数据分析基础测试题及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据分析基础测试题及答案解析
一、选择题
1.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,
得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( ) A.甲比乙的产量稳定B.乙比甲的产量稳定
C.甲、乙的产量一样稳定D.无法确定哪一品种的产量更稳定
【答案】A
【解析】
【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.
【详解】因为s2
甲=0.002<s2
乙
=0.03,
所以,甲比乙的产量稳定.
故选A
【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.
2.某校组织“国学经典”诵读比赛,参赛10名选手的得分情况如表所示:
那么,这10名选手得分的中位数和众数分别是()
A.85.5和80 B.85.5和85 C.85和82.5 D.85和85
【答案】D
【解析】
【分析】
众数是一组数据中出现次数最多的数据,注意众数可以不只一个;
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
【详解】
数据85出现了4次,最多,故为众数;
按大小排列第5和第6个数均是85,所以中位数是85.
故选:D.
【点睛】
本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
3.甲、乙、丙三个不同品种的苹果树在同一地区进行对比试验,从每个品种的苹果树中随机各抽取10棵,对它们的产量进行统计,绘制统计表如下:
若从这三个品种中选择一个在该地区推广,则应选择的品种是()
A.甲B.乙C.丙D.甲、乙中任选一个【答案】A
【解析】
【分析】
根据平均数、方差等数据的进行判断即可.
【详解】
根据平均数、方差等数据的比较可以得出甲品种更适在该地区推广.
故选:A
【点睛】
本题考查了平均数、方差,掌握平均数、方差的定义是解题的关键.
4.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()
A.84分B.85分C.86分D.87分
【答案】A
【解析】
【分析】
按照笔试与面试所占比例求出总成绩即可.
【详解】
根据题意,按照笔试与面试所占比例求出总成绩:
64
809084
⨯+⨯=(分)
1010
故选A
【点睛】
本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.
5.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()
A .9.7m ,9.9m
B .9.7m ,9.8m
C .9.8m ,9.7m
D .9.8m ,9.9m
【答案】B 【解析】 【分析】
将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可. 【详解】
把这7个数据从小到大排列处于第4位的数是9.7m ,因此中位数是9.7m , 平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m , 故选:B . 【点睛】
考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.
6.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是( ) A .众数是108 B .中位数是105 C .平均数是101 D .方差是93
【答案】D 【解析】 【分析】
把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】
解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为
102108
1052
+=,平均数为8296102108108110
1016
+++++=,
方差为
()()()()()()222222
182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣
⎦ 94.393≈≠;故选:D . 【点睛】
考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.
7.下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是( )
A .甲比乙的成绩稳定
B .乙比甲的成绩稳定
C .甲、乙两人的成绩一样稳定
D .无法确定谁的成绩更稳定 【答案】B 【解析】 【分析】 【详解】
通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定, 故选B .
8.回忆位中数和众数的概念;
9.一组数据3、2、1、2、2的众数,中位数,方差分别是:( ) A .2,1,2 B .3,2,0.2
C .2,1,0.4
D .2,2,0.4
【答案】D 【解析】 【分析】
根据众数,中位数,方差的定义计算即可. 【详解】
将这组数据重新由小到大排列为:12223、、、、
平均数为:
12223
25
++++=
2出现的次数最多,众数为:2 中位数为:2
方差为:
()()()()()
22222
2
1222222232
0.4
5
s
-+-+-+-
=
+
-
=
故选:D
【点睛】
本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方法.
10.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是()
A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定
C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定
【答案】B
【解析】
【分析】
根据方差的意义求解可得.
【详解】
∵乙的成绩方差<甲成绩的方差,
∴乙的成绩比甲的成绩稳定,
故选B.
【点睛】
本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
11.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()
A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5
【答案】A
【解析】
试题分析:根据众数和中位数的定义求解可得.
解:由表可知25出现次数最多,故众数为25;
12个数据的中位数为第6、7个数据的平均数,故中位数为2525
2
+
=25,
故选:A.
12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如下表所示:
这些同学平均每月阅读课外书籍本数的中位数和众数为( )
A.5,5 B.6,6 C.5,6 D.6,5
【答案】D
【解析】
【分析】
根据中位数和众数的定义分别进行解答即可.
【详解】
把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;
5出现了6次,出现的次数最多,则众数是5.
故选D.
【点睛】
此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
13.下列说法正确的是 ()
A.要调查现在人们在数学化时代的生活方式,宜采用普查方式
B.一组数据3,4,4,6,8,5的中位数是4
C.必然事件的概率是100%,随机事件的概率大于0而小于1
D.若甲组数据的方差2s甲=0.128,乙组数据的方差2s乙=0.036,则甲组数据更稳定
【答案】C
【解析】
【分析】
直接利用概率的意义以及全面调查和抽样调查的意义、中位数、方差的意义分别分析得出答案.
【详解】
A、要调查现在人们在数学化时代的生活方式,宜采用抽查的方式,故原说法错误;
B、一组数据3,4,4,6,8,5的中位数是4.5,故此选项错误;
C、必然事件的概率是100%,随机事件的概率大于0而小于1,正确;
D、若甲组数据的方差s甲2=0.128,乙组数据的方差s乙2=0.036,则乙组数据更稳定,故原说法错误;
故选:C.
【点睛】
此题考查概率的意义,全面调查和抽样调查的意义、中位数、方差的意义,正确掌握相关定义是解题关键.
14.校团委组织开展“医助武汉捐款”活动,小慧所在的九年级(1)班共40名同学进行了捐款,已知该班同学捐款的平均金额为10元,二小慧捐款11元,下列说法错误的是( ) A .10元是该班同学捐款金额的平均水平 B .班上比小慧捐款金额多的人数可能超过
20人
C .班上捐款金额的中位数一定是10元
D .班上捐款金额数据的众数不一定是10元 【答案】C 【解析】 【分析】
根据平均数,中位数及众数的定义依次判断. 【详解】
∵该班同学捐款的平均金额为10元,
∴10元是该班同学捐款金额的平均水平,故A 正确;
∵九年级(1)班共40名同学进行了捐款,捐款的平均金额为10元, ∴班上比小慧捐款金额多的人数可能超过20人,故B 正确; 班上捐款金额的中位数不一定是10元 ,故C 错误; 班上捐款金额数据的众数不一定是10元,故D 正确, 故选:C. 【点睛】
此题考查数据统计中的平均数,中位数及众数的定义,正确理解定义是解题的关键.
15.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小乙和小丁进行500米短道速滑比赛,他们的五次成绩(单位:秒)如表所示:
设两人的五次成绩的平均数依次为x 乙,x 丁,成绩的方差一次为2
S 乙,2
S 丁,则下列判断中
正确的是( )
A .22,x x S S =<乙丁乙丁
B .22
,x x S S =>乙丁乙丁
C .22
,x x S S >>乙丁乙丁 D .22
,x x S S <<乙丁乙丁
【答案】B 【解析】 【分析】
根据平均数的计算公式先求出甲和乙的平均数,再根据方差的意义即可得出答案. 【详解】
x 乙4563555260
5
++++=
=55,
则2
1
5
S =
⨯乙 [(45﹣55)2+(63﹣55)2+(55﹣55)2+(52﹣55)2+(60﹣55)2]=39.6, x 丁5153585657
5
++++=
=55,
则2
1
5
S =
⨯丁 [(51﹣55)2+(53﹣55)2+(58﹣55)2+(56﹣55)2+(57﹣55)2]=6.8, 所以x 乙x =丁,22
S S >乙丁,
故选:B . 【点睛】
本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差
S 2=
1
n
[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
16.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间..的中位数和众数分别是( )
A .9,8
B .9,9
C .9.5,9
D .9.5,8
【答案】A 【解析】 【分析】
根据中位数和众数的定义进行解答即可. 【详解】
由表格,得该班学生一周读书时间的中位数和众数分别是9,8. 【点睛】
本题主要考查了中位数和众数,掌握中位数和众数的定义及求法是解答的关键.
17.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:
参赛队个数98643
则这30个参赛队决赛成绩的中位数和众数分别是()
A.9.7,9.5 B.9.7,9.9 C.9.6,9.5 D.9.6,9.6
【答案】C
【解析】
【分析】
根据众数和中位数的定义求解可得.
【详解】
解:由表知,众数为9.5分,中位数为=9.6(分),
故选:C.
【点睛】
考查了众数和中位数的定义,一组数据中出现次数最多的数据叫做众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
18.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是()
A.3 和 2 B.2 和 3 C.2 和 2 D.2 和4
【答案】A
【解析】
【分析】
根据平均数的计算公式先求出x的值,再根据中位数和众数的概念进行求解即可.
【详解】
∵数据2,x,4,8的平均数是4,∴这组数的平均数为248
4
x
+++
=4,解得:x=2;
所以这组数据是:2,2,4,8,则中位数是24
2
+
=3.
∵2在这组数据中出现2次,出现的次数最多,∴众数是2.
故选A.
【点睛】
本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.
19.下列说法正确的是()
A.对角线相等的四边形一定是矩形
B.任意掷一枚质地均匀的硬币10次,一定有5次正面向上
C.如果有一组数据为5,3,6,4,2,那么它的中位数是6
D.“用长分别为5cm、12cm、6cm的三条线段可以围成三角形”这一事件是不可能事件【答案】D
【解析】
【分析】
根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.
【详解】
A.对角线相等的平行四边形是矩形,故该项错误;
B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;
C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;
D. “用长分别为5cm、12cm、6cm的三条线段可以围成三角形” 这一事件是不可能事件,正确,
故选:D.
【点睛】
此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.
20.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:
每天加工零件数的中位数和众数为( )
A.6,5 B.6,6 C.5,5 D.5,6
【答案】A
【解析】
【分析】
根据众数、中位数的定义分别进行解答即可.
【详解】
由表知数据5出现了6次,次数最多,所以众数为5;
因为共有20个数据,
所以中位数为第10、11个数据的平均数,即中位数为66
2
=6,
故选A.
【点睛】
本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间
两个数据的平均数就是这组数据的中位数.。