图形运动(教案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形运动(复习课)

一、学习目标:

知识目标:理解图形运动的三种基本形式(平移、翻折、旋转)的直观意义;认识图形运动

的基本特征,感受图形运动前后的变化特点,并进一步发展数形结合思想.

能力目标:培养学生的观察能力.

情感目标:在观察、探索的过程让学生获得发现的喜悦,体验数学活动中充满着探索和创造.

二、学习重点、难点:

理解图形运动的意义及有关特点并在解题过程中灵活运用.

三、学习过程:

(一)、概念梳理:

图形运动三种基本形式:

平移的定义、特点

翻折的定义、特点

旋转的定义、特点 (二)、综合练习:

1、 在图中,若将直线OA 向上平移一个单位,那么平移后的

直线解析式是___________;若将直线OA 向右平移两个

单位,那么平移后的直线解析式是__________

2、 已知抛物线32

+=x y

(1) 向右平移2个单位,再向上平移一个单位所得的抛物线的解析式是____

(2) 将它的图像绕顶点旋转180°,则旋转后图像的解析式是________

(3) 将它的图像沿x 轴翻折,则翻折后的图像解析式是_________

3、 如图将等腰梯形纸片ABCD 沿对角线折叠,点A 恰好落在底边BC 中点E 处,若AD =2,

则梯形ABCD 的周长是________

4、 如图,矩形ABCD 沿折痕AP 折叠,使点D 落在BC 边上的点D’处,已知AB=4,AD=5.

则DP 的长度是_______

5、 正方形ABCD 的边长为1,如果将线段BD 绕着点B 旋转后,点D 落在BC 延长线上的

点D’处,那么tan ∠BAD’=_______

(三)小结:

(四)中考链接:

1、如图,在直角坐标系中,O 为原点,点A 在x 轴的正半轴上,点B 在y 轴的正半轴上,tan ∠OAB=2.二次函数22++=mx x y 的图像经过点A 、B ,顶点为D .

(1)求这个二次函数的解析式。

(2)将△OAB 绕着点A 顺时针旋转90°后,点B 落到点C 的位置。将上述二次函数图像

D C

A

沿y 轴向上或向下平移后经过点C .请直接写出点C 的坐标和平移后所得图像的函数解析式。

(3)设(2)中平移后所得二次函数图像与y 轴的交点为B’,顶点为D’.点P 在平移后的二次函数图像上,且满足△PBB ’的面积是△PDD’面积的2倍,求点P 坐标.

2、如图,⊙O 的半径OA=1,点M 是线段OA 延长线上的任一点,⊙M 与⊙O 内切于点B ,过点A 作CD ⊥OA 交⊙M 于点C 、D ,联结CM 、OC,OC 交⊙O 于E .

(1)将⊙O 沿弦CD 翻折到⊙N ,当OM=4时,试判断⊙N 与直线CM 的位置关系;

(2)将⊙O 绕着点E 旋转180°得到⊙P ,如果⊙P 与⊙M 内切,求OM 的长.

(五)作业布置:

1、如图,在△ABC 中,AB=AC ,∠BAC=90°, ∠DAE=45°

(1)将△ABD 绕点A 逆时针旋转90°后得△ACD ’,则∠D’CD =____, ∠EAD’=____

(2)线段BD 、DE 、EC 能构成一个三角形吗?

4、点P 是正三角形ABC 内一点,

(1)且PA=6,PB=8,PC=10,若将△PBA 绕点B 顺时针旋转60°后,得△P’BC ,则点P 与点P’之间的距离为____,∠APB 的度数=_________。

(2)若∠APB=110°, ∠BPC=135°

①以PA 、PB 、PC 为边能否组成一个三角形,若能,求出这个三角形的各个内角度数;若不能,请说明理由 ②若∠APB 的大小保持不变,当∠BPC 等于多少度时,以PA 、PB 、PC 为边的三角形是一个直角三角形?

O A B y

A P A

真正好的朋友,从来不需要这些表面功夫。走在这漫漫俗尘,形如微尘的我们,每天忙碌的像只蝼蚁,哪有时间去整那些虚假的表面文章。那些沉淀在岁月里的真情实意,哪一个不是无事各自忙,有事时,却又从不问回报几何的真心相助?

至于那些平日里看上去可以一起打闹,一起吃喝,一起厮混,看似好成一片的人,或许,只是你在多少次的四目相对之时,动了真心,存了真义,是你默默认定对方可称朋友,有困难的时候是你愿意伸以援手,但未必对方一样。

多少看似热情的人,内心是薄情的。而多少看似淡漠的人,内心实则一片温热。那些表面热诚的人,总是相安无事各自好,一旦你有事需要援助,别说大事,就是小事需代劳,你都会发现原来不过情比纸薄,对方远比你自己想的要现实的多。

有些人,自从与你接近,内心就存有一份自己的打算。定是你于他而言,多少有些可用之处。正所谓无事献殷勤,非奸即盗。在这个功利心弥漫的世态下,没有哪一份意外的热情不无所图。不仅是职场如此,男人如此,就连女人也不能免俗。

接孩子的时候,被困高层电梯下不来,一个电话打来,希望能帮忙照看一下放学的孩子。实在的人总是把别人毫不见外的信任,当作是一种荣幸,于是想都不用想就能一口答应。可当你有事需要对方只是代笔签个字这样的举手之劳时,对方都能各种不情愿各种推脱,至此你终是发现,原来人与人之间真不是一杯换一盏的事儿。关键时刻,还是得找那些看似平时不联系,但一开口能力范围之内就愿意为你想办法的人。

多少人天真的以为,认识的人越多,人脉就越广,自己就越厉害,其实,那些所谓的人脉,不过廉价。倘若你没有同等的利用价值,谁会与你建立起所谓的交际?最是谈钱伤感情,也最是感情不值钱。别结识了比自己优秀比自己有能力的人,就觉得有了依靠有了光环,自己不足够优秀,结识谁都没有用。在你困难需求的时候,你开口求助,能够推脱敷衍那算给面子,对你闭门不见佯装不熟也是情理之中。

日久见人心,患难见真情。平时是平时,别把平时当真情。这世上多少人变脸如翻书,有求于你一个样,各自安好一个样,最是有求于他嘴脸陋,让你瞬间就明白,何谓人情凉薄。

随着年龄的增长,人心的不再纯澈,人与人之间的交往就不再那么的纯粹而真心了。也正是因为如此,才更要珍惜那些默默守护在你生活中的朋友。别看平时忙的少有见面,少有聊天,就连微信,都少有私信。但有事儿的时候,只一声招呼,谁能出力都会挺身而出,义不容辞。

相关文档
最新文档