全国自考线性代数经管类试题及答案解析.doc
线性代数(经管类)参考答案
参考答案一.选择题(本大题共 5 小题,每小题 2 分,共 10 分)1—5 C A B B D二. 填空题(本大题共10 小题,每小题 2 分,共 20 分)6. ___6_____.7. 2111⎛⎫⎪⎝⎭8. 13 9. ()10,25,16- 10. ()2,1,0T- 11. -2 12. 3 13. 60 14. 43,55⎛⎫⎪⎝⎭15. 2 三.计算题(本大题共 7 小题,每小题 9 分,共 63 分)16 . 解一 100100010010011001001001a a a b a b D c a b c d d ++==-++--100010001000aa ba b c d a b c a b c d+==++++++++解二 ()()111410111111101101001bD c a d++-=-⋅⋅-+-⋅---a b c d =+++ 17.解: 2AB -A =B -E2∴AB -B =A -E ()2A-E B =A -E()()12-∴B =A -E A-E()()()1-=A -E A -E A +E()=A+E315052432⎛⎫ ⎪B =- ⎪⎪-⎝⎭()12412112412118.,123012001113233012015234T T --⎛⎫⎛⎫⎪ ⎪A B =→--- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭解:12412112032110152340103211001113001113---⎛⎫⎛⎫ ⎪ ⎪→----→-- ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭ 1003211100321101032110103211001113001113--⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭ 3211=3211113T -⎛⎫ ⎪X -- ⎪ ⎪-⎝⎭则,331=22111113-⎛⎫⎪X - ⎪ ⎪--⎝⎭故.19.解:()12345,,,,αααααT T T T TA =1114311143113210113121355000003156700000--⎛⎫⎛⎫⎪⎪----- ⎪ ⎪=→⎪ ⎪-⎪⎪-⎝⎭⎝⎭∴向量组的秩=2且1α,2α是一个极大无关组(回答1α,3α;1α,4α;1α,5α也可).20.解:对增广矩阵作初等行变换()101211012110121213140113201132=123450226400000112130113200000b ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-----⎪ ⎪ ⎪A A =→→ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭, 同解方程组为1342342132x x x x x x =---⎧⎨=-+-⎩,34x x ,是自由未知量,特解()*=1200ηT --,,, 导出组同解方程组为13423423x x x x x x =--⎧⎨=-+⎩,34x x ,是自由未知量,基础解系()1=1110ξT--,,,,()2=2301ξT-,,,,通解为*1122=k k ηηξξ++,12k k R ∈,21.解:特征方程()()2200=0212221001a a aλλλλλλλλ-E -A --=---+-=-- 将特征值=1λ代入特征方程有()()=1212210a a E-A ---+-=,则2a =. 故()()()=213=0λλλλE-A ---,特征值为123=2=1=3λλλ,,.1=2λ对应的齐次线性方程组为123000000100100x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为23=0=0x x ⎧⎨⎩,1x 是自由未知量,特征向量1100ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,1ξ单位化为1100p ⎛⎫⎪= ⎪ ⎪⎝⎭,2=1λ对应的齐次线性方程组为123100001100110x x x -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨-⎩,3x 是自由未知量,特征向量2011ξ⎛⎫⎪=- ⎪ ⎪⎝⎭,2ξ单位化为2011p ⎛⎫⎪=-⎪⎪⎭,3=3λ对应的齐次线性方程组为123100001100110x x x ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭,同解方程组为123=0=x x x ⎧⎨⎩,3x 是自由未知量,特征向量3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,3ξ单位化为3011p ⎛⎫⎪=⎪⎪⎭, 正交矩阵()123100,,00Q p p p ⎛⎫⎪⎪==⎝,213⎛⎫ ⎪Λ= ⎪ ⎪⎝⎭,使得1Q Q -A =Λ.011101110-⎛⎫ ⎪A =- ⎪ ⎪⎝⎭22.解:二次型矩阵()()211=11=21=011λλλλλλ--A -E ---+--令,123=2==1λλλ-得,.1211101=22=121011112000λ-⎛⎫⎛⎫⎪ ⎪-A +E -→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当时,132333x x x x x x =-⎧⎪∴=-⎨⎪=⎩ 1111ξ-⎛⎫ ⎪∴=- ⎪ ⎪⎝⎭ 则1111-⎛⎫⎪P =-⎪⎪⎭ 23111111==1=111000111000λλ---⎛⎫⎛⎫ ⎪ ⎪A +E --→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭当时,1232233x x x x x x x =-+⎧⎪∴=⎨⎪=⎩ 2110ξ-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭, 3112ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭则2110-⎛⎫⎪P =⎪⎪⎭,3112⎛⎫⎪P =⎪⎪⎭因此=0⎛ ⎪T ⎪ ⎪ ⎪ ⎪⎝⎭,X=TY . 化二次型为2221232f y y y =-++.四.证明题(本大题7分)23.证明:基础解系中向量个数为3.设()()()1123212331232220k k k ααααααααα++++++++=即()()()1231123212332220k k k k k k k k k ααα++++++++=123,,ααα是基础解系,故线性无关,因此123123123202020k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩,系数行列式21112140112A ==≠,则齐次线性方程组只有零解, 故1230k k k ===.因此1232ααα++,1232ααα++,1232ααα++线性无关. 又()()()1231231231231231232=2=02=2=02=2=0ααααααααααααααααααA ++A +A +A A ++A +A +A A ++A +A +A 则1232ααα++,1232ααα++,1232ααα++也是该方程组的基础解系.说明:1.试卷题目均要求为自学考试真题;2.命题参照自学考试试卷的题型、题量;3.根据课程性质不同,可以更换或调整题型;4.试卷格式统一为:宋体 五号 单倍行距;选择题选项尽量排在一行;其他题型留出适当的答题区域。
最新全国自考04184线性代数(经管类)答案
2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.C2.A3.D4.C5.B二、填空题(本大题共10小题,每小题2分,共20分)6. 97.⎪⎪⎭⎫ ⎝⎛--2315 8.⎪⎪⎭⎫⎝⎛--031111 9. 3 10. -2 11. 0 12. 2 13.()()T T 1,1,1311,1,131---或14. -1 15.a >1三、计算题(本大题共7小题,每小题9分,共63分)16.解 D=40200320115011315111141111121131------=- (5分) =74402032115=-- (9分) 17.解 由于21=A ,所以A 可逆,于是1*-=A A A (3分) 故11*12212)2(---+=+A A A A A (6分) =2923232112111=⎪⎭⎫ ⎝⎛==+----A A A A (9分) 18.解 由B AX X +=,化为()B X A E =-, (4分)而⎪⎪⎪⎭⎫ ⎝⎛--=-201101011A E 可逆,且()⎪⎪⎪⎭⎫ ⎝⎛--=--110123120311A E (7分) 故⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=11021335021111012312031X (9分) 19.解 由于()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→00007510171101751075103121,,,4321αααα (5分) 所以向量组的秩为2,21,αα是一个极大线性无关组,并且有214213717,511αααααα-=+-= (9分)注:极大线性无关组不唯一。
20. 解 方程组的系数行列式 D=()()()b c a c a b c c b b a a ---=222111因为a,b,c 两两互不相同,所以0≠D ,故方程有唯一解。
04184 线性代数(经管类)习题集及答案
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。
线性代数自考(经管类)
3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.
4.行列式中各行元素之和为一个常数的类型.
5.范德蒙行列式的计算公式
例6求4阶行列式的值.
测试点 行列式的计算
解
测试点 个维向量线性无关相应的行列式;
解
所以 且.
答案 且.
2. 关于线性相关的几个定理
1) 如果向量组线性无关,而线性相关,则可由线性表示,且表示法唯一.
矩阵的加、减、乘有意义的充分必要条件
例1设矩阵,, ,则下列矩阵运算中有意义的是( )
A. B.
C. D.
测试点: 矩阵相乘有意义的充分必要条件
答案: B
例2设矩阵, ,则 =_____________.
测试点: 矩阵运算的定义
解 .
例3设矩阵, ,则____________.
3.转置 对称阵和反对称阵
1)转置的性质
2)若,则称为对称(反对称)阵
例4矩阵为同阶方阵,则=( )
A. B.
C. D.
答案: B
例5设令,试求.
测试点 矩阵乘法的一个常用技巧
解 因为,所以
答案
例6为任意阶矩阵,下列矩阵中为反对称矩阵的是( )
1.向量组的线性相关性的定义和充分必要条件:
1)定义: 设是一组维向量.如果存在个不全为零的数,使得
,
则称向量组线性相关,否则,即如果,必有
,则称向量组线性无关.
2) 个维向量线性相关的充分必要条件是至少存在某个是其余向量的线性组合.即线性无关的充分必要条件是其中任意一个向量都不能表示为其余向量的线性组合.
4月全国自考线性代数(经管类)试题及答案解析
1全国2018年4月自学考试线性代数(经管类)试题课程代码:04184一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m-nB.n-mC.m+nD.-(m+n )2.设A , B , C 均为n 阶方阵,AB=BA ,AC=CA ,则ABC=( ) A.ACB B.CAB C.CBAD.BCA3.设A 为3阶方阵,B 为4阶方阵,且行列式|A |=1,|B |=-2,则行列式||B |A |之值为( ) A.-8 B.-2 C.2D.84.已知A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a ,B =⎪⎪⎪⎭⎫ ⎝⎛333231232221131211333a a a a a a a a a ,P =⎪⎪⎪⎪⎭⎫ ⎝⎛100030001,Q =⎪⎪⎪⎪⎭⎫ ⎝⎛100013001,则B =( )A.P AB.APC.QAD.AQ5.已知A 是一个3×4矩阵,下列命题中正确的是( ) A.若矩阵A 中所有3阶子式都为0,则秩(A )=2 B.若A 中存在2阶子式不为0,则秩(A )=2 C.若秩(A )=2,则A 中所有3阶子式都为0 D.若秩(A )=2,则A 中所有2阶子式都不为06.下列命题中错误..的是( ) A.只含有一个零向量的向量组线性相关2B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关D.两个成比例的向量组成的向量组线性相关7.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( ) A.α1必能由α2,α3,β线性表出 B.α2必能由α1,α3,β线性表出 C.α3必能由α1,α2,β线性表出D.β必能由α1,α2,α3线性表出 8.设A 为m ×n 矩阵,m ≠n ,则齐次线性方程组Ax =0只有零解的充分必要条件是A 的秩( )A.小于mB.等于mC.小于nD.等于n9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( ) A.A T B.A 2 C.A -1D.A *10.二次型f (x 1,x 2,x 3)=212322212x x x x x +++的正惯性指数为( ) A.0 B.1 C.2D.3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数(经管类)
1【单选题】已知是三阶可逆矩阵,则下列矩阵中与等价的是()。
A、B、C、D、您的答案:D参考答案:D纠错查看解析2【单选题】已知n阶可逆矩阵A、B、C满足ABC=E,则C=A、B-1A-1B、A-1B-1C、BAD、AB您的答案:A参考答案:A纠错查看解析3【单选题】多项式的常数项是().A、-14B、-7C、7D、14您的答案:D参考答案:D纠错查看解析4【单选题】设向量组下列向量中可以表为线性组合的是().A、B、C、D、您的答案:A参考答案:A纠错查看解析5【单选题】设是n阶可逆矩阵,下列等式中正确的是()A、B、C、D、您的答案:D参考答案:D纠错查看解析6【单选题】设A为二阶方阵,B为三阶方阵,且行列式|A|=2,|B|=-1,则行列式|A||B|=A、8B、-8C、2D、-2您的答案:B参考答案:B纠错查看解析7【单选题】设向量组可由向量组线性表出,下列结论中正确的是()。
A、若,则线性相关B、若线性无关,则C、若,则线性相关D、若线性无关,则您的答案:A参考答案:A纠错查看解析8【单选题】设行列式,则A 、B 、C 、D 、您的答案:C 参考答案:C纠错 查看解析9【单选题】若四阶实对称矩阵A 是正定矩阵,则A 的正惯性指数为A 、1B 、2C 、3D 、4您的答案:D 参考答案:D纠错 查看解析10【单选题】若向量级α1=(1,t+1,0),α2=(1,2,0),α3=(0,0,t-1)线性无关,则实数tA、t≠0B、t≠1C、t≠2D、t≠3您的答案:B参考答案:B纠错查看解析11【单选题】已知2阶行列式则A、﹣2B、﹣1C、1D、2您的答案:B参考答案:B纠错查看解析12【单选题】若矩阵中有一个阶子式等于零,且所有阶子式都不为零,则必有().A、B、C、D、您的答案:B参考答案:B纠错查看解析13【单选题】设矩阵,则A、B、C、D、您的答案:B参考答案:B纠错查看解析14【单选题】设阶矩阵满足,则()。
《线性代数(经管类)》历年真题及参考答案
20XX年10月高等教育自学考试全国统一命题考试线性代数(经管类)试卷(课程代码 04184)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设3阶方阵A的行列式为2,则= 【】A.-1 B.-C. D.12.设,则方程的根的个数为【】A.0 B.1C.2 D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若|A|≠|B|,则必有A.|A|=0 B.|A+B|≠0C.|A|≠0 D.|A-B|≠04. 设A、B是任意的n阶方阵,下列命题中正确的是【】A. B.C. D.5.设A= ,其中,则矩阵A的秩为【】A.0 B.1C.2 D.36.设6的阶方阵A的秩为4,则A的伴随矩阵的秩为【】A.0 B.2C.3 D.47.设向量a=(1,-2,3),与=(2,k,6)A.-10 B.-4C.4 D.108.已知线性方程组无解,则数a= 【】A.- B.0C. D.19.设3阶方阵A的特征多项式为,则|A|= 【】10.若3阶实对称矩阵A=( )是正定矩阵,则4的3个特征值可能为【】二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
11.设行列式D=,其第三行各元素的代数余子式之和为.12设A=,B=,则AB:.13设A是4x3矩阵且r(A)=2,B=,则r(AB).14.向量组(1,2),(2,3),(3,4)的秩为15设线性无关的向量组可由向量组线性表示,则r与s的关系为16.设方程组有非零解,且数,则= .17.设4元线性方程组Ax=b的三个解,已知,.则方程组的通解是.19.设矩阵有一个特征值=2,对应的特征向量为,则数20.设实二次型,已知A的特征值为-1,1,2,则该二次型的规范形为三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵,,其中口,均为3维列向量,且 |A|=18,|B|=2.求|A-B|.22.解矩阵方程23.设向量组,,问P为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组(1)确定当取何值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示)25.已知2阶方阵A的特征值为,方阵.(1)求B的特征值;(2)求B的行列式.。
全国2020年8月自考04184线性代数(经管类)试题及答案
D020·04184(附参考答案)绝密★考试结束前2020年08月高等教育自学考试全国统一命题考试线性代数(经管类)(课程代码:04184)注意事项:1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
3. 涂写部分、画图部分必须使用2B 铅笔,书写部分必须使用黑色字迹签字笔。
说明:在本卷中,A T 表示矩阵A 的转置矩阵,A •表示矩阵A 的伴随矩阵,E 是单位矩阵,丨A 丨表示方阵A 的行列式,r (A )表示矩阵A 的秩。
第一部分 选择题一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.设2,121,,ββαα是3维列向量,且行列式n m ==221121,,,,,αβαβαα,则行列式=+2121,,ββααA.n m -B.m n -C.n m +D.mn2.设A 为3阶矩阵,将A 的第2列与第3列互换得到矩阵B ,再将B 的第1列的(-2)倍加到第3列得到单位矩阵E ,则=-1AA.⎪⎪⎪⎭⎫ ⎝⎛010100021B.⎪⎪⎪⎭⎫⎝⎛-010100021C.⎪⎪⎪⎭⎫ ⎝⎛-010100201D.⎪⎪⎪⎭⎫⎝⎛010100201 3.设向量组321,,ααα线性无关,而向量组432,,ααα线性相关,则A.1α必可由432,,ααα线性表出B.2α必可由431,,ααα线性表出C.3α必可由421,,ααα线性表出D.4α必可由321,,ααα线性表出4.若3阶可逆矩阵A 的特征值分别是1,-1,2,则1-A =A.-2B.21-C.21D.25.二次型()31223212,,x x x x x x f +=的规范形是 A.232221z z z ++ B.232221z z z -+ C.232221z z z --D.232221z z z ---第二部分 非选择题注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
自考(经管类)线性代数历年真题与部分答案
全国20XX 年1月线性代数(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( )A.12B.24C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( )A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -1 3.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +E D.-A +E4.设54321,,,,ααααα是四维向量,则( ) A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示 D.1α一定可以由5432,,,αααα线性表出5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0B.A =EC.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( )A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( )A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21 B.1 C.23D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)11.行列式1221---k k =0,则k =_________________________. 12.设A =⎥⎦⎤⎢⎣⎡1101,k 为正整数,则A k =_________________________. 13.设2阶可逆矩阵A 的逆矩阵A -1=⎥⎦⎤⎢⎣⎡4321,则矩阵A =_________________________.14.设向量α=(6,-2,0,4),β=(-3,1,5,7),向量γ满足βγα32=+,则γ=_________________________.15.设A是m ×n矩阵,A x =0,只有零解,则r (A )=_________________________.16.设21,αα是齐次线性方程组A x =0的两个解,则A (3217αα+)=________.17.实数向量空间V ={(x 1,x 2,x 3)|x 1-x 2+x 3=0}的维数是______________________. 18.设方阵A有一个特征值为0,则|A 3|=________________________.19.设向量=1α(-1,1,-3),=2α(2,-1,λ)正交,则λ=__________________.20.设f (x 1,x 2,x 3)=31212322212224x x x tx x x x ++++是正定二次型,则t 满足_________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式ba c c cbc a b b aa cb a ------222222 22.设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---16101512211λλ,对参数λ讨论矩阵A 的秩.23.求解矩阵方程⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100152131X =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--315241 24.求向量组:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=21211α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=56522α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11133α,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=37214α的一个极大线性无关组,并将其余向量通过该极大线性无关组表示出来.25.求齐次线性方程组⎪⎩⎪⎨⎧=++--=-++-=++-03204230532432143214321x x x x x x x x x x x x 的一个基础解系及其通解.26.求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---3142281232的特征值和特征向量. 四、证明题(本大题共1小题,6分) 27.设向量1α,2α,….,k α线性无关,1<j ≤k . 证明:1α+j α,2α,…,k α线性无关. 全国20XX 年7月1.设3阶方阵A =(α1,α2,α3),其中αi (i =1,2,3)为A 的列向量,若| B |=|(α1+2α2,α2,α3)|=6,则| A |=( ) A.-12 B.-6 C.6 D.122.计算行列式32 3 20 2 0 0 05 10 20 2 0 3 ----=( )A.-180B.-120C.120D.1803.若A 为3阶方阵且| A -1 |=2,则| 2A |=( ) A.21B.2C.4D.8 4.设α1,α2,α3,α4都是3维向量,则必有( )A.α1,α2,α3,α4线性无关B.α1,α2,α3,α4线性相关C.α1可由α2,α3,α4线性表示D.α1不可由α2,α3,α4线性表示5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则r (A )=( )A.2B.3C.4D.56.设A 、B 为同阶方阵,且r (A )=r (B ),则( ) A.A 与B B.| A |=| B |C.A 与B 等价D.A 与B 合同7.设A 为3阶方阵,其特征值分别为2,1,0则| A +2E |=( )A.0B.2C.3D.248.若A 、B 相似,则下列说法错误..的是( ) A.A 与B 等价B.A 与B 合同 C.| A |=| B |D.A 与B 有相同特征值9.若向量α=(1,-2,1)与β=(2,3,t )正交,则t =( ) A.-2B.0C.2D.410.设3阶实对称矩阵A 的特征值分别为2,1,0,则( ) A.A 正定B.A 半正定C.A 负定D.A 半负定二、填空题(本大题共10小题,每小题2分,共2011.设A =⎪⎪⎪⎭⎫⎝⎛-4 21 02 3,B =⎥⎦⎤⎢⎣⎡--0 1 01 1 2,则AB =_________________.12.设A 为3阶方阵,且| A |=3,则| 3A -1 |=______________. 13.三元方程x 1+x 2+x 3=1的通解是_______________.14.设α=(-1,2,2),则与α反方向的单位向量是_________________.15.设A 为5阶方阵,且r (A )=3,则线性空间W ={x | Ax =0}的维数是______________.16.设A 为3阶方阵,特征值分别为-2,21,1,则| 5A -1 |=______________.17.若A 、B 为5阶方阵,且Ax =0只有零解,且r (B )=3,则r (AB )=_________________.18.实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛--1 1 0 1 0 10 1 2 所对应的二次型 f (x 1, x 2,x 3)=________________.19.设3元非齐次线性方程组Ax =b 有解α1=⎪⎪⎪⎭⎫ ⎝⎛321,α2=⎪⎪⎪⎭⎫⎝⎛-3 2 1且r (A )=2,则Ax =b 的通解是_______________.20.设α=⎪⎪⎪⎭⎫⎝⎛321,则A =ααT 的非零特征值是_______________.三、计算题(本大题共6小题,每小题9分,共5421.计算5阶行列式D =20 0 0 1 00 2 0 0 0 0 0 2 0 1 0 0 0 222.设矩阵X 满足方程 ⎪⎪⎪⎭⎫ ⎝⎛-2 0 00 1 00 0 2X ⎪⎪⎪⎭⎫ ⎝⎛0 1 01 0 00 0 1=⎪⎪⎪⎭⎫ ⎝⎛---0 2 11 0 23 4 1求X . 23.求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解. 24.求向量组α1=(1,2,-1,4),α2=(9,100,10,4),α3=(-2,-4,2,-8)的秩和一个极大无关组.25.已知A =⎪⎪⎪⎭⎫ ⎝⎛---2 13 5 2 1 2 b a 的一个特征向量ξ=(1,1,-1)T,求a ,b 及ξ所对应的特征值,并写出对应于这个特征值的全部特征向量.26.设A =⎪⎪⎪⎭⎫ ⎝⎛----2 2 1 1 1 2 1 2 1 1 2a ,试确定a 使r (A )=2.四、证明题(本大题共1小题,6分)27.若α1,α2,α3是Ax=b (b ≠0)的线性无关解,证明α2-αl ,α3-αl 是对应齐次线性方程组Ax =0的线性无关解.全国20XX 年4月一、单项选择题(本大题共20小题,每小题1分,共 1.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( )A.m-nB.n-mC.m+nD.-(m+n )2.设A , B , C 均为n 阶方阵,AB=BA ,AC=CA ,则ABC=( ) A.ACB B.CAB C.CBA D.BCA3.设A 为3阶方阵,B 为4阶方阵,且行列式|A |=1,|B |=-2,则行列式||B |A |之值为( ) A.-8B.-2C.2D.84.已知A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a ,B =⎪⎪⎪⎭⎫⎝⎛333231232221131211333a a a a a a a a a ,P =⎪⎪⎪⎪⎭⎫⎝⎛100030001,Q =⎪⎪⎪⎪⎭⎫⎝⎛100013001,则B =( ) A.P A B.AP C.QA D.AQ5.已知A 是一个3×4矩阵,下列命题中正确的是( ) A.若矩阵A 中所有3阶子式都为0,则秩(A )=2B.若A 中存在2阶子式不为0,则秩(A )=2C.若秩(A )=2,则A 中所有3阶子式都为0D.若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( ) A.只含有一个零向量的向量组线性相关B.由3个2维向量组成的向量组线性相关C.由一个非零向量组成的向量组线性相关D.两个成比例的向量组成的向量组线性相关 7.已知向量组α1,α2,α3线性无关,α1,α2,α3,β线性相关,则( )A.α1必能由α2,α3,β线性表出B.α2必能由α1,α3,β线性表出C.α3必能由α1,α2,β线性表出 D .β必能由α1,α2,α3线性表出8.设A 为m ×n 矩阵,m ≠n ,则齐次线性方程组Ax =0只有零解的充分必要条件是A 的秩( ) A.小于m B.等于m C.小于nD.等于n9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( ) A.A T B.A 2 C.A -1 D.A *10.二次型f (x 1,x 2,x 3)=212322212x x x x x +++的正惯性指数为( )A.0 B.1 C. D.3二、填空题(本大题共10小题,每小题2分,共20分)请在11.行列式2010200820092007的值为_________________________.12.设矩阵A=⎪⎪⎭⎫⎝⎛-102311,B=⎪⎪⎭⎫⎝⎛1002,则A T B=____________________________.13.设4维向量=α(3,-1,0,2)T ,β=(3,1,-1,4)T ,若向量γ满足2+αγ=3β,则γ=__________. 14.设A为n阶可逆矩阵,且|A |=n1-,则|A -1|=___________________________.15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则|A |=__________________. 16.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为________________.17.设n 阶可逆矩阵A 的一个特征值是-3,则矩阵1231-⎪⎭⎫⎝⎛A 必有一个特征值为_____________.18.设矩阵A=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----00202221x 的特征值为4,1,-2,则数x=________________________.19.已知A =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛100021021b a 是正交矩阵,则a +b =_______________________________。
线性代数(经管类专接本)
1.设A为三阶方阵且( )A。
-108B。
-12C.12D。
108【正确答案】D【答案解析】2。
行列式中第三行第二列元素的代数余子式的值为() A。
3B.-2C.0D.1【正确答案】B【答案解析】3。
下列行列式的值为()。
【正确答案】B【答案解析】4.设()A.k—1B.kC。
1D。
k+1【正确答案】B【答案解析】将所求行列的第二行的-1倍加到第一行,这样第一行可以提出一个k,就得到k 乘以已知的行列式,即为k,本题选B.5。
设多项式则f(x)的常数项为()A。
4B.1C.-1D。
—4【正确答案】A【答案解析】f(x)=(-1)A12+xA13,故常数项为。
6.已知三阶行列式D中的第二列元素依次为1,2,3,它们的余子式分别为—1,1,2,D的值为()A.-3B.-7C。
3D.7【正确答案】A【答案解析】根据行列式展开定理,得7。
设A是n阶方阵,λ为实数,下列各式成立的是().【正确答案】C【答案解析】这是行列式的性质.8。
设都是三阶方阵,且,则下式()必成立。
【正确答案】B【答案解析】方阵行列式的性质9.行列式的值等于()。
A.abcdB。
dC.6D。
0【正确答案】D【答案解析】10。
当a=()时,行列式的值为零.A。
0B.1C。
-2C.2【正确答案】C【答案解析】所以 a= —2。
11。
计算=()。
A。
18B.15C。
12D。
24【正确答案】B【答案解析】=1×3×5=1512.已知( )【正确答案】B【答案解析】由行列式的性质,且A是四阶的,所以可以判断B正确。
13.n阶行列式( )等于—1。
【正确答案】A【答案解析】14。
下面结论正确的是()A。
含有零元素的矩阵是零矩阵B。
零矩阵都是方阵C。
所有元素都是0的矩阵是零矩阵D.【正确答案】C【答案解析】这是零矩阵的定义15。
行列式D如果按照第n列展开是()。
A.a1n A1n+a2n A2n+.。
+a nn A nnB。
a11A11+a21A21+。
自考线性代数(经管类)试题及答案
高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.3阶行列式011101110||ij a 中元素21a 的代数余子式21A (C)A .2B .1C .1D .21011121A .2.设矩阵22211211a a a a A ,121112221121a a a a a a B,01101P ,11012P ,则必有(A)A .B AP P 21B .B AP P 12C .B P AP 21D .B P AP 121101011021AP P 22211211222112110111a a a a a a a a B a a a a a a 121112221121.3.设n 阶可逆矩阵A 、B 、C 满足E ABC ,则1B ( D)A .11C A B .11ACC .ACD .CA由E ABC,得E ABC 111,CA B 1.4.设3阶矩阵0100010A,则2A 的秩为(B )A .0B .1C .2D .32A00010000100010000100010,2A 的秩为1.5.设4321,,,是一个4维向量组,若已知4可以表为321,,的线性组合,且表示法惟一,则向量组4321,,,的秩为( C )A .1B .2C .3D .4321,,是4321,,,的极大无关组,4321,,,的秩为3.6.设向量组4321,,,线性相关,则向量组中(A )A .必有一个向量可以表为其余向量的线性组合B .必有两个向量可以表为其余向量的线性组合C .必有三个向量可以表为其余向量的线性组合D .每一个向量都可以表为其余向量的线性组合7.设321,,是齐次线性方程组0Ax 的一个基础解系,则下列解向量组中,可以作为该方程组基础解系的是( B)A .2121,,B .133221,,C .2121,,D .133221,,只有133221,,线性无关,可以作为基础解系.8.若2阶矩阵A 相似于矩阵3202B ,E 为2阶单位矩阵,则与矩阵A E 相似的矩阵是( C)A .4101B .4101C .4201D .4201B 与A 相似,则4201BE 与A E相似.9.设实对称矩阵120240002A ,则3元二次型Ax x x x x f T ),,(321的规范形为(D )A .232221z z z B .232221z z z C .2221z z D .2221z z 232212332222123322221321)2(2)44(2442),,(x x x x x x x x x x x x x x x x f ,规范形为2221z z .10.若3阶实对称矩阵)(ij a A是正定矩阵,则A 的正惯性指数为(D )A .0B .1C .2D .3二、填空题(本大题共10小题,每小题2分,共20分)11.已知3阶行列式696364232333231232221131211a a a a a a a a a ,则333231232221131211a a a a a a a a a _______________.632323232323296364232333231232221131211333231232221131211333231232221131211a a a a a a a a a a a a a a a a a a a a a a a a a a a ,61333231232221131211a a a a a a a a a .12.设3阶行列式3D 的第2列元素分别为3,2,1,对应的代数余子式分别为1,2,3,则3D _______________.4132)2()3(12323222221213A a A a A a D .13.设0121A,则E AA22_______________.112211201120)(222E AEA A.14.设A 为2阶矩阵,将A 的第2列的(2)倍加到第1列得到矩阵B .若4321B,则A_______________.将B 的第2列的2倍加到第1列可得41125A.15.设3阶矩阵333220100A,则1A _______________.001012103100020033001010100100220333100010001333220100),(E A 0102/113/12/1010001000101012230102000601012206100020066,1A102/113/12/10.16.设向量组)1,1,(1a ,)1,2,1(2,)2,1,1(3线性相关,则数a___________.0363213103210311121112111aa a aa a a ,2a.17.已知Tx )1,0,1(1,Tx )5,4,3(2是3元非齐次线性方程组b Ax 的两个解向量,则对应齐次线性方程组0Ax有一个非零解向量_______________.Tx x )6,4,2(12(或它的非零倍数).18.设2阶实对称矩阵A 的特征值为2,1,它们对应的特征向量分别为T)1,1(1,Tk ),1(2,则数k ______________.设db b a A,由111A,即1111d b b a ,11d b b a ,可得b a1,b d1;由222A,即kk bbb b 12111,kkb bbkb22)1(1,可得1k .19.已知3阶矩阵A 的特征值为3,2,0,且矩阵B 与A 相似,则||E B _______________.E B 的特征值为4,1,1,44)1(1||E B.20.二次型232221321)()(),,(x x x x x x x f 的矩阵A_______________.2332222121233222222121321222)2()2(),,(x x x xx x xx x x xx x x xx x x f ,11121011A.三、计算题(本大题共6小题,每小题9分,共54分)21.已知3阶行列式||ij a 4150231x x 中元素12a 的代数余子式812A ,求元素21a 的代数余子式21A 的值.解:由8445012x x A ,得2x,所以5)38(413221A .22.已知矩阵0111A,211B,矩阵X 满足X B AX ,求X .解:由X BAX,得B XA E)(,于是13/113/131313121121113120111112)(11BA EX .23.求向量组T)3,1,1,1(1,T)1,5,3,1(2,T)4,1,2,3(3,T)2,10,6,2(4的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出.解:24131015162312311854012460412023110700070041202311000007004120231100001004120231100100402020110000100201020110010*********,321,,是一个极大线性无关组,432120.24.设3元齐次线性方程组00321321321ax x x x ax x x x ax ,(1)确定当a 为何值时,方程组有非零解;(2)当方程组有非零解时,求出它的基础解系和全部解.解:(1)1010111)2(1111111)2(1212112111111||aaaaa aaaa a a aa aA 2)1)(2(a a,2a 或1a 时,方程组有非零解;(2)2a时,0330211A1102110110101,333231x x x x x x ,基础解系为111,全部解为111k ,k 为任意实数;1a 时,000000111A ,3322321x x x x x x x ,基础解系为11,101,全部解为1011121k k ,21,k k 为任意实数.25.设矩阵504313102B ,(1)判定B 是否可与对角矩阵相似,说明理由;(2)若B 可与对角矩阵相似,求对角矩阵和可逆矩阵P ,使BPP1.解:(1))67)(1(5412)1(54313102||2B E)6()1(2,特征值121,63.对于121,解齐次线性方程组0)(x B E:0000010144303101B E ,332231x x x x x x ,基础解系为0101p ,1012p ;对于63,解齐次线性方程组0)(x B E :04/3104/10114353104BE,3332314341x x x x x x ,基础解系为14/34/13p .3阶矩阵B 有3个线性无关的特征向量,所以B 相似于对角阵;(2)令6010001,1104/3014/110P ,则P 是可逆矩阵,使得BP P 1.26.设3元二次型3221232221321222),,(x x x x x x x x x x f ,求正交变换Py x,将二次型化为标准形.解:二次型的矩阵为110121011A .111121011111201110121011||A E)3)(1(1101)3(11131001,特征值01,12,33.对于01,解齐次线性方程组0)(x A E :00011010111121011A E ,333231x x x x x x ,1111,单位化为3/13/13/11p ;对于12,解齐次线性方程组0)(x A E :0001010101111010A E ,332310x x x x x ,1012,单位化为2/102/12p ;对于33,解齐次线性方程组0)(xA E:0210101210111012AE,3332312x x x x x x ,1213,单位化为6/16/26/13p .令6/12/13/16/203/16/12/13/1P,则P 是正交矩阵,使得APP T3010000,经正交变换Py x 后,原二次型化为标准形23222130y yyf.四、证明题(本题6分)27.已知A 是n 阶矩阵,且满足方程022A A,证明A 的特征值只能是0或2.证:设是A 的特征值,则满足方程022,只能是0或2.。
全国2019年10月高等教育自学考试《线性代数(经管类)》试题
全国2019年10月高等教育自学考试《线性代数(经管类)》试题1. 【单选题】A.B.C.D.正确答案:A参考解析:行列式的性质2. 【单选题】A.B.C.D.正确答案:A参考解析:左乘是行变换,右乘是列变化,所以第一列乘以2,第二列乘以3,第三列乘以43. 【单选题】设向量组α1=(3,-1,a,1),α2=(-6,2,4,b)线性相关,则必有()A. a=-2,b=-2B. a=-2,b=2C. a=2,b=-2D. a=2,b=2正确答案:A参考解析:两向量线性相关,则成比例,-6/3=-2,所以=-2,b=-24. 【单选题】A. x=-2,y=0B. x=0,y=-2C. x=2,y=0D. x=0,y=2正确答案:D参考解析:因为特征值之和等于矩阵A的迹,y=2,且|A|=2,所以x=05. 【单选题】A.B.C.D.正确答案:B参考解析:合同的充要条件是,矩阵对称,且正负惯性系数相等,所以B正确。
6. 【填空题】设某3阶行列式第1列元素分别为1,-2,3,对应的代数余子式为3,2,-2,则该行列式的值为.正确答案:参考解析:-7【解析】行列式的值等于某一列的元素乘以其对应的代数余子式之和。
1×3+(-2)×2+3×(-2)=-77. 【填空题】正确答案:参考解析:【解析】A11=4,A12=-2,A21=-3,A22=18. 【填空题】正确答案:参考解析:【解析】利用性质9. 【填空题】设A为3阶矩阵,且|A|=2,则|2A-1|=.正确答案:参考解析:4【解析】|2A-1|=2n|A-1|=410. 【填空题】设向量β=(2,1,4)T可以由向量组α1=(1,1,1)T,α2=(-2,-3,a)T线性表示,则数a=______.正确答案:参考解析:0【解析】因为向量β,可以由α1,α2线性表示,所以β,α1,α2线性相关,所以|β,α1,α2|=0,即a=011. 【填空题】设α1,α2,α3是非齐次线性方程组Ax=b的3个解,若k1α1+k2α2+k3α3也是Ax=b的解,则数k1,k2,k3满足关系式.正确答案:参考解析:k1+k2+k3=112. 【填空题】正确答案:参考解析:k≠1【解析】设方程组系数为矩阵A,因为只有零解,所以|A|≠0,即k≠113. 【填空题】设3阶矩阵A的特征值为1,-2,3,则|A2+E|=.正确答案:参考解析:100【解析】A2+E的特征值:2,5,10|A2+E|的值为特征值的乘积=10014. 【填空题】设3阶矩阵A与B相似,A的特征值为1,-2,3,则|AB|=.正确答案:参考解析:36【解析】因为A,B相似,所以B的特征值为1,-2,3,AB的特征值为,1,4,9所以|AB|=1×4×9=3615. 【填空题】二次型f(x1,x2,x3)=x1x2+x1x3+x2x3的秩为.正确答案:参考解析:316. 【计算题】参考解析:17. 【计算题】(1)矩阵X,使得2X+3A=4B;(2)AB T.参考解析:(1)(2)18. 【计算题】参考解析:由题意得B=(A-2E)-1A.18. 【计算题】参考解析:由题意得B=(A-2E)-1A.19. 【计算题】求向量组α1=(1,2,1,4)T,α2=(0,3,-1,-3)T,α3=(1,-2,8,8)T,α4=(2,3,8,9)T的秩和一个极大无关组,并把其余向量用该极大无关组线性表出.参考解析:20. 【计算题】参考解析:21. 【计算题】(1)确定数x与y的值;(2)求可逆矩阵P使得P-1AP=B参考解析:(1)因为相似矩阵的特征值相同,求得矩阵A的特征值为x,-1,1,矩阵B的特征值为2,1,y,所以x=2,y=-1.(2)22. 【计算题】参考解析:23. 【证明题】设α1,α2是齐次线性方程组Ax=0的一个基础解系,证明:αα2,3α1+α2也是Ax=0的一个基础解系.1+参考解析:。
《线性代数(经管类)》(课程代码04184)校考试题答案
《线性代数(经管类)》(课程代码04184)第一大题:单项选择题1、设行列式=1 , =2, 则= ( D )•错误!未找到引用源。
A.—3•错误!未找到引用源。
B.—1•错误!未找到引用源。
C.1•错误!未找到引用源。
D.32、设A为3阶方阵,且已知|-2A|=2,则|A|=( B )•错误!未找到引用源。
A.—1•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.13、设矩阵A,B,C为同阶方阵,则=__B__•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.4、设A为2阶可逆矩阵,且已知= ,则A=( D )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.5、设A为m×n矩阵,则齐次线性方程组=0仅有零解的充分必要条件是( A )•错误!未找到引用源。
A.A的列向量组线性无关•错误!未找到引用源。
B.A的列向量组线性相关•错误!未找到引用源。
C.A的行向量组线性无关•错误!未找到引用源。
D.A的行向量组线性相关6、已知,是非齐次线性方程组=b的两个不同的解,,是其导出组=0的一个基础解系,,为任意常数,则方程组=b的通解可以表为( A )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.7、设3阶矩阵A与B相似,且已知A的特征值为2,2,3 则 ||= ( A )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.7•错误!未找到引用源。
D.128、设A为3阶矩阵,且已知|3A+2E|=0,则A必有一个特征值为( A )•错误!未找到引用源。
A.•错误!未找到引用源。
B.•错误!未找到引用源。
C.•错误!未找到引用源。
D.9、二次型的矩阵为( C )•错误!未找到引用源。
04184 线性代数(经管类)习题集及答案
西华大学自学考试省考课程习题集课程名称:《线性代数》课程代码:04184专业名称:工商企业管理专业代码:Y020202目录第一部分习题一、选择题 3二、填空题8三、计算题11四、证明题15第二部分标准答案一、选择题16二、填空题16三、计算题16四、证明题31第一部分 习题 一、选择题1、若n 阶方阵A 的秩为r ,则结论( )成立。
A. 0||≠A B. 0||=A C. r >n D. n r ≤2、下列结论正确的是( )A. 若AB=0,则A=0或B=0.B. 若AB=AC,则B=CC.两个同阶对角矩阵是可交换的.D. AB=BA 3、下列结论错误的是( )A. n+1个n 维向量一定线性相关.B. n 个n+1维向量一定线性相关C. n 个n 维列向量n ααα,,,21 线性相关,则021=n αααD. n 个n 维列向量n ααα,,,21 ,若021=n ααα 则n ααα,,,21 线性相关,4、若m c c c b b b a a a =321321321,则=321321321333222c c c b b b a a a ( ) A. 6m B.-6m C. m 3332 D. m 3332- 5、设A,B,C 均为n 阶方阵,AB=BA,AC=CA,则ABC=( ) A. ACB B. CAB C. CBA D. BCA6、二次型3221222132124),,(x x x x x x x x x f -++=的秩为( )A 、0B 、1C 、2D 、3 7、若A 、B 为n 阶方阵,下列说法正确的是( ) A 、若A ,B 都是可逆的,则A+B 是可逆的 B 、若A ,B 都是可逆的,则AB 是可逆的 C 、若A+B 是可逆的,则A-B 是可逆的 D 、若A+B 是可逆的,则A ,B 都是可逆的8、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A ,则=*A ( ) A 、⎪⎪⎭⎫ ⎝⎛--a c b d B 、⎪⎪⎭⎫ ⎝⎛--a b c dC 、⎪⎪⎭⎫ ⎝⎛--a c b dD 、⎪⎪⎭⎫⎝⎛--a b c d 9、关于初等矩阵下列结论成立的是( )A. 都是可逆阵B. 所对应的行列式的值为1C. 相乘仍为初等矩阵D. 相加仍为初等矩阵10、设2阶矩阵⎪⎪⎭⎫ ⎝⎛=4321A ,则=*A ( )A 、⎪⎪⎭⎫⎝⎛--1324 B 、⎪⎪⎭⎫ ⎝⎛--1234 C 、⎪⎪⎭⎫ ⎝⎛--1324 D 、⎪⎪⎭⎫⎝⎛--1234 11、设21,ββ是非齐次线性方程组β=AX 的两个解,则下列向量中仍为方程组β=AX 解的是( )A 、21ββ+B 、21ββ-C 、3221ββ+ D 、32321ββ- 12、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关13、向量组)2(,,,21≥m m ααα 线性相关的充要条件是( ) A 、m ααα,,,21 中至少有一个是零向量 B 、m ααα,,,21 中至少有一个向量可以由其余向量线性表示 C 、m ααα,,,21 中有两个向量成比例 D 、m ααα,,,21 中任何部分组都线性相关14、0=AX 是非齐次方程组β=AX 的对应齐次线性方程组,则有( ) A 、0=AX 有零解,则β=AX 有唯一解 B 、0=AX 有非零解,则β=AX 有无穷多解 C 、β=AX 有唯一解,则0=AX 只有零解 D 、β=AX 有无穷多解,则0=AX 只有零解15、设A ,B ,C 均为二阶方阵,且AC AB =,则当( )时,可以推出B=CA 、⎪⎪⎭⎫ ⎝⎛=0101AB 、⎪⎪⎭⎫ ⎝⎛=0011AC 、⎪⎪⎭⎫ ⎝⎛=0110AD 、⎪⎪⎭⎫⎝⎛=1111A16、若m c c c b b b a a a =321321321,则=231231231333222c c c b b b a a a ( )A. 6mB.-6mC. m 3332D. m 3332- 17、如果矩阵A 的秩等于r ,则( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯精品自学考试资料推荐⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
全国 2018 年 4 月自学考试 线性代数(经管类)试题
课程代码: 04184
一、单项选择题 (本大题共 20 小题,每小题 1 分,共 20 分 )
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的
括号内。
错选、多选或未选均无分。
1.已知 2 阶行列式
a 1
a 2 =m ,
b 1 b 2
=n ,则 b 1
b 2
=(
)
b 1
b 2
c 1
c 2 a 1 c 1 a 2 c 2 A. m-n B.n-m C.m+n
D.-( m+n )
2.设 A , B , C 均为 n 阶方阵, AB=BA , AC=CA ,则 ABC= ( )
A. ACB
B.CAB
C.CBA
D.BCA
3.设 A 为 3 阶方阵, B 为 4 阶方阵 ,且行列式 |A|=1, |B|=-2,则行列式 ||B|A|之值为 (
)
A.-8
B.-2
C.2
D.8
a 11a 12a
13 a 11
3a 12a
13
1 0 0
1 0 0
4.已知 A=
a 21a 22
a
23
, B= a 213a 22 a 23 , P= 0 3 0 , Q= 3 1 0 ,则 B=(
)
a 31
a 32
a
33
a 31
3a 32a
33
0 0 1
0 0 1
A. PA
B.AP
C.QA
D.AQ
5.已知 A 是一个 3×4 矩阵,下列命题中正确的是( )
A. 若矩阵 A 中所有 3 阶子式都为 0,则秩( A ) =2
B.若 A 中存在 2 阶子式不为
0,则秩( A )=2
C.若秩( A ) =2,则 A 中所有 3 阶子式都为 0
D.若秩( A ) =2,则 A 中所有 2 阶子式都不为 0 6.下列命题中错误 的是( )
..
A. 只含有一个零向量的向量组线性相关
1
B.由 3 个 2 维向量组成的向量组线性相关
C.由一个非零向量组成的向量组线性相关
D.两个成比例的向量组成的向量组线性相关
7.已知向量组 α1 α2 α3
线性无关, α1 α2
, α3 β
线性相关,则(
)
,
,
,
,
A. α 1 必能由 α2,α 3, β线性表出
B.α2 必能由 α1,α3, β线性表出
C. α 3 必能由 α1 α 2 β
线性表出
D. β 必能由 α1 α 2 α3
线性表出
,
,
, ,
8.设 A 为 m × n 矩阵, m ≠ n,则齐次线性方程组 Ax=0 只有零解的充分必要条件是
A 的秩
(
)
A. 小于 m
B.等于 m
C.小于 n
D.等于 n
9.设 A 为可逆矩阵,则与 A 必有相同特征值的矩阵为( )
A. A T
B.A 2
C.A -1
*
D.A
10.二次型 f(x 1,x 2,x 3)= x 2
x 2 x 2
2 x x 的正惯性指数为(
)
1
2
3
1 2
A.0
B.1
C.2
D.3
二、填空题(本大题共
10 小题,每小题 2 分,共 20 分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.行列式
2007 2008
的值为 _________________________.
2009 2010
1
1 3
2 0 ,则 A T
B= ____________________________.
12.设矩阵 A=
,B=
0 1
2 0 1
13.设 4 维向量
(3,-1,0,2) T ,β=(3,1,-1,4) T ,若向量 γ满足 2
γ= 3β ,则 γ=__________ .
14.设 A 为 n 阶可逆矩阵,且 |A|=
1
,则 |A -1|=___________________________.
n
15.设 A 为 n 阶矩阵, B 为 n 阶非零矩阵,若
B 的每一个列向量都是齐次线性方程组
Ax=0
的解,则 |A|=__________________.
16.齐次线性方程组
x 1 x 2 x 3 0
的基础解系所含解向量的个数为
________________.
2x 1 x 2
3x 3 0
2
1
2 1
17.设 n 阶可逆矩阵 A 的一个特征值是 -3,则矩阵必有一个特征值为 _____________.
A
3
1 2 2
18.设矩阵 A= 2 x 0 的特征值为4, 1, -2,则数 x=________________________ .
2 00
1
a0
2
19.已知 A= 1
0 是正交矩阵,则 a+b=_______________________________ 。
b
2
0 0 1
20.二次型 f(x1, x2 , x3)=-4 x1x2+2x1x3+6x2x3的矩阵是 _______________________________ 。
三、计算题(本大题共 6 小题,每小题9 分,共54 分)
a b c
21.计算行列式 D= a 2 b 2 c2的值。
a a3
b b3
c c3
22.已知矩阵B=( 2, 1, 3),C=( 1, 2, 3),求( 1) A=B T C;( 2) A2。
23.设向量组1(2,1,3,1) T ,2(1,2,0,1) T ,3(-1,1,-3,0) T ,4(1,1,1,1) T , 求向量组的秩及
一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量。
1 2 3 1 4
24.已知矩阵 A= 0 1 2 , B= 2 5 .( 1)求 A-1;( 2)解矩阵方程 AX=B。
0 0 1 1 3
x12x2 3 x3 4
25.问 a 为何值时,线性方程组2x2ax3 2 有惟一解?有无穷多解?并在有解时求出
2 x12x23x
3 6
3
其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解)。
2 00
26.设矩阵 A= 0 3 a的三个特征值分别为1, 2, 5,求正的常数 a 的值及可逆矩阵P,
0 a 3
1 00
使 P-1AP= 0 2 0 。
0 0 5
四、证明题(本题 6 分)
27.设 A,B, A+B 均为 n 阶正交矩阵,证明(A+B)-1=A-1 +B-1。
4。