需求和内部资源等随时间变化,可以制定但阶段的生产计划,否则就要制定多阶段深产计划。

本模型则仅考虑设备,工艺流程以及费用参数的情况下,通过线性规划来为企业求解最有生产方案。

I问题的提出:某厂生产三种产品I∏I I I每种产品要经过A、B两道工序加工。

设该厂有两种规格的设备能完成A工序,他们以A1、A2表示;有三种规格的设备能完成B工序,它们以B1、B2、B3表示,产品I可以在A、B任何一种规格设备上加工;产品∏可在任何一种规格的A设备上加工,但完成B工序时只能在B1设备上加工;产品I I I只能在A2与B2设备上加工。

已知各种机床设备的单件工时,原材料费,产品销售价格,各种设备有效台时以及满负荷操作时机床的设备费用,如下表所示,要求安排最优的生产计划,使厂方利润最大。

II问题分析:这个问题的目标是获利最大,有两个方面的因素,一是产品销售收入能否最大,二是设备费用能否最小。

我们要做的决策是生产计划,决策受到的限制有:原材料费,产品价格,各种设备有效台时以及满负荷操作时机床的设备费用。

显然这是一个多目标线性规划问题。

III问题假设1不允许出现半成品,即每件产品都必须经过两道工序。

2不考虑加工过程中的损失。

符号设定:设Z为净利润,Z1为产品销售纯收入,Z2为设备费用,iλ为权植,(i=1,2)且121=+λλ设经过工序A1、A2、B1、B2、B3加工的产品I 的数量依次为Xi1(i=1--5); 设经过工序A1、A2、B1、B2、B3加工的产品∏的数量依次为Xi2(i=1--5); 设经过工序A1、A2、B1、B2、B3加工的产品I I I 的数量依次为Xi3(i=1--5)。

生产计划安排最优化模型

生产计划安排最优化模型

生产计划安排最优化模型摘要本文是针对工厂生产计划的安排对总利润的影响问题,通过对题目的分析,建立线性规划模型,利用Lingo软件对模型进行编程求出最优解,最终完整地解决这一问题。

分析题意,可知总利润=总销售利润-总存储费用,据此我们建立了本题的目标函数。

同时依据题目的要求,可以得出对目标函数的约束条件可分为各种产品每个月的产量约束,各种产品每个月的存储量约束,各种产品每个月的生产时间约束,然后根据这三种约束条件可得出各个约束式,因此,已知目标函数与约束六个月的最大利润条件,再通过利用Lingo软件进行编程求出最优解,最终得出为937115元。

从Lingo软件的求解中,可以得出各个月的生产计划安排,同时我们对各个月的生产计划表进行分析,发现各个月都有不生产的产品,而这些产品销售量都符合各个月的最大需求量要求,而特别的是一月份无生产产品VII,经过对题目的分析,发现生产产品VII所需的单位设备所需台时,比生产其他产品的单位设备所需台时要耗时,因此不生产产品VII是符合最大利润要求,从而得出各个月的生产计划安排都符合题意要求。

最后根据求解结果对每个月生产情况的合理性进行了分析,得出的结论是:根据模型所建立的生产计划是科学合理的。

关键字:生产计划,线性规划,lingo问题重述企业是一个有机的整体,企业管理是一个完整的系统,由许多子系统组成。

在企业的管理中,非常关键的一部分是科学地安排生产。

对于生产、库存与设备维修更新的合理安排对企业的生存和发展具有重要的意义。

已知某工厂要生产7种产品,以I,II,III,IV,V,VI,VII来表示,但每种产品的单件利润随市场信息有明显波动,现只能给出大约利润如下。

产品 I II III IV V VI VII 大约利润/元 100 60 80 40 110 90 30该厂有4台磨床、2台立钻、3台水平钻、1台镗床和1台刨床可以用来生产上述产品。

已知生产单位各种产品所需的有关设备台时如下表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模与数学实验
课程设计报告
学院数理学院专业数学与应用数学
班级学号
学生姓名指导教师
2015年6月
工厂最优生产计划模型
【摘要】本文针对工厂利用两种原料生产三种商品制定最优生产计划的问题,建立优化问题的线性规划模型。

在求解中得到了在不同生产计划下收益最优化的各产品的产量安排策略、最大收益,以及最优化生产计划的灵敏度分析。

对于问题一,通过合理的假设,首先根据题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。

由题目中所得,工厂原料及价格的约束条件下运用lingo 软件算出最优生产条件下最大收益为1920元,其次是不同产品的产量。

对于问题二,灵敏度分析是研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保持不变。

对产品结构优化制定及调整提供了有效的帮助。

根据问题一所给的数据,运用lingo软件做灵敏度分析。

关键词:最优化线性规划灵敏度分析 LINGO
一、问题重述
某工厂利用两种原料甲、乙生产A1、A2、A3三种产品。

如果每月可供应的原料数量(单位:t),每万件产品所需各种原料的数量及每万件产品的价格如下表所示:(1)试制定每月和最优生产计划,使得总收益最大;
(2)对求得的最优生产计划进行灵敏度分析。

模型假设
(1)
产品加工
时不考虑
排队等待
加工的问
题。

(2)假设工厂的原材料足够多,不会出现原材料断货的情况。

(3)忽略生产设备对产品加工的影响。

(4)假设工厂的原材料得到充分利用,无原材料浪费的现象。

三、符号说明
Xij(i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件);
Max为最大总收益;
A1,A2,A3为三种产品。

四、模型分析
问题一分析:对于问题一的目标是制定每月和最优生产计划,求其最大生产效益。


题中所给的条件找出工厂收益的决定条件,利用线性规划列出目标函数MAX。

由题目中所得,
工厂原料工厂原料及价格的约束,列出约束条件。

问题二分析:研究当目标函数的费用系数和约束右端项在什么范围变化时,最优基保
持不变。

通过软件数据进行分析。

五、模型建立与求解
问题一的求解:
建立模型:
题目的目标是寻求总利益最大化,而利润为两种原料生产的六种产品所获得的利润之和。

设Xij (i=1,2,;j=1,2,3;)表示两种原料分别生产出产品的数量(万件)
则目标函数:max=12(x11+x21)+5(x12+x22)+4(x13+x23)
约束条件:
1)原料供应:4x11+3x12+x13<=180;
2x21+6x22+3x23<=200
2)非负约束:x11,x12,x13,x21,x22,x23>=0
所以模型为:
max=12(x11+x21)+5(x12+x22)+4(x13+x23)
S.t 200x x 6x 2180
x x 34x 232221131211<=++<=++
0x >=ij (i=1,2;j=1,2,3且为整数)}
模型求解:
model :
max =12*x11+12*x21+5*x12+5*x22+4*x13+4*x23;
4*x11+3*x12+x13<=180;
2*x21+6*x22+3*x23<=200;
End
计算结果:
Global optimal solution found.
Objective value: 1920.000
Infeasibilities: 0.000000
Total solver iterations: 0
Variable Value Reduced Cost
X11 0.000000 4.000000
X21 100.0000 0.000000
X12 0.000000 7.000000
X22 0.000000 31.00000
X13 180.0000 0.000000
X23 0.000000 14.00000
Row Slack or Surplus Dual Price
1 1920.000 1.000000
2 0.000000 4.000000
3 0.000000 6.000000
结论:从数据表明,这个线性规划的最优解为
x11=0,x12=0,x13=180,x21=100,x22=0,x23=0 ,最优值为1920.即这个工厂的最优生产计划为:用甲原料生产A1,A2,A3产品数量分别为0万件,0万件,180万件;用乙原料生产A1,A2,A3产品数量分别为100万件,0万件,0万件。

问题二的求解:
用lingo软件对模型进行灵敏度分析的结果如下:
Ranges in which the basis is unchanged:
Objective Coefficient Ranges
Current Allowable Allowable
Variable Coefficient Increase Decrease
X11 12.00000 4.000000 INFINITY
X21 12.00000 INFINITY
9.333333
X12 5.000000 7.000000 INFINITY
X22 5.000000 31.00000 INFINITY
X13 4.000000 INFINITY
1.000000
X23 4.000000 14.00000 INFINITY
Righthand Side Ranges
Row Current Allowable Allowable
RHS Increase Decrease
2 180.0000 INFINITY
180.0000
3 200.0000 INFINITY
200.0000
显然可以看出:在最优值不变的条件下目标函数系数允许变化的范围:x11的系数为(12,12+4)=(12,16);x12的系数为(5,5+7)=(5,12);x13的系数为(4-1,4)=(3,4);x21的系数为(12-9.333333,12)=(2.666667,12);x22的系数为(5,5+31)=(5,36);
x23的系数为(4,4+14)=(4,18)。

同样看出约束右端的限制数没有发生变化。

由于目标函数的系数并不影响约束条件,所以最优解保持不变。

六、模型的优缺点
模型的优点:
(1)模型的适用性好,线性规划性比较好,能够随着市场的变化而做出相应的变动,从而得到更大的效益,具有更强的应用指导意义。

(2)模型的建立运用线性规划的方法,可理解性强,应用广泛。

(3)Lingo软件执行速度很快,易于输入,修改,求解,分析数学规划的问题。

模型的缺点:
(1)没有考虑到机床维修的费用对工厂总体效益的影响,与实际情况有出入。

(2)模型比较单一,并没有用更好的办法去进行相应的检验其最大收益,及最优生产计划。

七、模型的推广
本文的模型是一个典型的线性规划的模型,用来求解最大或最小目标函数极值问题。

此问题有很多的推广应用价值。

优化问题可以说是人们应用科学、工程设计、商业贸易等领域中常遇到的一类问题。

这种数学建模的方法来处理优化问题,即建立和求解所谓的优化模型。

虽然,由于建模时要适当做出简化,可能是结果不一定完全可行或达到实际上的困扰,但是它基于客观规律和数据,模型的建立与求解并不需要耗费太多的时间。

如果在建模的基础上在赋予其现实的意义,就可以期望得到实际问题的一个圆满的结果。

八、参考文献
[1]赵静,但琦,数学建模与数学实验,北京,高等教育版社,2008.1
[2]姜启源,谢金星,叶俊,数学模型 [M],北京:高等教育出版社,2003。

相关文档
最新文档