2012中考数学压轴题及答案40例(2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012中考数学压轴题及答案40例(2)
5.如图,在直角坐标系xOy 中,点P 为函数2
14
y x =
在第一象限内的图象上的任一点,
点A 的坐标为(01),,直线l 过(01)B -,且与x 轴平行,
过P 作y 轴的平行线分别交x 轴,l 于C Q ,,连结AQ 交x 轴于H ,直线P H 交y 轴于R . (1)求证:H 点为线段AQ 的中点; (2)求证:①四边形APQR 为平行四边形;
②平行四边形APQR 为菱形;
(3)除P 点外,直线P H 与抛物线2
14
y x =
有无其它公共点?并说明理由.
(08江苏镇江28题解析)(1)法一:由题可知1AO CQ ==.
90AO H Q C H ∠=∠=
,AHO QHC ∠=∠,
AOH QCH ∴△≌△. ·
·······················································································(1分) O H C H ∴=,即H 为AQ 的中点. ···································································(2分)
法二:(01)A ,,(01)B -,,O A O B ∴=. ························································(1分) 又BQ x ∥轴,HA HQ ∴=. ·············································································(2分) (2)①由(1)可知AH QH =,AHR QHP ∠=∠,
AR PQ ∥,RAH PQH ∴∠=∠,
RAH PQH ∴△≌△. ·
························································································(3分) AR PQ ∴=,
又AR PQ ∥,∴四边形APQR 为平行四边形. ·················································(4分)
②设214P m m ⎛⎫
⎪⎝⎭
,,PQ y ∥轴,则(1)Q m -,,则2
1
14P Q m =+.
过P 作PG y ⊥轴,垂足为G ,在R t APG △中,
2
2
2
2
22
22111111444AP AG PG m m m m PQ ⎛⎫⎛⎫
=+=
-+=+=+= ⎪ ⎪
⎝⎭
⎝⎭
. ∴平行四边形APQR 为菱形. ·
············································································(6分) (3)设直线P R 为y kx b =+,由O H C H =,得22m
H ⎛⎫
⎪⎝⎭,,214P m m ⎛⎫ ⎪⎝⎭
,代入得:
2021.4m k b km b m ⎧+=⎪⎪⎨
⎪+=⎪⎩, 22
1.
4
m k b m ⎧
=⎪⎪∴⎨⎪=-⎪⎩,∴直线P R 为2124m y x m =-. ·······················(7分) 设直线P R 与抛物线的公共点为214
x x ⎛⎫
⎪⎝
⎭
,,代入直线P R 关系式得:
2
2
1104
2
4
m x x m -
+
=,
2
1
()04x m -=,解得x m =.得公共点为214m m ⎛⎫ ⎪⎝⎭,. 所以直线P H 与抛物线2
14
y x =
只有一个公共点P .··········································(8分)
6.如图13,已知抛物线经过原点O 和x 轴上另一点A ,它的对称轴x =2 与x 轴交于点C ,
直线y =-2x -1经过抛物线上一点B (-2,m ),且与y 轴、直线x =2分别交于点D 、E . (1)求m 的值及该抛物线对应的函数关系式; (2)求证:① CB =CE ;② D 是BE 的中点;
(3)若P (x ,y )是该抛物线上的一个动点,是否存在这样的点P ,使得PB =PE ,若存在,试求出所有符合条件的点P 的坐标;若不存在,请说明理由
.
(1)∵ 点B (-2,m )在直线y =-2x -1上,
∴ m =-2×(-2)-1=3. ………………………………(2分) ∴ B (-2,3)
∵ 抛物线经过原点O 和点A ,对称轴为x =2, ∴ 点A 的坐标为(4,0) .
设所求的抛物线对应函数关系式为y =a (x -0)(x -4). ……………………(3分) 将点B (-2,3)代入上式,得3=a (-2-0)(-2-4),∴ 4
1=
a .
∴ 所求的抛物线对应的函数关系式为)4(4
1-=
x x y
,即x
x y -=
2
4
1. (6分)
(2)①直线y =-2x -1与y 轴、直线x =2的交点坐标分别为D (0,-1) E (2,-5). 过点B 作BG ∥x 轴,与y 轴交于F 、直线x =2交于G , 则BG ⊥直线x =2,BG =4.
在Rt △BGC 中,BC =52
2
=+BG
CG .
∵ CE =5,
∴ CB =CE =5. ……………………(9分) ②过点E 作EH ∥x 轴,交y 轴于H , 则点H 的坐标为H (0,-5).
又点F 、D 的坐标为F (0,3)、D (0,-1), ∴ FD =DH =4,BF =EH =2,∠BFD =∠EHD =90°.
∴ △DFB ≌△DHE (SAS ),
∴ BD =DE .
即D 是BE 的中点. ………………………………(11分)
(3) 存在. ………………………………(12分) 由于PB =PE ,∴ 点P 在直线CD 上,
∴ 符合条件的点P 是直线CD 与该抛物线的交点.
设直线CD 对应的函数关系式为y =kx +b . 将D (0,-1) C (2,0)代入,得⎩⎨
⎧=+-=0
21b k b . 解得
1,
2
1-==
b k .
A B
C
O
D
E
x
y
x =2 G F
H
∴ 直线CD 对应的函数关系式为y =2
1
x -1.
∵ 动点P 的坐标为(x ,x
x -2
4
1
),
∴
2
1x -1=x
x -2
4
1
. ………………………………(13分)
解得
5
31+
=x ,5
32
-=x . ∴ 2
511+=y ,2
511-=y .
∴ 符合条件的点P 的坐标为(5
3+
,2
51+)或(5
3-
,2
51-).…(14分)
(注:用其它方法求解参照以上标准给分.)
7.如图,在平面直角坐标系中,抛物线y =-3
2x
2
+b x +c 经过A (0,-4)、B (x 1,
0)、 C (x 2,0)三点,且x 2-x 1=5. (1)求b 、c 的值;(4分)
(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对 角线的菱形;(3
分)
(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)
解: (解析)解:(1)解法一: ∵抛物线y =-
3
2x
2
+b x +c 经过点A (0,-4),
∴c =-4 ……1分
又由题意可知,x 1、x 2是方程-3
2x
2
+b x +c =0的两个根,
∴x 1+x 2=
2
3b , x
1
x
2
=-2
3c =6·
································································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1
)2=(x 2+x 1)2-4x 1
x
2
=
4
9b
2
-24
∴
4
9b
2
-24=25
解得b =±
3
14 ········································································································· 3分
当b =3
14时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.
∴b =-3
14. ········································································································ 4分
解法二:∵x 1、x 2是方程-
3
2x
2
+b x +c=0的两个根,
即方程2x 2-3b x +12=0的两个根. ∴x =
4
96
9b 32
-±
b ,·········································································· 2分
∴x 2-x
1
=2
96
9b
2
-=5,
解得 b =±3
14 ····························································································· 3分
(以下与解法一相同.)
(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线
的对称轴上, ···························································································· 5分 又∵y =-
3
2x
2
-
3
14x -4=-
3
2(x +
2
7)2+
6
25 ······························ 6分
∴抛物线的顶点(-
2
7,
6
25)即为所求的点D . ·································· 7分
(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),
根据菱形的性质,点P 必是直线x =-3与 抛物线y =-
3
2x
2
-
3
14x -4的交点, ·
························································ 8分 ∴当x =-3时,y =-3
2×(-3)2-3
14×(-3)-4=4,
∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ·········· 9分 四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐
标只能是(-3,3),但这一点不在抛物线上. ·········································· 10分
8.已知:如图14,抛物线2
334
y x =-+与x 轴交于点A ,点B ,与直线34
y x b =-
+相
交于点B ,点C ,直线34y x b =-
+与y 轴交于点E .
(1)写出直线B C 的解析式. (2)求A B C △的面积.
(3)若点M 在线段A B 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线B C 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出M N B △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,M N B △的面积最大,最大面积是多少?
(解析)解:(1)在2
334
y x =-
+中,令0y =
2
3304
x ∴-
+=12x ∴=,22x =-
(20)A ∴-,,(20)B , ·
············································· 1分
又 点B 在34y x b =-
+上
302
b ∴=-+32
b =
B C ∴的解析式为334
2
y x =-
+
············································································ 2分
(2)由2334
33
42
y x y x ⎧
=-+⎪⎪⎨⎪=-+⎪⎩,得1119
4
x y =-⎧⎪⎨=⎪⎩ 2220x y =⎧⎨=⎩ ·················································· 4分 914C ⎛
⎫
∴- ⎪⎝
⎭
,
,(20)B ,
4AB ∴=,94C D =······························································································ 5分
19942
4
2
A B C S ∴=
⨯⨯=
△ ························································································ 6分
(3)过点N 作N P M B ⊥于点P
E O M B ⊥ N P E O ∴∥
B N P B E O ∴△∽△······························································································· 7分 B N N P B E
E O
∴= ········································································································· 8分
由直线334
2
y x =-
+
可得:302E ⎛⎫
⎪⎝
⎭,
∴在B E O △中,2B O =,32
E O =,则52
B E =
25322
t N P ∴=
,65
N P t ∴=
······················································································ 9分
16
(4)25S t t ∴=
- 2
312(04)55
S t t t =-
+
<<··················································································· 10分
2
312(2)5
5
S t =-
-+
···························································································· 11分
此抛物线开口向下,∴当2t =时,125
S =
最大
∴当点M 运动2秒时,M N B △的面积达到最大,最大为
125
. ······················· 12分。