蛋白质的纯化与鉴定
蛋白质的纯化与鉴定

1、最小分子量测定法
测定蛋白质中某一微量元素的含量 如Mb含Fe为0.335%,则M=55.8/0.335%=16700。
这就是最小分子量。其实,真实分子量是最小分子 量的n倍,n指Fe的数目,Mb的n=1,所以 M=16700。
ห้องสมุดไป่ตู้、凝胶过滤法 (gel filtration)
分子筛效应: 大分子先洗脱下来 小分子后洗脱下来
一、蛋白质的酸碱性质
两性电解质 可解离基团:α-NH3+
α-COO侧链上的功能基团 氨基酸有的化学性质蛋白质就有 pI=正负电荷相等,净电荷为零时的pH
水化膜
+++
酸
+
+碱
++
碱
- -
- -
酸
- --
-
带正电荷的蛋白质 在等电点的蛋白质 带负电荷的蛋白质
脱水作用
++ +
+
+
+ ++
脱水作用 碱
十二烷基硫酸钠聚丙烯酰胺凝胶电泳
① SDS-蛋白质形成复合物,1.4克SDS与1克蛋白质结 合,相当于每两个氨基酸残基结合一个分子的SDS。 这样,蛋白质的原有电荷效应被覆盖,带有相同密度 负电荷,分子量大小与迁移率成正比。
② SDS改变蛋白质分子单体构象,全部变成似雪茄烟 形的长椭圆棒型。
四、蛋白分子的结构和形状
1、前处理(pretreatment)
去杂质、脱脂
细胞破碎
机械破碎法
研磨法 组织捣碎器法 超声波法 压榨法 冻融法
溶胀 自溶 化学法 酶解法
缓冲液溶提、离心或过滤去除细胞碎片
蛋白质的表达、纯化及检测-分子实验报告

实验目的1.了解外源基因在大肠杆菌细胞中的诱导表达情况2.学会用SDS-PAGE电泳法分离不同分子量的蛋白质3.学习通过亲和层析法纯化目的蛋白4.学会考马斯亮蓝染色法和蛋白质杂交法检测蛋白质实验原理1.外源基因在大肠杆菌细胞中的诱导表达:将外源基因克隆在特殊的表达载体中,让其在E. coli中表达,该表达载体上含有lac操作子的启动子。
在不加诱导剂的条件下培养宿主菌,lacI基因表达的阻遏蛋白LacI与lac操作子结合,使外源基因不能表达;向培养基中加入诱导物IPTG后,LacI阻遏蛋白变构失活,不能与lac操作子结合,外源基因就表达。
2.蛋白质SDS-PAGE电泳分离:SDS-PAGE是最常用的定性分析蛋白质的电泳方式,特别是用于蛋白质纯度检测和测定蛋白质分子量。
其分离原理是根据蛋白质分子量的差异,因为SDS-PAGE的样品处理液及缓冲液的加入破坏了蛋白质的二级、三级、四级等结构,并使SDS与蛋白质充分结合形成SDS-蛋白质复合物,稳定地存在于均一的溶液中,SDS与蛋白质结合后使SDS-蛋白质复合物上带有大量的负电荷,远远超过其原来所带的电荷,从而使蛋白质原来所带的电荷可以忽略不计,消除了不同分子之间原有的电荷差别,其电泳迁移率主要取决于亚基分子质量的大小,这样分离出的谱带也为蛋白质的亚基。
3.考马斯亮蓝法检测蛋白质:考马斯亮蓝是一种蛋白质染料,主要有R-250和G-250两种类型。
考马斯亮蓝可以和蛋白肽链中碱性氨基酸残基或芳香族氨基酸残基(Arg,Trp,Tyr,His,Phe)结合。
考马斯亮蓝R250多用于聚丙烯酰胺凝胶电泳后蛋白质条带的染色;因为考马斯亮蓝R250中的R代表Red,偏红,红蓝色,与蛋白质结合虽然比较缓慢,但是染料可以穿透凝胶,染胶效果好,染色后为蓝色,且与胶的结合可以被洗脱下去,所以可以用来对电泳条带染色。
4.基因融合就是将两个或多个开放读码框按一定顺序连接在一起,融合阅读框架的表达产物是一个杂和蛋白。
第四章蛋白质化学第六节蛋白质及氨基酸分离纯化与测定

一、一般原则及基本步骤
材料的预处理及细胞破碎 蛋白质的抽提
蛋白质的粗分级
等电点沉淀法 盐析法 有机溶剂沉淀法
蛋白质的细分级
凝胶层析法 离子交换层析法 亲和层析
1
二、蛋白质的分离纯化方法
◇(一)根据分子大小不同的纯化方法 ◇(二)利用溶解度差别的纯化方法 ◇(三)根据电荷不同的纯化方法 ◇(四)利用选择性吸附的纯化方法 ◇(五)利用配体的特异性亲和力的纯化方法
磷酸基
SE-纤维素(强弱酸型)
磺乙基
SP-纤维素(强弱酸型)
磺丙基
常用的阴离子交换剂
离子交换剂
可电离基团
可电离基团结构
AE-纤维素(弱减型)
氨基乙基
PAB-纤维素(弱减型) 对氨基苯甲酸
DEAE-纤维素 (中弱减型)
DEAE -Sephadex (中弱减型)
二乙基氨基乙基 二乙基氨基乙基
DEAE -纤维素(强减型) 二乙基氨基乙基
(3)有分级分离现象 (4)要求对有机溶剂低温预冷。
16
4.温度对蛋白质溶解度的影响
• 在一定温度范围内,约0-40℃之间,大部分球状 蛋白质的溶解度随温度升高而增加,但也有例外, 例如人的血红蛋白从0到25℃,溶解度随温度上升 而降低。
• 在40-50℃以上开始变性,一般在中性pH介质中即 失去溶解力。
⑴蛋白质周围的水化层(hydration shell),保护了 蛋白质粒子,避免了相互碰撞,使蛋白质形成稳定 的胶体溶液。
⑵蛋白质两性电解质,分子间静电排斥作用。(存在 双电层)蛋白质粒子在水溶液中是带电的,带电的 原因主要是吸附溶液中的离子或自身基团的电离。 蛋白质表面的电荷与溶液中反离子的电荷构成双电 层。
蛋白质纯化与鉴定实验指南

二、Hela细胞核提取物的Sephacry S-300 HR柱层析98实验3 序列特异性DNA亲和层析101一、用制备凝胶电泳纯化寡核苷酸 105二、DNA亲和介质的制备107三、亲和层析中非特异性竞争DNA的正确使用112四、亲和层析的操作 113实验4 DNA酶I足迹分析117一、DNA酶I足迹探针的制备118二、DNA酶I足迹分析122实验5 凝胶迁移变动分析126实验6 肝素-Sepharose CL-2B的制备129试剂的配制 131参考文献 138第3单元 大肠杆菌中过表达重组蛋白的纯化 Richard R. Burgess和Mark W. Knuth141实验1 大肠杆菌细胞的破碎和包涵体的配制144实验2 包涵体沉淀的溶解、重折叠和离子交换层析148 实验3 可溶性提取物(核心RNA聚合酶-复合物)的聚乙烯亚胺沉淀和免疫亲和层 152 析一、PEI沉淀法分级分离可溶性提取物153二、免疫亲和层析 154实验4 定量测定与制备小结158一、蛋白质的定量测定 158二、定量SDS凝胶染色与扫描159三、定量蛋白质斑点印迹 160四、酶测定法 163五、纯化记录表 164六、蛋白质纯化总结表与主要组分的总电泳照片 165实验5 蛋白质的鉴定167一、纯蛋白质的紫外光谱——A280mm/A260nm167二、消光系数的测定(Scopes法)167三、过载染色SDS凝胶扫描法估测纯度169四、由非变性凝胶电泳迁移率法评估均一性 169方案补充实验:从过表达细菌提纯 172一、快速蛋白质斑点印迹试验 172二、是可溶的还是不溶的? 173三、溶解包涵体沉淀需多少N-十二烷基肌氨酸钠? 173四、沉淀和RNA聚合酶需多少聚乙烯亚胺?174五、从PEI沉淀洗脱和RNA聚合酶需多少盐?175六、透析法除N-十二烷基肌氨酸钠需多少时间? 176五、胰岛素受体对胰岛素亲和性的测定 202实验2 膜胰岛素受体的溶解205一、胰岛素受体的溶解及活性测定 211二、溶解膜蛋白用的去垢剂的筛选 213实验3 溶解受体的凝集素亲和层析215实验4 部分纯化受体的胰岛素亲和层析219一、胰岛素亲和层析 220二、配体与活化介质的偶联 221实验5 胰岛素受体与胰岛素的交联223实验6 胰岛素激素的胰岛素受体自磷酸化226实验7 胰岛素受体糖基化的分析229试剂的配制 234参考文献 240附录 243附录1 pH的测量243附录2 缓冲液的配制245附录3 电导率的测量247附录4 固态硫酸铵法分级分离248附录5 蛋白质的SDS-PAGE电泳249一、电泳 251二、凝胶染色 256三、样品制备(沉淀法) 259附录6 蛋白质的过甲酸氧化263附录7 用亚氨基二乙酸Sepharose 6B分离磷酸肽265附录8 蛋白质内序分析用肽段的分离与纯化267附录9 推荐读物269技术索引 271主题索引 273。
蛋白质的分离、纯化和鉴定

三、蛋白质的胶体性质与蛋பைடு நூலகம்质沉淀
蛋白质是亲水胶体。 1. 蛋白质是亲水胶体。 水化层与双电层使蛋白质成为稳定的亲水胶体。 水化层与双电层使蛋白质成为稳定的亲水胶体。
球状的水溶性蛋白疏水基团借疏水作用聚合在分 子内部, 子内部,而亲水基团则分布于表面与周围水分子 结合形成水化层; 结合形成水化层; 水化层 同时蛋白质表面的可解离基团带有相同的净电荷, 同时蛋白质表面的可解离基团带有相同的净电荷, 与其周围的反离子构成稳定的双电层。 与其周围的反离子构成稳定的双电层。 双电层
影响盐析的因素有: 影响盐析的因素有: 温度 pH值 值 蛋白质浓度 常用的中性盐主要有硫酸铵, 常用的中性盐主要有硫酸铵,优点是温度系数小而溶 解度大 。
※ 有机溶剂沉淀反应
:用与水互溶的乙醇、丙酮等夺取 用与水互溶的乙醇、
水膜,降低介电常数,增加蛋白质之间的相互作用, 水膜,降低介电常数,增加蛋白质之间的相互作用,使 蛋白质颗粒凝集而沉淀。不同蛋白质所需溶剂浓度不同, 蛋白质颗粒凝集而沉淀。不同蛋白质所需溶剂浓度不同, 可进行分级沉淀,但易引起变性,与有机溶剂浓度、 可进行分级沉淀,但易引起变性,与有机溶剂浓度、作 用时间和沉淀温度有关。 用时间和沉淀温度有关。 例如:丙酮沉淀。使用丙酮沉淀时,必须在 ~ ℃ 例如:丙酮沉淀。使用丙酮沉淀时,必须在0~4℃低温 下进行,丙酮用量一般 倍于蛋白质溶液体积 倍于蛋白质溶液体积。 下进行,丙酮用量一般10倍于蛋白质溶液体积。蛋白质 被丙酮沉淀后,应立即分离。除了丙酮以外, 被丙酮沉淀后,应立即分离。除了丙酮以外,也可用乙 醇沉淀。 醇沉淀。
(2)不可逆沉淀
在强烈沉淀条件下,不仅破坏了蛋白质胶体溶液的稳定性, 在强烈沉淀条件下,不仅破坏了蛋白质胶体溶液的稳定性, 而且也破坏了蛋白质的结构和性质, 而且也破坏了蛋白质的结构和性质,产生的蛋白质沉淀不可 能再重新溶解于水。 能再重新溶解于水。 由于沉淀过程发生了蛋白质的结构 和性质的变化,所以又称为变性沉淀。 和性质的变化,所以又称为变性沉淀。 如加热沉淀、强酸碱沉淀、 如加热沉淀、强酸碱沉淀、重金属盐 沉淀和生物碱沉淀等都属于不可逆沉淀。 沉淀和生物碱沉淀等都属于不可逆沉淀。
蛋白质纯化与鉴定

蛋白质纯化与鉴定蛋白质纯化与鉴定是生物化学研究中的重要环节,它们对于解析蛋白质的功能与结构具有至关重要的作用。
本文将介绍蛋白质纯化与鉴定的基本原理和常用方法,帮助读者深入了解和掌握这一领域的知识。
一、蛋白质纯化的基本原理蛋白质纯化的目的是从复杂的混合物中分离出目标蛋白质,使其达到高纯度并可供进一步研究。
纯化的基本原理包括分子大小、电荷、氢键、亲和性等特性的利用。
1. 分子大小分子大小是蛋白质纯化中最常用的原理之一。
常见的技术包括凝胶过滤、超速离心和透析等。
凝胶过滤是利用滤膜的孔径大小将分子按大小分离,大分子会滞留在凝胶中,而小分子则通过滤膜。
超速离心则是通过离心的力将分子按大小分离,大分子相对于小分子会沉降得更快。
透析则是通过膜的选择性渗透,让目标蛋白质在液相中透析。
2. 电荷蛋白质具有酸性和碱性基团,它们在不同pH条件下会带有正电荷或负电荷。
利用这一特性,可以利用离子交换色谱和等电聚焦等技术进行纯化。
在离子交换色谱中,蛋白质在具有相反电荷的交换树脂上吸附,通过改变溶液中的离子浓度和pH值来洗脱目标蛋白质。
等电聚焦则是通过在pH梯度中,蛋白质在等电点向电极方向移动,实现纯化。
3. 氢键氢键是蛋白质中常见的一种相互作用力,利用氢键的特性可以进行水相相互作用色谱的纯化。
该技术通过蛋白质与水相固定相的相互作用,实现蛋白质的纯化。
4. 亲和性亲和性是蛋白质纯化中常用的原理之一,通过将特定配体固定在固定相上,使其与目标蛋白质发生亲和作用,实现纯化。
常见的技术包括亲和层析、亲和电泳、亲和免疫吸附等。
二、常用的蛋白质纯化方法蛋白质纯化的方法多种多样,根据目标蛋白质的特性和纯化目的的不同,选择合适的方法进行纯化。
1. 酸碱沉淀法酸碱沉淀法是最常见的一种蛋白质纯化方法,通过调节溶液的pH 值,使蛋白质发生沉淀。
根据目标蛋白质的溶解性差异,可以采用酸性或碱性条件进行沉淀。
此外,在沉淀过程中还可以利用其他技术如离心和过滤等进一步提高纯度。
生物大分子的纯化与鉴定技术

生物大分子的纯化与鉴定技术生物大分子是生命体内最基本的组成元素之一,包括蛋白质、核酸、多糖和脂质等。
它们的结构和功能对于生物体的发育、代谢、传递遗传信息等方方面面都有着非常重要的作用。
因此,对它们进行纯化和鉴定是生物学和生命科学研究中不可或缺的重要步骤。
一、蛋白质的纯化与鉴定技术1. 活性层析技术活性层析是从混合样品中纯化蛋白质的一种常用技术。
它基于蛋白质与特定配体之间的互相作用,利用这种相互作用把想要纯化的蛋白质从混合物中分离出来。
这种方法不仅可以分离出单一种类的蛋白质,还可以根据蛋白质与配体的亲和性进行分层次纯化。
同时,利用不同的配体也能够分离出不同功能的酶,从而进一步扩大了对蛋白质的纯化范围。
2. 离子交换层析技术离子交换层析是一种基于蛋白质电荷的分离方法。
它利用固定在树脂表面上的离子,通过与蛋白质表面的离子相互作用,将蛋白质从混合物中分离出来。
这种方法常常用于分离带有不同电荷的蛋白质,以及酸性和碱性细胞因子等物质。
3. 尺寸排除层析技术尺寸排除层析技术是一种基于蛋白质大小的分离方法。
它通过让大分子在固定相中的孔隙中滞留时间长,从而将大分子和小分子分离出来。
这种方法通常用于分离相对分子质量较大的蛋白质,如重组蛋白、抗体等。
4. 逆相高效液相色谱技术逆相高效液相色谱是一种基于蛋白质亲水性的分离方法。
它利用逆相柱的反相作用,将亲水性较小的蛋白质从混合物中分离出来。
这种方法常常被用于提纯高表达体系中的蛋白质。
5. SDS-PAGE和Western Blotting技术SDS-PAGE是一种基于蛋白质质量和电荷的分离技术,通过在凝胶中加入SDS(十二烷基硫酸钠)和还原剂,可以使不同电荷和大小的蛋白质变得相同,从而进行准确的大小分离。
Western Blotting是一种检测蛋白质表达的方法,它利用特异性抗体将蛋白质分子分离出来,并将其转移到膜上,然后通过特异性抗体进一步检测目标蛋白质的表达量。
二、核酸的纯化与鉴定技术1. 常规离心技术常规离心技术是一种对复杂混合物进行分离和预纯化的方法,通过调整离心速度和离心时间,将不同大小和形状的细胞组分分离出来。
蛋白质分离纯化与鉴定

蛋白质分离纯化与鉴定蛋白质分离纯化与鉴定是蛋白质的关键步骤,它包括从蛋白质样品中分离出蛋白质和去除剩余的其他杂质,从而确保得到高纯度的蛋白质,同时也可以利用这一步骤对蛋白质进行识别和定量。
蛋白质分离纯化和鉴定依赖于特定的结合机制来对蛋白质样品和它们之间的干扰进行分离,纯化和定量,重要的是选择合适的结合机制,包括静电结合、磁性结合和生物类比结合。
静电结合是利用离子的电荷来实现蛋白质的结合的一种方法,如逆流苯胺凝胶电泳(IEX)、硼滤膜萃取(BFE)、凝胶乳液沉淀(GFC)等。
其优势是有效的提取蛋白质,不会分离出太多的杂质,因此可用于纯化以及分离同种蛋白质,但存在着选择性不高和操作复杂的问题。
磁性分离是利用磁性粒子将蛋白质(如金蛋白)从样品中分离出来的一种技术,主要应用于从生物体或细胞内筛选靶向蛋白质,如免疫磁珠筛选和快速免疫磁珠筛选等。
优势是极好的选择性和高回收率,缺点是不能太多的纯化和定量。
生物类比结合是指使用小分子有机分子的氢键与蛋白质聚合体的氢键形成竞争,使蛋白质结构发生变化、表面可溶性结构发生变化,以达到蛋白质分离纯化和鉴定的目的。
生物类比结合技术同时具有高分辨率、高效率、低毒性及可控性优点。
如两亲聚酰胺模型(TCA)技术、新型聚乙二醇活性纤维素(PEG)技术等。
优势在于可同时提取多种蛋白质,经纯化后的蛋白质也能保留蛋白质的完整性,但缺点是技术操作比较复杂,耗时较久。
蛋白质分离纯化与鉴定是一个综合技术,因此在蛋白质分离纯化及鉴定过程中应根据蛋白质特性,选择最适合自身情况的结合机制,进行一系列的步骤,以得到最纯净的蛋白质分离纯化,识别和定量的目的。
蛋白质的分离纯化与鉴定

▫ 如,利用尿素的变性和复性方法,从包涵体中 纯化原核表达蛋白
2. 分离方法
在实验操作上,分为: •沉淀法 •离心法 •电泳法 •超滤法 •相分配法 •层析法
•Note
*不可能有一套统一的方法适用于分离纯 化所有的蛋白质,
*但每一种蛋白质可能都有一套适合的分 离纯化程序,
*而且所用的主要技术手段都基本相同。
• 原理
▫ 蛋白质分子表面亲水性和疏水性带电基团 不同,因此在溶剂中的溶解度不同。
▫ 通过改变pH、离子强度或加入有机试剂, 促进蛋白质分子的凝聚进而形成沉淀。
• 方法:沉淀法
▫ 盐析法(eg. 硫酸铵) ▫ 有机溶剂沉淀法(eg. 丙酮) ▫ 等电点沉淀法
•盐析法
• 蛋白质在高浓度中性盐溶液中会沉淀析出, 称为盐析。
几百~百万 Da
• 常用方法
▫ 透析 ▫ 超滤 ▫ 凝胶过滤 ▫ 离心
➢ 透析(dialysis) 利用透析袋把大 分子蛋白质与小 分子化合物分开 的方法。
➢ 超滤法 应用正压或离心力 使蛋白质溶液透过 有一定截留分子量 的超滤膜,达到浓 缩蛋白质溶液的目 的。
➢ 超滤法 应用正压或离心力 使蛋白质溶液透过 有一定截留分子量 的超滤膜,达到浓 缩蛋白质溶液的目 的。
▫ 固体材料 洗涤:自来水—蒸馏水—提取缓冲液 材料破碎:
•材料破碎
• 机械剪碎 • 研磨 • 反复冻融法 • 超声破碎法 • 高压匀浆法 • 酶解法
2、蛋白质的提取
• ①提取分离原则
▫ 尽可能多地提取目的蛋白,同时避免活性 丢失(温度过高、 pH、有机试剂、金属 离子、蛋白酶等因素)
▫ 选择合适的pH、选择合适的离子强度
二、蛋白质纯化的总原则和纯化步骤
蛋白质的分离纯化实验报告

蛋白质的分离纯化实验报告一、实验目的1、掌握蛋白质分离纯化的基本原理和方法。
2、学会运用不同的技术手段对蛋白质进行提取、分离和纯化。
3、熟悉蛋白质纯度鉴定的常用方法。
二、实验原理蛋白质是生物体中重要的大分子化合物,其分离纯化是研究蛋白质结构和功能的重要前提。
蛋白质的分离纯化主要依据其物理化学性质的差异,如分子大小、电荷、溶解度、亲和力等。
常见的分离纯化方法包括:1、盐析法:通过向蛋白质溶液中加入中性盐,如硫酸铵,使蛋白质溶解度降低而沉淀析出。
2、凝胶过滤层析:利用凝胶颗粒的多孔网状结构,根据蛋白质分子大小进行分离。
3、离子交换层析:基于蛋白质所带电荷的不同,在离子交换树脂上进行吸附和解吸。
4、亲和层析:利用蛋白质与特定配体之间的特异性亲和力进行分离。
三、实验材料与设备1、材料新鲜的动物组织(如肝脏)各种试剂,包括硫酸铵、磷酸盐缓冲液、离子交换树脂、亲和配体等。
2、设备离心机层析柱紫外分光光度计电泳仪四、实验步骤1、蛋白质的提取将新鲜的动物组织剪碎,加入适量的磷酸盐缓冲液,在冰浴中匀浆。
低温离心(4℃,10000 rpm,20 min),收集上清液,即为粗提的蛋白质溶液。
2、盐析沉淀在上清液中缓慢加入硫酸铵粉末,边加边搅拌,使其饱和度逐渐增加到 50%。
搅拌 30 min 后,低温离心(4℃,10000 rpm,20 min),收集沉淀。
3、凝胶过滤层析装柱:将凝胶颗粒填充到层析柱中,用缓冲液平衡柱子。
上样:将盐析沉淀溶解后,缓慢上样到层析柱中。
洗脱:用缓冲液进行洗脱,收集不同洗脱峰的流出液。
4、离子交换层析装柱:将离子交换树脂填充到层析柱中,用起始缓冲液平衡柱子。
上样:将凝胶过滤层析收集的样品上样到离子交换层析柱中。
洗脱:采用梯度洗脱的方法,逐渐改变缓冲液的离子强度,收集洗脱峰。
5、亲和层析装柱:将亲和配体偶联到层析介质上,填充到层析柱中,用平衡缓冲液平衡柱子。
上样:将离子交换层析收集的样品上样到亲和层析柱中。
蛋白质操作规程(3篇)

第1篇一、目的为确保蛋白质实验的顺利进行,保证实验结果的准确性和安全性,特制定本操作规程。
二、适用范围本规程适用于蛋白质的提取、纯化、鉴定、分析等实验操作。
三、操作步骤1. 实验准备(1)实验前应仔细阅读实验方案,了解实验原理、目的、步骤及注意事项。
(2)准备实验所需试剂、仪器和设备,确保其处于正常工作状态。
(3)实验前应佩戴防护眼镜、手套和口罩,避免接触有害物质。
2. 蛋白质提取(1)取适量组织或细胞,用组织匀浆器或超声波破碎器破碎。
(2)加入适量裂解液,充分搅拌,使蛋白质溶解。
(3)低温离心,收集上清液,即为蛋白质粗提液。
3. 蛋白质纯化(1)根据蛋白质的性质,选择合适的纯化方法,如离子交换、凝胶过滤、亲和层析等。
(2)将蛋白质粗提液按照纯化方法进行操作,如加入缓冲液、平衡液、洗脱液等。
(3)收集纯化后的蛋白质,低温保存。
4. 蛋白质鉴定(1)采用SDS-PAGE电泳对蛋白质进行初步鉴定。
(2)通过Western blot技术检测蛋白质的特异性抗体。
(3)通过质谱分析等技术对蛋白质进行结构鉴定。
5. 蛋白质分析(1)采用紫外分光光度计测定蛋白质浓度。
(2)采用凝胶过滤色谱、动态光散射等技术研究蛋白质的分子量。
(3)通过酶活性、底物消耗等方法研究蛋白质的生物活性。
四、注意事项1. 实验过程中应严格遵守无菌操作原则,防止污染。
2. 实验操作应规范,避免人为误差。
3. 试剂、仪器和设备应定期校准、维护,确保实验结果的准确性。
4. 实验过程中产生的废弃物应按照相关规定进行处理。
5. 实验过程中应关注自身安全,防止化学品、生物制品等对人体的危害。
五、实验记录1. 实验记录应详细记录实验时间、试剂、仪器、操作步骤、实验结果等。
2. 实验记录应真实、准确、完整,便于实验结果的追溯和分析。
六、附则本规程由实验室负责解释和修订,自发布之日起实施。
第2篇一、前言蛋白质是生命活动的重要物质基础,广泛应用于生物学、医学、农业等领域。
血清白球蛋白的分离、纯化及鉴定

阳离子交换剂具有带负电荷的酸性基团作 为离子交换基团,能吸附流动相中的阳离 子。
阴离子交换剂具有带正电荷的碱性基团作 为离子交换基团,能吸附流动相中的阴离 子。
0.02M NH4AC
AC-
++
AC-
+
AC- + AC++
AC- AC-
蛋白样品
NH4AC
-
++ -
- +-
- +-
++
- --
AC-
原理: 当高浓度盐存在时,蛋白质往往凝 聚并析出沉淀。该技术为“盐析”。
• 不同的蛋白质在不同浓度的盐中形成沉淀。在 半饱和硫酸铵溶液中,血清球蛋白会沉淀,经 离心后,可与白蛋白分离开。
• 影响因素:PH、温度、蛋白质纯度等。 • 逐渐改变硫酸铵浓度可分段盐析出不同的蛋白。
操作
一、盐析
-- 白蛋白、γ球蛋白的粗分离
血清白蛋白、γ-球蛋白 的分离、纯化及鉴定
分离纯化的一般程序
选择材料 破碎细胞
提取 (预处理) 分离纯化 (粗分级,细分级) 分析及鉴定
实验目的
通过从血清中分离、纯化、鉴定血 清白蛋白和γ-球蛋白的实验,培养学 生综合应用盐析、离心、色谱、电泳 分光等技术来分离纯化特定蛋白质的 技能。
实验原理
++
AC-
+
AC- + AC- 阴离子交换剂 ++
AC- AC- γ-球蛋白带正电
NH4+
+ +
得到纯化的γ-球蛋白
白蛋白,α、β
球蛋白带负电
-
-
蛋白质纯度鉴定

蛋白质纯度鉴定一、介绍蛋白质是生命体内的重要组成部分,其纯度鉴定是研究和应用蛋白质的基础工作。
本文将详细探讨蛋白质纯度鉴定的原理、方法以及应用。
二、蛋白质纯度鉴定的原理蛋白质纯度鉴定的原理是基于蛋白质的物化性质和分离纯化的方法。
蛋白质的物化性质包括分子量、电荷、溶解度等。
2.1 分子量鉴定蛋白质的分子量可通过SDS-PAGE、凝胶过滤层析等方法进行鉴定。
其中,SDS-PAGE是最常用的方法之一,通过对蛋白质样品进行电泳分离,根据蛋白质在凝胶中的迁移速率,可以推断出其分子量大小。
2.2 电荷鉴定蛋白质的电荷性质可以通过等电聚焦电泳进行鉴定。
等电聚焦电泳利用蛋白质在不同pH值下的电荷状态差异,通过电泳将蛋白质分离出来,可以推断出其等电点和电荷情况。
三、蛋白质纯度鉴定的方法3.1 离子交换层析法离子交换层析法是蛋白质纯度鉴定的一种常用方法。
该方法利用蛋白质与离子交换树脂之间的离子交互作用,将蛋白质从混合样品中分离出来。
通过调整溶液的离子浓度和pH值,可以控制蛋白质的结合和洗脱。
3.2 亲和层析法亲和层析法是一种基于蛋白质与亲和基质之间的特异性结合的方法。
该方法通过将具有亲和性的配体固定在层析基质上,将目标蛋白质从混合物中选择性地吸附和洗脱。
亲和层析法不仅可以用于蛋白质的分离和纯化,也可以用于蛋白质与其他分子(如小分子药物、互补的DNA或RNA)的相互作用研究。
3.3 凝胶过滤层析法凝胶过滤层析法是一种基于分子大小的分离方法。
该方法通过将混合物样品通过特定孔径的凝胶过滤膜,根据蛋白质的分子大小将其从混合物中分离。
较大分子的蛋白质无法通过孔径较小的凝胶,进而得到纯化的目标蛋白质。
3.4 透析法透析法是一种常用的蛋白质纯化和浓缩的方法。
该方法基于溶液中溶质的浓度差异,通过使用透析袋将目标蛋白质与其他分子(如盐、小分子混合物)进行分离。
透析法适用于蛋白质纯化前的提纯工作,也可以作为一种蛋白质溶液去盐和换缓冲液的方法。
蛋白质提取、纯化、鉴定的方法(一)

蛋白质提取、纯化、鉴定的方法(一)一、硫酸铵沉淀硫酸铵是用于沉淀蛋白质的最常用的盐。
低浓度硫酸铵使蛋白质的溶解度增大,即所谓的盐溶(salting in),但当硫酸铵浓度增加到一定浓度后,蛋白质的溶解度开始减小,即所谓的盐析(salting out)。
当硫酸铵达到一定浓度时,蛋白质析出。
不同蛋白质的盐析浓度有差异,了解目的蛋白质析出所需的硫酸铵浓度,就可部分纯化这种蛋白质。
注意,目的蛋白质的浓度与盐析浓度有一定的关系,如1mg/ml与0.01mg /ml的蛋白质浓度所需的盐析浓度是不一样的,低浓度的蛋白质盐析需要较高浓度的硫酸铵。
硫酸铵沉淀不仅可去除一些杂蛋白,还可去除其他的杂质如脂质等各种小分子。
二、三相分配技术举一个例子来说明该技术的原理:提取E.coli中的绿色荧光蛋白,E.coli与适当浓度的硫酸铵混匀,加入等体积的叔丁醇,振荡混匀,低速离心,分成三相。
上层为有机相,含有细菌的膜脂和脂溶性物质如色素;中层,含有绿色荧光蛋白;下层为相,含有完整细胞壁的E.coli、核酸和大量的蛋白质等。
这个技术的原理是,适当浓度的硫酸铵可沉淀大量的蛋白质但不沉淀绿色荧光蛋白;叔丁醇可溶解细菌的细胞膜,因此可释放绿色荧光蛋白;同时叔丁醇是种有机溶剂,可使蛋白质和核酸等大分子变性,使其在原位沉淀,仍留在细菌的细胞壁内。
该方法的优点是操作简便,省去了消化细胞壁和去除核酸及大多数杂蛋白等烦琐步骤。
但该方法只适用于那些能够耐受有机溶剂的蛋白质。
这样的技术得到的是部分纯化的蛋白质。
三、层析技术1.离子交换层析 这一技术是根据不同的蛋白质有不同的等电点,其吸附在离子交换剂上的强弱有分别,来对蛋白质进行分离。
离子交换剂可分为两种,阳离子交换剂(如羧甲纤维素)和阴离子交换剂(如DEAE-纤维素)。
在某一pH值条件下,当阳(阴)离子交换剂带有负(正)电荷而蛋白质带有正(负)电荷时,蛋白质就可吸附在阳(阴)离子交换剂上。
各种蛋白质的等电点可能不同,因此其吸附在离子交换剂上的强度不同,用不同离子强度的洗脱液可将pI不同的蛋白质洗脱。
蛋白质的表达、纯化及检测-分子实验报告

实验目的1.了解外源基因在大肠杆菌细胞中的诱导表达情况2.学会用SDS-PAGE电泳法分离不同分子量的蛋白质3.学习通过亲和层析法纯化目的蛋白4.学会考马斯亮蓝染色法和蛋白质杂交法检测蛋白质实验原理1.外源基因在大肠杆菌细胞中的诱导表达:将外源基因克隆在特殊的表达载体中,让其在E. coli中表达,该表达载体上含有lac操作子的启动子。
在不加诱导剂的条件下培养宿主菌,lacI基因表达的阻遏蛋白LacI与lac操作子结合,使外源基因不能表达;向培养基中加入诱导物IPTG后,LacI阻遏蛋白变构失活,不能与lac操作子结合,外源基因就表达。
2.蛋白质SDS-PAGE电泳分离:SDS-PAGE是最常用的定性分析蛋白质的电泳方式,特别是用于蛋白质纯度检测和测定蛋白质分子量。
其分离原理是根据蛋白质分子量的差异,因为SDS-PAGE的样品处理液及缓冲液的加入破坏了蛋白质的二级、三级、四级等结构,并使SDS与蛋白质充分结合形成SDS-蛋白质复合物,稳定地存在于均一的溶液中,SDS与蛋白质结合后使SDS-蛋白质复合物上带有大量的负电荷,远远超过其原来所带的电荷,从而使蛋白质原来所带的电荷可以忽略不计,消除了不同分子之间原有的电荷差别,其电泳迁移率主要取决于亚基分子质量的大小,这样分离出的谱带也为蛋白质的亚基。
3.考马斯亮蓝法检测蛋白质:考马斯亮蓝是一种蛋白质染料,主要有R-250和G-250两种类型。
考马斯亮蓝可以和蛋白肽链中碱性氨基酸残基或芳香族氨基酸残基(Arg,Trp,Tyr,His,Phe)结合。
考马斯亮蓝R250多用于聚丙烯酰胺凝胶电泳后蛋白质条带的染色;因为考马斯亮蓝R250中的R代表Red,偏红,红蓝色,与蛋白质结合虽然比较缓慢,但是染料可以穿透凝胶,染胶效果好,染色后为蓝色,且与胶的结合可以被洗脱下去,所以可以用来对电泳条带染色。
4.基因融合就是将两个或多个开放读码框按一定顺序连接在一起,融合阅读框架的表达产物是一个杂和蛋白。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用溶解度差别的纯化方法
1. 等电点沉淀和pH控制
蛋白质处于等电点时, 其静电荷为零,由于相邻蛋 白质分子之间没有静电斥力 而趋于聚集沉淀。
等电点沉淀实例
①工业生产胰岛素(pI=5.3)时,先调pH至8.0除去碱性 蛋白质,再调pH至3.0除去酸性蛋白质(同时加入一定 浓度的有机溶剂以提高沉淀效果)。 ②碱性磷酸酯酶的pI沉淀提取:发酵液调pH 4.0后出现 含碱性磷酸酯酶的沉淀物,离心收集沉淀物。用pH 9.0 的0.1 mol/L Tris-HCl缓冲液重新溶解,加入20~40% 饱和度的硫酸铵分级,离心收集的沉淀Tris-HCl缓冲液 再次沉淀,即得较纯的碱性磷酸酯酶。
1、前处理(pretreatment) 去杂质、脱脂 细胞破碎
机械破碎法
研磨法 组织捣碎器法 超声波法 压榨法 冻融法
溶胀 自溶 化学法 酶解法
缓冲液溶提、离心或过滤去除细胞碎片
缓冲液的选择
离子强度:0.1-0.2 M pH范围:7.0 - 8.0 磷酸盐缓冲液 Tris缓冲液 1、抗氧化剂:DTT,BME,Cys,GSH 2、酶抑制剂:EDTA,蛋白酶抑制 PMSF 3、酶的辅因子或辅基 4、植物细胞(酚类化合物):PVP 5、抗菌剂:NaN3
蛋白质的分离纯化的基础 蛋白质的分离纯化原则和程序 蛋白质的含量测定 蛋白质纯度鉴定 蛋白质的分离纯化方法 蛋白质层析技术 蛋白层析的主要技术
10/12/2015
3
第一部分 蛋白质的分离纯化的基础:
结构和特性
蛋白质的结构和特性
1. 2. 3. 4.
酸碱性质 胶体性质 分子量的测定 结构和形状
Bradford法的优点
这种蛋白质测定法具有超过其他几种方法的突 出优点,因而得到广泛的应用。这一方法是目 前灵敏度最高的蛋白质测定法。 (1)灵敏度高 (2)测定快速、简便,只需加一种试剂。 (3)干扰物质少。
缺
点
(1)由于各种蛋白质中的精氨酸和芳香族氨基酸 的含量不同,因此Bradford法用于不同蛋白质测定 时有较大的偏差。 (2)仍有一些物质干扰此法的测定,主要的干扰 物质有:去污剂、 Triton X-100、十二烷基硫酸 钠(SDS)和0.1 N的NaOH。 (3)标准曲线也有轻微的非线性,测定未知蛋白 的595nm吸光值需落在标准曲线的线性范围内。
蛋白质的分离纯化方法
分子大小:透析,超过滤,凝胶过滤层析等 溶解度:沉淀,盐析等 电荷:电泳,离子交换等 吸附性质:吸附层析 对配体分子的生物学亲和力:亲和层析
根据分子大小不同的纯化方法
1. 透析、超过滤
加 压
血液透析
血液
透析液
小分子溶出 小分子被带出
透析机
脱盐,浓缩
2.密度梯度离心
4.BCA法
蛋白质还原Cu2 +成Cu+,与4,4’-二羧基 -2,2’-二喹啉(BCA)形成配合物,显紫 色,比色测定。
5.考马斯亮蓝法(Bradfold法)
考马斯亮兰法是1976年由Bradford建立的, 是根据蛋白质与染料相结合的原理设计的。考马 斯亮兰G-250染料,在酸性溶液中与蛋白质结合 ,使染料最大吸收峰的位置由465nm变为 595nm,溶液的颜色也由棕红色变为兰色。 经研究认为,染料主要是与蛋白质中的碱性 氨基酸(特别是精氨酸)和芳香族氨基酸残基相 结合。在595nm下测定的吸光度值A595,与蛋 白质浓度成正比。
1966年,Andrews得出一个经验公式: lgMr = a/b—Ve/bVo Ve 为洗脱体积。它是自加样品开始到该 组分的洗脱峰(峰顶)出现时所流出的 体积。Vo为外水体积,Mr 为相对分子质 量,a和b为常数。
5、 SDS-PAGE 测分子量 (sodium dodecyl sulfate polyacylamide gel electrophoresis)
5、避免样品反复冻融和剧烈搅动,以防蛋白质 的变性。 6、缓冲溶液成分尽量模拟细胞内环境。 7、在缓冲溶液中加入 0.1~1 mmol/L DTT(或 β-巯基乙醇),防止蛋白质的氧化。 8、加1~10 mmol/L EDTA金属螯合剂,防止重 金属对目标蛋白的破坏。 9、使用灭菌溶液,防止微生物生长。
十二烷基硫酸钠聚丙烯酰胺凝胶电泳 ① SDS-蛋白质形成复合物,1.4克SDS与1克蛋白质结 合,相当于每两个氨基酸残基结合一个分子的SDS。 这样,蛋白质的原有电荷效应被覆盖,带有相同密度 负电荷,分子量大小与迁移率成正比。 ② SDS改变蛋白质分子单体构象,全部变成似雪茄烟 形的长椭圆棒型。
四、蛋白分子的结构和形状
单位:Dalton(道尔顿),
英国化学家、物理学家,原子学说创始人John Dalton. 1道尔顿=1×C12绝对质量/12=1/N g( N为阿伏伽德罗常数) ≈1.67×10-27千克
蛋白质分子量的测定
1、最小分子量测定法: 2、渗透压法 3、超离心法 4、凝胶过滤法 5、SDS-聚丙烯酰胺凝胶电泳
一、蛋白质的酸碱性质
两性电解质 可解离基团:α-NH3+ α-COO侧链上的功能基团 氨基酸有的化学性质蛋白质就有 pI=正负电荷相等,净电荷为零时的pH
水化膜 + + + + + + + - - - -- - - -
酸 碱 在等电点的蛋白质 脱水作用
碱 酸
带正电荷的蛋白质 脱水作用
+ + + + + + + +
纯化实例:纯化Taq DNA聚合酶
1969年从美国黄石国家森林公园火山温泉 中分离的水生栖热菌(Thermus aquaticus)
带负电荷的蛋白质 脱水作用
- - - - - -
碱
酸
- -
带正电荷的蛋白质
不稳定的蛋白ห้องสมุดไป่ตู้颗粒
带负电荷的蛋白质
溶液中蛋白质的聚沉
二、蛋白质的胶体性质
胶体性质(colloidal system)
胶体溶液的特点: 分散相质点直径在1-100 nm内 分散相质点带同种静电荷,不易聚集沉淀 溶于水 大多数球状蛋白能形成稳定的亲水胶体溶液
最常使用的两种缓冲液
添加成分
2、粗分级分离
目的:去除杂蛋白,核酸,多糖等杂质, 同时浓缩蛋白质溶液
特点:简便,处理量大 方法:盐析、等电点沉淀、有机溶剂分 级分离、超过滤、凝胶过滤、冷冻真空 干燥、加热变性沉淀,等等。
3、细分级分离
目的:进一步纯化目的蛋白
特点:规模较小,分辨率很高
第二部分 蛋白质的分离纯化原则和程序
蛋白质分离纯化的一般原则
增加蛋白制品 (preparation) 的纯度 (purity) 或比活(specific activity)。 去除变性的和不要的蛋白质。 所得蛋白质的产量达到最高值。
蛋白质分离纯化的一般程序
前处理(pretreatment) 粗分级分离(rough fractionation) 细分级分离(fine fractionation) 结晶(crystallization)及蛋白质的鉴定
球状蛋白质
近似于球形或椭圆形,生物界中的大多数蛋白 质为球状蛋白质,如大多数的酶类、血红蛋白 、肌红蛋白以及多种溶解于胞液或体液中的蛋 白质。球状蛋白质一般可溶于水,并且具有特 异的生物学活性(如血红蛋白运输氧、酶起催 化作用等)。
纤维蛋白质
纤维状蛋白质多是构成机体的结构 材料,如皮肤、肌腱、软骨及骨组 织中的胶原蛋白,肺、大动脉等中 的弹性蛋白,毛发及皮肤中的角蛋 白,蚕丝中的蚕丝蛋白等。它们一 般难溶于水,在机体中起着粘合、 支撑、保护、负重和营养等功能。 纤维状蛋白质的更新较慢。
2.紫外吸收法
由于蛋白质分子中含有共轭双键的酪氨酸和 色氨酸,因此在280nm波长处有特征性吸收 峰。蛋白质的OD280与其浓度呈正比关系,因 此可作蛋白质定量测定。 280nm比色,测定后蛋白质溶液还能回收, 操作简便,但精确度不高。
3.Folin-酚法(Lowry法)
蛋 白质 中的酪 氨酸或 半胱氨 酸 ,能 与 Folin-酚试剂起氧化还原反应,生成蓝色 化合物,500nm比色测定。 Folin-酚试剂的配制比较复杂。
2.蛋白质的盐溶和盐析
低浓度,中性盐可以增加蛋白质表面的电荷, 促进蛋白质溶解。浓度增加到一定数值时,蛋白质 溶解度开始下降。
3. 有机溶剂分级分离
与水互溶的有机溶剂(甲醇,乙醇,丙酮等)能 使蛋白质在水中的溶解度显著降低。 但在常温下,易引起蛋白变性,需在低温下进行。
有机溶剂沉淀实例
纯化策略的制定
Advanced Biochemistry Fall 2015
Protein Separation and Purification 蛋白质分离和纯化-I
蛋白质分离纯化的必要性
需要单一的蛋白质研究其结构与功能 化学修饰需要单一的蛋白质 纯化改造过的蛋白质,从而开发出性 能更优良的蛋白质
Lecture Outline
蛋白质的分子结构包括
一级结构 (primary structure) 二级结构 (secondary structure) 三级结构 (tertiary structure) 四级结构 (quaternary structure)