同底数幂的除法

合集下载

同底数幂的除法课件

同底数幂的除法课件

知1-练
6 (2015·义乌)下面是一位同学做的四道题: ①2a+3b=5ab;②(3a3)2=6a6;③a6÷a2=a3; ④a2·a3=a5,其中做对的一道题的序号是( ) A.① B.② C.③ D.④
7 如果将a8写成下列各式,正确的共有( ) ①a4+a4;②(a2)4;③a16÷a2;④(a4)2; ⑤(a4)4;⑥a4·a4;⑦a20÷a12;⑧2a8-a8. A.3个 B.4个 C.5个 D.6个
解:(1) a7÷a4 = a7-4 = a3 ; (2) (-x)6÷(-x)3 = (-x)6-3 = (-x)3 = -x3 ; (3) (xy)4÷(xy) = (xy)4-1 = (xy)3 = x3y3 ; (4) b2m+2÷b2 =b2m + 2-2 =b2m.
知1-讲
例2 计算:(1)(-x)6÷(-x)3;(2)(x-y)5÷(y-x)2. 导引:将相同底数幂直接利用同底数幂除法法则计 算,
知2-讲
(2)(a-b)3÷(b-a)2+(-a-b)5÷(a+b)4. 导引:有幂的乘除和乘方时,按顺序先乘方再乘除;
进行幂的乘除运算时,若底数不同,要先化为
相同底数,再按运算顺序进行计算.
解:(1)原式=[a10·(-a6)]÷(-a12)=-a16÷(-a12)
= a16-12=a4;
(2)原式=(a-b)3÷(a-b)2-(a+b)5÷(a+b)4
A.a2+a3=a5
B.a2·a3=a6
C.a3÷a2=a
D.(a2)3=a5
知1-练
4 计算(-a)6÷a2的结果是( )
A.a4
B.-a4
C.a3
D.-a3
5 (202X·巴中)下列计算正确的是( )

同底数幂的除法课件

同底数幂的除法课件
八年级数学湘教版·上册
第1章
分式
1.3.1同底数幂的除法
授课人:X
学习目标
1.同底数幂的除法法则以及利用该法则进行计算;(重点)
2.同底数幂的除法法则的应用.(难点)
新课导入
2
4a b
约分:①
12a 3bc
1
=
.
3
n
,

a
a n 1
, ③

=

1
= .

x2 4
.
2
x 4x 4
4
(6) −
= ( + )7−4
= −
= ( + )3
=−
3
3−2
÷ ( − )2
1MB = 210 KB.
1KB = 210 B.
新知探究
问题:小明的爸爸最近买了一台计算机,硬盘总容量为20GB,而10年前买的一台
计算机,硬盘的总容量为20MB,你能算出现在买的这台计算机的硬盘总容量是本
来买的那台计算机总容量的多少倍吗?
20GB=20x210B .
20 × 210 20 × 210
的值
2 = 32 =9
÷
2
8
=8÷9=
9
课堂小结
同底数幂相除,底数不变,指数相减.
同底数幂的除法
同底数幂相除的逆用.
课堂小测
xy
xy
1 填空: (1)
2 3
− 2
=_______
(2) x7.( x )=x8
(3)
b4.b3.(
x
m1
x
2 m 2
9
12

同底数幂的乘法与除法

同底数幂的乘法与除法

同底数幂的乘法与除法
同底数幂的乘法与除法是数学运算中的两个重要概念。

同底数幂是指
底数相同的幂,例如2²和2³。

在进行同底数幂的乘法和除法时,我们需要了解其规律和方法。

同底数幂的乘法规律是:同底数幂相乘时,底数不变,指数相加。

例如,2² × 2³ = 2⁵,因为底数为2,指数为2和3,相加得5。

同底数幂的除法规律是:同底数幂相除时,底数不变,指数相减。

例如,2³ ÷ 2² = 2ⁱ,因为底数为2,指数为3和2,相减得1。

同底数幂的乘法和除法可以应用在各种数学题目中。

例如,在求解指
数函数中,我们需要将同底数幂合并为一个幂,再使用指数函数的性
质进行求解。

同样,当我们求解复合利率问题时,也需要使用同底数
幂的乘法和除法来计算利率的变化。

除此之外,在计算长度、面积和体积等问题时,我们也需要运用同底
数幂的乘法和除法。

例如,当我们求解一个正方形面积时,可以将正
方形的边长表示为同底数幂形式,再运用同底数幂的乘法来计算面积。

在进行同底数幂的乘法和除法时,需要注意底数必须相同。

如果底数
不同,则无法进行同底数幂的运算。

同时,如果指数为负数,则需要先将负指数转化为正指数,再进行运算。

例如,2⁻³可以转化为1/2³。

综上所述,同底数幂的乘法与除法是数学运算中的基础概念。

它们在各种数学问题解决中都发挥着重要的作用。

在进行计算时,需要注意底数相同和指数的符号问题,才能正确进行同底数幂的乘法和除法。

15.3.1同底数幂的除法

15.3.1同底数幂的除法
复习巩固
三种幂的运算
1、同底数幂的乘法:am · an=am+n (m、n都是正整数) 即:同底幂相乘,底数不变,指数相加。 2、幂的乘方:(am)n=amn(m、n都是正整数) 即:幂的乘方,底数不变,指数相乘。
3、积的乘方:(ab)n=anbn(n是正整数) 即:积的乘方,等于积中各个因式分别乘方的积。
同底数幂相除的法则是:
同底数幂相除,底数不变,指数相减.

a a a
m n
mn

(a 0,m, n都是正整数, 且m n)
1.一个式子中有多种运算时,要明确运算的先后顺序. 2.运用法则前应把各项化成同底.
3.底数为分数、负数、几个因式乘积的单项式、多项 式时,运算过程要加括号.
(1)x8÷x2 ; (5) (-b) 5÷(-b)2
(2) a4 ÷a ;
(3)(ab) 5÷(ab)2;(4)(-a)7÷(-a)5 解: (1) x8 ÷x2=x 8-2=x6. (2)a4 ÷a =a 4-1=a3.
(3) (ab) 5÷(ab)2=(ab)5-2=(ab)3=a3b3.
(4)(-a)7÷(-a)5=(-a)7-5=(-a)2=a2
(5)(-b)5÷(-b)2=(-b)5-2=(-b)3=-b3
考考你:
(1) (2)
a9÷a3 =a9-3 = a6 212÷27 =212-7=25=32 x)4÷(- x ) =(- x)4-1=(- x)3= - x3
(3) ((4) (5)
(- 3)11 ÷(- 3)8 =(- 3)11-8=(- 3)3=- 27 b2m+2÷ b2 =b2m+2-2=b2m
8 2-1 (y ) = 8 y

探索同底数幂的除法法则

探索同底数幂的除法法则

探索同底数幂的除法法则
同底数幂的除法法则是指,当两个数的底数相同,进行幂运算时可以将底数不变,指数相减。

具体来说,如果有两个数a和b,它们的底数相同,分别为x,即x^a和x^b,那么它们的除法结果为x^(a-b)。

这个法则可以从多个角度进行探索。

首先,我们可以从数学定义出发来理解这个法则。

假设我们有x^a和x^b,它们分别表示x 连乘a次和x连乘b次。

当我们进行x^a除以x^b时,相当于将x 连乘a次的结果除以x连乘b次的结果。

根据除法的定义,我们知道可以将除数的指数减去被除数的指数,得到x^(a-b)。

这是同底数幂的除法法则的数学原理。

其次,我们可以从几何角度来理解这个法则。

假设x^a表示一个边长为x的正方形的面积,而x^b表示另一个边长也为x的正方形的面积。

那么x^a除以x^b就可以理解为将前一个正方形的面积除以后一个正方形的面积。

根据几何知识,我们知道这个结果可以表示为一个边长为x的正方形的面积,即x^(a-b)。

这也是同底数幂的除法法则的几何解释。

此外,我们还可以从代数运算的角度来探索这个法则。

我们可以将x^a和x^b表示为x的a次方和x的b次方,然后进行除法运算。

根据指数运算的性质,我们知道可以将x的a次方除以x的b 次方表示为x^(a-b)。

这也是同底数幂的除法法则的代数解释。

综上所述,同底数幂的除法法则可以从数学定义、几何角度和代数运算的角度进行全面探索。

通过多种角度的理解,我们可以更加深入和全面地理解这个重要的指数运算法则。

同底数幂除法(解析版)

同底数幂除法(解析版)

同底数幂除法【知识梳理】一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即m n m na a a −÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 二、零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【考点剖析】 题型一、同底数幂的除法例1、计算:(1)83x x ÷;(2)3()a a −÷;(3)52(2)(2)xy xy ÷;(4)531133⎛⎫⎛⎫−÷− ⎪ ⎪⎝⎭⎝⎭.【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号. 【答案与解析】解:(1)83835x x x x −÷==.(2)3312()a a a a −−÷=−=−.(3)5252333(2)(2)(2)(2)8xy xy xy xy x y −÷===. (4)535321111133339−⎛⎫⎛⎫⎛⎫⎛⎫−÷−=−=−=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭.【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号. 【变式1】(2021•上海)计算:x 7÷x 2= .【分析】根据同底数幂的除法法则进行解答即可. 【解答】解:x7÷x2=x7﹣2=x5, 故答案为:x5.【点评】此题考查了同底数幂的除法,熟练掌握同底数幂相除,底数不变指数相减是解题的关键. 【变式2】(2022•浦东新区二模)计算:(﹣a 6)÷(﹣a )2= . 【分析】根据同底数幂相除的法则:底数不变,指数相减即可得出答案. 【解答】解:(﹣a6)÷(﹣a )2=﹣(a6÷a2)=﹣a4. 故答案为:﹣a4.【点评】本题考查了同底数幂的除法,同底数幂相除的法则:底数不变,指数相减. 【变式3】计算:(1)()()151233−÷−;(2)853377⎛⎫⎛⎫÷− ⎪ ⎪⎝⎭⎝⎭;(3)10010099÷.【答案】(1)27−;(2)27343−;(3)1.【解析】(1)()()()()151215123333327−−÷−=−=−=−;(2)858533333277777343−⎛⎫⎛⎫⎛⎫⎛⎫÷−===⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)100100100100099991−÷===.【总结】本题考查了同底数幂的除法,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式4】计算: (1)107a a ÷;(2)102102x x −÷;(3)()()75a a −÷−.【答案】(1)3a ;(2)1−;(3)2a .【解析】(1)1071073a a aa −÷==; (2)10210210210201x x x x −−÷=−=−=−;(3)()()()()757522a a a a a −−÷−=−=−=.【总结】本题考查了同底数幂的除法,同底数幂相除,底数不变,指数相减. 【变式5】计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−.【答案】(1)()5x y +;(2)222a ab b −+−.【解析】(1)()()()()1051055x y x y x y x y −+÷+=+=+;(2)()()()()()()9797972222a b b a b a b a b a b a a ab b −−÷−=−−÷−=−−=−−−+−.【总结】本题主要考查了同底数幂的除法. 题型二、科学记数法有关的同底数幂的除法例2.下雨时,常常是“先见闪电、后闻雷鸣”,这是因为光速比声速快的缘故.已知光在空气中的传播速度为8310⨯米每秒,而声音在空气中的传播速度约为300米每秒,你知道光速是声速的多少倍吗? 【答案】610.【解析】8631030010⨯÷=.【总结】本题考查了整式的除法,解题的关键是根据题意列出代数式,再根据除法运算法则求出答案. 【变式】月球距离地球大约53.8410⨯千米,一架飞机的速度约为2810⨯千米/时.如果乘坐此飞机飞行这么远的距离,大约需要多少时间? 【答案】480小时.【解析】()()()()52523.8410810 3.8481010480⨯÷⨯=÷⨯÷=(小时)【总结】本题考查了单项式除以单项式,用整式乘除法解决实际问题时要注意分清量与量之间存在的数量关系.题型三、同底数幂的除法的逆用例3、已知32m =,34n=,求129m n +−的值.【答案与解析】解:121222222221222244449(3)33333(3)399(3)33(3)(3)m m m m m m m nn n n n n n ++++−======.当32m =,34n=时,原式224239464⨯==. 【总结升华】逆用同底数除法公式,设法把所求式转化成只含3m ,3n的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式. 【变式1】(2020秋•宝山区期末)如果2021a =7,2021b =2.那么20212a﹣3b= .【分析】根据幂的乘方以及同底数幂的除法法则计算即可,幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减. 【解答】解:∵2021a =7,2021b =2.∴20212a ﹣3b =20212a ÷20213b =(2021a )2÷(2021b )3=72÷23=.故答案为:.【点评】本题主要考查了同底数幂的除法以及幂的乘方,熟记相关运算法则是解答本题的关键.【变式2】已知2552m m⨯=⨯,求m 的值.【答案】解:由2552m m ⨯=⨯得1152m m −−=,即11521m m −−÷=,1512m −⎛⎫= ⎪⎝⎭,∵ 底数52不等于0和1,∴ 15522m −⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即10m −=,1m =.题型四、同底数幂的除法有关的混合运算例4.(2020秋•浦东新区期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【分析】分别根据同底数幂的乘除法法则以及积的乘方运算法则化简后,再合并同类项即可. 【解答】解:a •a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点评】本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.【变式1】(2022y 3•y 5÷(﹣y )4= . 【分析】利用同底数幂的乘除法运算法则进行计算. 【解答】解:原式=﹣y3•y5÷y4=﹣y3+5﹣4=﹣y4, 故答案为:﹣y4.【点评】本题考查同底数幂的乘除法,掌握同底数幂的乘法(底数不变,指数相加),同底数幂的除法(底数不变,指数相减)的运算法则是解题关键. 【变式2】计算: (1)()623x x x ÷⋅;(2)()1243x x x ⋅÷.【答案】(1)x ;(2)13x . 【解析】(1)()6236236565x x x x x x x x x+−÷⋅=÷=÷==;(2)()124312*********x x x x x x x x x −+⋅÷=⋅=⋅==.【总结】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠.【变式3】.计算: (1)()()4334a a −÷−;(2)()()22237a a a a ⋅÷⨯−.【答案】(1)1−;(2)5a .【解析】(1)()()()433412121a a a a −÷−=÷−=−;(2)()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【总结】本题考查了同底数幂的乘法与除法,m nm na a a +⋅=,()nm mna a =,m n m na a a −÷=(0a ≠,m ,n 都是正整数),规定()010a a =≠,注意负数的奇次幂还是负数.【变式4】计算:(1)()3232942x x x x x ⋅−+÷;(2)54189t t t t ⋅−÷.【答案】(1)5628x x −;(2)0.【解析】(1)()3232942323945655628828x x x x x x x x x x x x x +⨯−⋅−+÷=−+=−+=−;(2)5418954189990t t t t t tt t +−⋅−÷=−=−=. 【总结】本题考查了同底数幂的乘法与除法以及幂的乘方,注意法则的准确运用.【过关检测】一、单选题1.(2022秋·上海·七年级专题练习)下列计算正确的是( )A .235a a ()=B .3232a b a b −−()= C .448a a a += D .532a a a ÷=【答案】D【分析】利用合并同类项的法则,同底数幂的除法的法则,幂的乘方的法则,单项式乘多项式的法则对各项进行运算即可.【详解】解:A 、623a a ()=,故A 不符合题意;B 、3(a ﹣2b )=3a ﹣6b ,故B 不符合题意;C 、4442a a a +=,故C 不符合题意;D 、532a a a ÷=,故D 符合题意;故选:D .【点睛】本题主要考查幂的乘方,同底数幂的除法,单项式乘多项式,合并同类项,解答的关键是对相应的运算法则的掌握.2.(2023·上海·七年级假期作业)在下列运算中,计算正确的是( ) A .3262()x y x y −= B .339x x x ⋅= C .224x x x += D .62322x x x ÷=【答案】A【分析】按照幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除的运算法则.【详解】解:3262x y x y =(-),故A 正确,符合题意; 336x x x ⋅=,故B 错误,不符合题意; 2222x x x +=,故C 错误,不符合题意; 62422x x x ÷=,故D 错误,不符合题意;故选:A .【点睛】本题考查了幂的乘方、积的乘方、合并同类项、同底数幂相乘、同底数幂相除等运算,熟练掌握相关运算法则是解题关键.【答案】B【分析】根据幂的公式逆运算即可求解.【详解】∵3,2m nx x ==,∴23m nx−=(mx )2÷(nx )3=32÷23=98故选B【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.4.(2021秋·上海浦东新·七年级期末)下列运算中,正确的是( ) A .(﹣m )6÷(﹣m )3=﹣m 3 B .(﹣a 3)2=﹣a 6 C .(xy 2)2=xy 4 D .a 2•a 3=a 6【答案】A【分析】根据同底数幂的除法,幂的乘方,积的乘方,同底数幂的乘法逐项分析判断即可. 【详解】解:A 、(﹣m )6÷(﹣m )3=﹣m3,故本选项符合题意; B 、(﹣a3)2=a6,故本选项不符合题意; C 、(xy2)2=x2y4,故本选项不符合题意; D 、a2•a3=a5,故本选项不符合题意; 故选:A .【点睛】本题考查了幂的运算,掌握幂的运算是解题的关键. 5.(2023·上海·七年级假期作业)下列计算结果中,正确的是( ) A .a 3+a 3=a 6 B .(2a )3=6a 3 C .(a ﹣7)2=a 2﹣49 D .a 7÷a 6=a .【答案】D【分析】根据合并同类项法则、积的乘方的运算法则、完全平方公式、同底数幂的除法的运算法则逐项计算得出结果即可得出答案.【详解】解:A 、3332a a a +=,原计算错误,故此选项不符合题意;B 、33(2)8a a =,原计算错误,故此选项不符合题意;C 、22(7)1449a a a =−−+,原计算错误,故此选项不符合题意;D 、76a a a ÷=,原计算正确,故此选项符合题意.故选:D .【点睛】本题考查合并同类项、积的乘方、完全平方公式和同底数幂的除法.掌握各运算法则是解题关键. 6.(2023·上海·七年级假期作业)下列运算正确的是( ) A .()323a a = B .623a a a ÷= C .235a a a += D .235a a a ⋅=【答案】D【分析】根据幂的乘方,同底数幂的乘法和除法,以及合并同类项法则,逐一进行计算即可.【详解】解:A 、()326a a =,选项错误,不符合题意;B 、624a a a ÷=,选项错误,不符合题意;C 、235a a a +≠,选项错误,不符合题意;D 、235a a a ⋅=,选项正确,符合题意;故选D .【点睛】本题考查幂的乘方,同底数幂的乘法和除法,以及合并同类项法.熟练掌握相关法则,是解题的关键.二、填空题7.(2023·上海·七年级假期作业)42()()n n y y −÷−=________;4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−=⎣⎦⎣⎦___________.【答案】 2n y 9()a b −【分析】利用同底数幂的乘法、除法、幂的乘方化简,先算乘方,再算乘除.【详解】解:42()()n n y y −÷−=42()n n y −−=2()ny −=2n y ,4232()()()a b a b a b ⎡⎤⎡⎤−⨯−÷−⎣⎦⎣⎦=124()()()a a b a b −⨯−÷−=124()()()a b a b a b −⨯−÷−=1214()a b +−−=9()a b −.故答案为:2n y ,9()a b −.【点睛】此题考查了同底数幂的乘法、除法、幂的乘方运算,解题的关键是掌握同底数幂的乘法、除法、幂的乘方的运算法则.8.(2023·上海·七年级假期作业)计算:结果用幂的形式表示94()()a b b a −÷−=_____. 【答案】5()a b −【分析】利用同底数幂的除法的法则进行运算即可.【详解】解:94()()a b b a −÷−94()()a b a b =−÷−5()a b =−.故答案为:5()a b −.【点睛】本题主要考查同底数幂的除法,解答的关键是对同底数幂除法法则的掌握.9.(2023秋·上海青浦·七年级校考期末)计算:()()2333142a b a b b −−−⋅÷=____________.(结果只含有正整数指数幂) 【答案】934b a【分析】根据幂的运算法则和整式的混合运算法则计算可得.【详解】解:()()2333142a b a b b −−−⋅÷293464a b a b b −−=⋅÷()492634a b +−−−=934a b −=394b a =.【点睛】本题主要考查整式的混合运算,解题的关键是熟练掌握幂的运算法则和整式的混合运算法则.10.(2022秋·上海·七年级专题练习)计算:62a a ÷(-)(-)=______. 【答案】4a −【分析】先依据公式得出正确的符号,再利用幂的除法公式计算.【详解】62624a a a a a −÷−−÷−()()=()=.故答案为:4a −.【点睛】本题考查幂的运算,正确运用公式是解题的关键.11.(2019秋·上海·七年级上海市张江集团中学校考期中)已知3m a =,5n a =,则32m n a +=_______________ 【答案】675【分析】根据幂的乘方以及同底数幂的乘法法则解答即可. 【详解】∵am=3,an=5,∴a3m+2n=(am)3•(an)2=33×52=27×25=675. 故答案为:675.【点睛】本题考查了幂的乘方与积的乘方以及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.【答案】9【分析】根据同底数幂除法的逆用、幂的乘方的逆用进行计算即可得.【详解】解:因为102a =,109b=,所以112210100100b aa b −=÷1222(10)(10)b a=÷1222(10)10b a ⨯=÷2210b=÷49=÷49=,故答案为:49.【点睛】本题考查了同底数幂除法的逆用、幂的乘方的逆用,熟练掌握各运算法则是解题关键.13.(2023秋·上海静安·七年级新中初级中学校考期末)若15m x =,5n x =,则m n x −等于_____. 【答案】3【分析】逆向运算同底数幂的除法法则计算即可.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.【详解】解:∵xm=15,xn=5, ∴xm-n=xm÷xn=15÷5=3. 故答案为:3.【点睛】本题考查了同底数幂的除法,掌握幂的运算法则是解答本题的关键.14.(2023·上海·七年级假期作业)已知5m a =,5n b =,则25m n +=______,235m n −=______.(请用含有a ,b 的代数式表示)【答案】 2a b /2ba 23a b【分析】逆用同底数幂的乘法,幂的乘方,同底数幂的除法运算法则,进行计算即可.【详解】解:∵5m a =,5nb =,∴()222255555m n m n m n a b+=⋅=⋅=;()()223232323355555m nmnm n a a b b −=÷=÷=÷=.故答案为:2a b ;23a b .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法,幂的乘方,解题的关键是熟练掌握同底数幂的乘法,幂的乘方,同底数幂的除法运算法则.15.(2023·上海·七年级假期作业)已知2m a =,3n a =,那么3m n a −=___________. 【答案】83【分析】根据同底数幂的除法底数不变指数相减,可得答案. 【详解】解:2m a =,3n a =,∴3m na−3mnaa =÷3()m na a =÷323=÷83=.故答案为:83.【点睛】本题考查了同底数幂的除法,逆用同底数幂除法的计算法则是解题关键.16.(2022秋·上海·七年级阶段练习)﹣y 3•y 5÷(﹣y )4=_____.【答案】﹣y4【分析】先计算幂的乘方,再计算同底数幂的乘、除法,注意负号的作用.【详解】解:﹣y3•y5÷(﹣y )4=﹣y8÷y4=﹣y4故答案为:﹣y4【点睛】本题考查幂的乘方、同底数幂的乘除法等知识,是基础考点,掌握相关知识是解题关键.17.(2022秋·七年级单元测试)已知5230x y −−=,则324x y ÷=________.【答案】8【分析】先求出523x y −=,然后逆用幂的乘方法则对所求式子变形,再根据同底数幂的除法法则计算.【详解】解:∵5230x y −−=,∴523x y −=,∴5253228324222x y x y x y −===÷=÷, 故答案为:8.【点睛】本题考查了代数式求值,涉及幂的乘方的逆用,同底数幂的除法,有理数的乘方运算,熟练掌握运算法则是解题的关键.18.(2023·上海·七年级假期作业)已知2320x y −−=,则927x y ÷的值为________.【答案】9【分析】先变形,再根据同底数幂的除法进行计算,最后整体代入求出即可.【详解】解:∵2320x y −−=,∴232x y −=,∴927x y ÷2333x y =÷233x y −=23=9= 故答案为9.【点睛】本题考查了同底数幂的除法、幂的乘方等知识点,能正确根据法则进行变形是解此题的关键.三、解答题19.(2023·上海·七年级假期作业)计算:(1)()()105x y x y +÷+;(2)()()97a b b a −÷−. 【答案】(1)()5x y +(2)222a ab b −+− 【分析】(1)利用同底数幂的除法进行运算;(2)先将底数均化为a b −,再利用同底数幂的除法运算.【详解】(1)解:1055()()()x y x y x y +÷+=+;(2)解:97()()a b b a −÷−97()()a b a b ⎡⎤=−÷−−⎣⎦2()a b =−−222a ab b =−+−. 【点睛】本题考查了同底数幂的除法,熟练掌握相关运算规则是解题的关键.20.(2022秋·上海·七年级校考期中)计算:()()222334222a a a a a a +−−÷ 【答案】6a【分析】根据同底数幂乘法的法则,积的乘方的运算法则,同底数幂除法的运算法则先化简计算,然后合并同类项即可.【详解】解:()()222334222a a a a a a +−−÷668244a a a a =+−÷66644a a a =+−6a = 【点睛】本题考查了整式的混合运算,解题的关键是掌握相关公式并灵活运用.幂的乘方法则:底数不变,指数相乘.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. 21.(2023·上海·七年级假期作业)计算:(1)()()4334a a −÷−; (2)()()22237a a a a ⋅÷⨯−. 【答案】(1)1−(2)5a【分析】(1)先计算幂的乘方,再计算同底数幂的除法;(2)先计算同底数幂的乘法、乘方,再计算同底数幂的乘法与除法.【详解】(1)解:()()()433412121a a a a −÷−=÷−=−;(2)解:()()()22223757210725a a a a a a a a a −+⋅÷⨯−=÷⋅==.【点睛】本题考查了同底数幂的乘法与除法,m n m n a a a +⋅=,()n m mn a a =,m n m n a a a −÷=(0a ≠,m ,n 都是正整数),注意负数的奇次幂还是负数.22.(2022秋·上海·七年级专题练习)已知3m =4,3n =5,分别求3m +n 与32m ﹣n 的值.【答案】20,165【分析】利用同底数幂的乘法的逆用法则,同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3334520m m n n +=⋅=⨯=;222233316(53)534m n m n m n −=÷=÷=÷=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.23.(2022秋·上海·七年级专题练习)已知34m =,35n =,分别求3m n +与23m n −的值.【答案】20,165【分析】同底数幂的除法的逆用法则,幂的乘方的逆用法则对所求的式子进行整理,再代入运算即可.【详解】解:3m n +33m n =⋅45=⨯20=;23m n −233m n =÷()233m n =÷245=÷165=.【点睛】本题考查同底数幂的乘法的逆用,同底数幂的除法的逆用,幂的乘方的逆用.掌握各运算法则是解题关键.24.(2022秋·上海·七年级校考期中)已知96,32b a ==,求323a b −的值. 【答案】43【分析】先根据幂的乘方求出3336,38b a ==,再逆用同底数幂的除法计算即可. 【详解】∵96,32b a ==, ∴233396,328b b a ====,∴3243863a b −=÷=.【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握运算法则是解题的关键.25.(2021秋·上海浦东新·七年级期末)计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.【答案】﹣7a8【分析】根据同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,最后合并同类项即可【详解】解:a•a7﹣(﹣3a4)2+a10÷a2=a8﹣9a8+a8=﹣7a8.【点睛】本题考查了同底数幂的乘除法,积的乘方运算法则,幂的乘方运算,掌握幂的运算是解题的关键.26.(2023·上海·七年级假期作业)若32x =,35y =,求23x y −的值. 【答案】45【分析】逆用幂的乘方,除法法则计算即可.【详解】()22233333x y x y x y −=÷=÷,把32x =,35y =代入得()224333455x y x y −=÷=÷=.【点睛】本题考查了同底数幂的乘方与除法,熟练掌握运算法则是解题的关键.。

《同底数幂的除法》教案

《同底数幂的除法》教案

《同底数幂的除法》教案第一章:同底数幂的除法概念引入教学目标:1. 让学生理解同底数幂的除法概念。

2. 让学生掌握同底数幂的除法法则。

教学内容:1. 引入同底数幂的除法概念。

2. 讲解同底数幂的除法法则。

教学步骤:1. 通过具体例子引入同底数幂的除法概念,例如:\( 3^4 ÷3^2 = ? \)。

2. 引导学生观察例子,发现同底数幂的除法法则:\( a^m ÷a^n = a^{m-n} \)。

3. 让学生通过小组讨论,总结同底数幂的除法法则。

教学评价:1. 检查学生对同底数幂的除法概念的理解。

2. 检查学生对同底数幂的除法法则的掌握。

第二章:同底数幂的除法运算教学目标:1. 让学生掌握同底数幂的除法运算。

2. 让学生能够正确进行同底数幂的除法运算。

教学内容:1. 讲解同底数幂的除法运算规则。

2. 进行同底数幂的除法运算练习。

教学步骤:1. 讲解同底数幂的除法运算规则,例如:\( a^m ÷a^n = a^{m-n} \)。

2. 让学生进行同底数幂的除法运算练习,提供一些具体的例子,例如:\( 2^3 ÷2^2 = ? \),\( 5^4 ÷5^2 = ? \)。

3. 引导学生总结同底数幂的除法运算规则,并能够正确进行运算。

教学评价:1. 检查学生对同底数幂的除法运算规则的掌握。

2. 检查学生能够正确进行同底数幂的除法运算。

第三章:同底数幂的除法应用教学目标:1. 让学生能够将同底数幂的除法应用到实际问题中。

2. 让学生能够解决实际问题,提高解决问题的能力。

教学内容:1. 讲解同底数幂的除法在实际问题中的应用。

2. 进行同底数幂的除法应用练习。

教学步骤:1. 通过具体例子讲解同底数幂的除法在实际问题中的应用,例如:计算化学反应中物质的浓度。

2. 让学生进行同底数幂的除法应用练习,提供一些实际问题,例如:计算光强的减弱程度,计算放射性物质的衰变等。

6.3同底数幂的除法

6.3同底数幂的除法
0
a
p
1 p (a 0, p 0) a
a–p — 负指数幂。
a0 —零指数幂;
想一想: (1) 10000=10 4 (2) 1000=10(3 ) (3) 100=10(2 ) (4) 10=10(1 )
猜一猜: 0 ) ( (1) 1=10 -1) ( (2) 0.1=10 -2) ( (3) 0.01=10 -3) ( (4) 0.001=10
解:(根据幂的定义) (1) 108 ÷ 105
8个10
=108-5
=103
5个10
解题思路
解:(根据幂的定义)
m个10
n个10
=10m-n
解题思路
解:(根据幂的定义) (3) (-3)m ÷ (-3)n
m个-3
n个-3
= (-3) m-n
同底数幂的除法的一般规律
am ÷ an
a
n个 a
=am-n
4-1 = (xy)3 = x3y3 ( xy ) (xy) =
(4) b2m+2÷b2 = b2m+2-2 = b2m
探索与合作学习
3)-(3 0) 3 3 ( ) ( (1)5 ÷5 =5 =5
又53 ÷53=1
0=1 5 得到______________
更一般地, 0=
a
?(a≠0)
规定 任何不等于零的数 的-p(p是正整数)次幂 ,等于这个数的p次幂的 倒数。
每一滴可杀109个病毒 每升液体1012个病毒.
要把一升液体 中所有病毒全部 杀死,需要药剂 多少滴?
除法运算:
1012 ÷ 109 =
103(滴)
做一做 计算下列各式,并说明理由(m>n) (1) 108 ÷ 105 =

同底数幂除法运算法则

同底数幂除法运算法则

同底数幂除法运算法则
几何原理中,相同底数幂等除法则又称关系底数乘幂等除法,是
一种常用的数学原理。

相同底数幂等除法法则指的是,如果两个数相加或相减后(或相
乘后)仍具有相同的底数,那么它们的幂次也是相等的,即:若a^m=a^n,那么m=n 。

这里,a表示指数中的底数,m、n分别表示指数中的幂指数。

通过此法则可以得到一种直接比较两个指数大小的方法,如:
若a^m>a^n,那么m>n;若a^m<a^n,那么m<n
因此,要想快速计算两个指数的大小,可以使用相同底数幂等除
法法则。

另外,此法则还可用于解决复合指数情况。

如果符号上存在两个
指数,可以把它们的乘积拆分为两个指数的乘积,以便更容易地求解,如:
a^m×a^n =a^(m+n)
因此,可以用相同底数幂等除法法则帮助求解复合指数的大小。

总之,相同底数幂等除法法则是一种比较有效的数学原理,能够
有效帮助我们计算两个指数的大小,这就是它的重要价值所在。

同底数幂的除法

同底数幂的除法

同底数幂的除法一、知识点:1.同底数幂的除法法则:(0,,)m n m na a a a m n m n -÷=≠>都是正整数,且同底数幂相除,底数不变,指数相减. 2.零指数幂与负整数指数幂的意义 (1)零指数幂.1(0)a a =≠,即任何不等于0的数的0次幂都等于1. (2)负整数指数幂. 1(0,)pp aa p a-=≠是正整数,即任何不等于零的数的p -(p 是正整数)次幂,等于这个数的p 次幂的倒数.3.用科学记数法表示绝对值较小的数 二、例题:例1:计算:(1)73()a a -÷; (2)123a a ÷; (3)33432332[()()]()()a a a a ⋅-÷÷.例2:计算:(1)53()a a -÷;(2)32(1)(1)a a +÷+;(3)7632()()()()x y y x x y x y -÷-+--÷+.例3:计算:13112( 3.14)1222π-⎛⎫-+---⨯- ⎪⎝⎭.例4:用科学记数法表示下列各数:(1)0.000089;(2)-0.0000001.例5:一个正方体的礼品包装盒的棱长为2210⨯毫米. (1)它的表面积是多少平方米? (2)它的体积是多少立方米?例6:(1)已知:3,6m n x x ==,求32m n x -的值; (2)已知:32n x =,求645n n nx x x +⋅的值.(3)已知:(1/3)-m =2 ,1/3-n =5,求92m-n 的值; (4)解关于x 的方程:(x-1)|x |-1=1.三、练习:1.下列计算中,正确的是( )A .22n n a a a ÷= B. 22n na a a ÷=C .532()()xy xy xy ÷= D. 10428()x x x x ÷÷=2.若02(3)2(36)x x ----有意义,则x 的取值范围是( ) A .3x > B. 2x < C. 3x ≠或2x ≠ D. 3x ≠且2x ≠3.若21022110.3,3,,33a b c d --⎛⎫⎛⎫=-=-=-=- ⎪ ⎪⎝⎭⎝⎭,则( )A .a b c d <<< B. b a d c <<< C. a d c b <<< D. c a d b <<<4.若105,103m n ==,则2310m n-的值为( ) A .2527B. 0C. 675D. 2255.若32x+1=1,,则x = ;若1327x=,则x = . 6.632233⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭;6222416÷⨯=7.若(3x+2y-10)0无意义,且2x+y=5,求x,y 的值。

同底数幂的除法完整版

同底数幂的除法完整版

( x 2 y)
n个 a …· 1.幂的意义: a· a· a = an
2.同底数幂的乘法运算法则:
am · an = am+n (m,n都是正整数)
3.幂的乘方运算法则:
(am)n= amn (m,n都是正整数)
4.积的乘方法则
(ab)n = an· bn(m,n都是正整数)
一种液体每升含有 10 个有害细菌,为了 试验某种杀虫剂的效果,科学家们进行了 9 实验,发现1滴杀虫剂可以杀死 10 个此种 细菌,要将 1 升液体中的有害细菌全部 杀死,需要这种杀菌剂多少滴?你是怎 样计算的?
12
做一做 计算下列各式,并说明理由(m>n)
8-5 3 100 000 000 • (1) 10 ÷10 = =10 = 10 100 000 m-n n m (2) 10 ÷10 = 10
8
5
(3) (-3) ÷(-3) = (-3)
m
n
m-n
a ÷a = a
n
m
m-n
(a≠0,m,n都是正整数,且m>n)
解 : 根 据 题 意 , 得 106 104 1064 10 2 100
所以,加利福尼亚的地震强度是荷兰地震强度的100倍。
想一想 • 10 000=10(4 )
• 1 000 = 10 (2 ) • 100 = 10 ( 1) • 10 = 10
(3 )
16 = 2 (3 ) 8=2 (2 ) 4=2 ( 1) 2 =2 1=2
0
(-3) ( )
1=2
(0 )
1 (-1) =2 2
1 = 2 (-2) 4
1 8
=2
(-3)
规定: a = 1 , (a≠0)

同底数幂的除法四注意

同底数幂的除法四注意

同底数幂的除法四注意同底数幂的除法法则是:同底数的幂相除,底数不变,指数相减.用公式表示为:m a ÷n a =m n a -(0a ≠,m 、n 都是正整数,且m n >),这个公式看似简单,但如果理解不深,却很容易出错.因此在学习时,要特别注意以下几个方面:一、注意条件在所给的条件中,强调了0a ≠,这是因为:若0a =,则0m n a a ==,由于0不能作除数,所以0a ≠;从m 、n 都是正整数,且m n >的情况可以概括出同底数幂的除法法则,没有涉及零指数幂、负整数指数幂和分数指数幂等情况.二、注意底数公式中的底数是用一个字母a 表示的,但我们在理解的时候,不能简单地把它理解为一个数、一个字母,而应全面理解,其底数主要有以下几种情况:1.底数为常数这种情况比较容易处理,底数不变,指数相减就可以了.如1310÷610=13610-=710. 2.底数是单项式底数为单项式,特别是多个字母乘积的单项式,在运算中,要把多个字母乘积的项看作是公式中的“a ”,也就是说要把它看成一个整体,就容易计算了.如7()ab ÷4()ab =74()ab -=3()ab =33a b .3.底数为多项式若底数为多项式,也要把它看成是公式中的“a ”,即也要把它看成一个整体.如5()x y +÷3()x y +=532()()x y x y -+=+.三、注意指数当指数为常数、单项式、多项式时,按照法则运算即可,但当两个数的指数具有倍数关系时,我们就很容易把两个指数相除,导致出错.例如:(1)49÷29=29=81;(2)69÷39=29=81.在计算(1)时,指数相除和指数相减的结果是一样的,这只是一种特殊情况;在计算(2)时,这样相除就错了,可以和(1)对照一下,用相减和相除这两种方法计算所得的结果是不一样的,要特别注意.四、注意符号和括号底数带有负号、括号时,可分为同底和不同底两种情况.同底带括号的,在运算时,应把括号带上,运算结果的符号由指数的奇偶性决定.如4()a -÷2()a -=42()a --=2()a -=2a . 当底数不同时应先变为同底的,然后再按照法则计算,如7a ÷4()a -=7a ÷4a =3a .综上所述,在学习同底数幂除法的过程中,只要注意了上述几个方面的问题,就能正确运算了.。

同底数幂的除法公式

同底数幂的除法公式
本文详细介绍了同底数幂的除法公式及其应用。同底数幂的除法公式为am÷an=am-n,其中a≠0,m和n都是正整数,并且m>n。这个公式表明,在进行同底数幂的除法运算时,底数保持不变,而指数则进行相减。为了更好地理解和应用这个公式,本文通过多个例题进行了详细讲解。此外,本文还介绍了一个重要ቤተ መጻሕፍቲ ባይዱ数学规定:任何不等于0的数的0次幂都等于1,即a0=1(a≠0)。这个规定在同底数幂的运算中也非常重要。通过本文的学习,读者可以更加深入地了解同底数幂的除法运算法则,提高数学运算能力。

§15.3.1 同底数幂的除法

§15.3.1 同底数幂的除法

零指数幂的条件是底数不为0,结果是1.
布置作业
1、课本第164面第1题(2)(3)
2、课本第164面第5题 3、思考题(课后合作交流,不需交)
(1)若10m=20,10n=
1 ,求9m÷32n 的值 5
(2)如果x2m-1 ÷ x2 =xm+1,求m的值.
解:∵ x2m-1 ÷ x2 =xm+1 , ∴2m-1-2=m+1,
4、下列等式一定成立的是 ( A )
A、(m2+1)0=1 B、(a2-1)0=1 C、π0=0 D、(2x-3)0=1
5、若(x+2)0无意义,则x的取值范围是_____. x=-2
【解析】x+2=0时(x+2)0无意义,解得x=-2.
6、︱x︱=(x-1)0,则x=_____. -1
【解析】由题意得︱x︱=1且x-1≠0,所以x= -1.
(2)103÷103= ( 100 );
(3)am÷am=( a0 ) (a≠0).
规定
a0=1 (a≠0).
即任何不等于0的数的0次幂都等于1
am÷an=am-n(a≠0,m,n都 是正整数,并且m>n). ≥
练习
1.填空:
(1)a5•( a2)=a7; (3) x3•x5•( x4 ) =x12 ; 2.计算: (1) x7÷x5; x2
(3) (ab) 5÷(ab)2=(ab)5-2=(ab)3=a3b3.
(4)(-a)7÷(-a)5=(-a)7-5=(-a)2=a2 (5)(-b)5÷(-b)2=(-b)5-2=(-b)3=-b3
探究
分别根据除法的意义填空,你能得什 么结论? (1)32÷32=
30 ); (

1.3.1同底数幂的除法

1.3.1同底数幂的除法
aman ?
am an aa aaa a
m个a
n个a
aaa amn
m n 个a
am an amn m, n都是正整数
同底数幂相乘,底数不__变__,指数相__加__.
自主学习
P14-15
同底数幂的除法法则:
同底数幂相除, 底数不变,指数相减。
am÷an = am—n
am
an =am—n
(a≠0, m、n为正整数且m>n)
同底数幂相除,底数不变,指数相减。
例1 计算:
x8
(1)
x3
x9 (3) (x)3
(xy)5 (2) (xy)2
2n3
xx (4)
3 (n为正整数)
例2 计算 (1)(x-1)³÷(x-1) ²; (2)2x²y³÷xy².
1.计算:
(1)(m)8 m5 (2)(x y)7 ( y x)
(3)a4m3 a3m2
2.P21 T1
提示:将同底数幂相除的法则反过来用,即
am—n =am÷an
1.同底数幂的除法(乘法)法则:
同底数幂相除(乘), 底数不变,
指数相减(加).
即am÷an=am—n
(a≠0 m、n为正整数且m>n)
2. 在进行同底数幂的除法运算时,要特别注意 分清底数和指数。
3. 理解法则并注意法则的逆用和推广。
作业
1、下列计算对不对? 如果不对,应当怎样改正?
(1)、x2n+1÷ x (-10)2 = (-10)4 =104 x
(3)、a3 ÷ a = a3 x
(4)、(-c)4 ÷(-c)2 = -c2 x
检测
P16 T1,2

同底数幂的除法的讲解

同底数幂的除法的讲解

同底数幂的除法的讲解
我们要讲解的是同底数幂的除法。

首先,我们要理解什么是同底数幂。

同底数幂是指底数相同的幂。

例如,2^3 和 2^4 都是以2为底的幂,我们称之为同底数幂。

接下来,我们来看同底数幂的除法规则。

假设有两个同底数幂 a^m 和 a^n (其中a是底数,m和n是指数),它们的除法可以表示为:
a^m ÷ a^n = a^(m-n)
这个规则告诉我们,当两个同底数的幂相除时,我们只需要将它们的指数相减。

为了更好地理解这个规则,我们可以举一个例子:
假设 m=3, n=2,那么:
a^3 ÷ a^2 = a^(3-2) = a^1 = a
这就是同底数幂的除法规则。

希望这个讲解能帮助你理解这个概念。

同底数幂的除法

同底数幂的除法
详细描述
例如,$(\frac{a^m}{a^n})/a^p$ 可以简化为 $a^{m-n-p}$,其中 $a, m, n,$ 和 $p$ 是整数,且 $a \neq 0$ 。这个简化的过程就是将底数相同的幂相除,得到一个新的幂。
负整数指数幂的除法实例
总结词
负整数指数幂的除法可以表示为底数去除以指数的倒数,然后将所得的幂相除 。
例题
$2^3 \div 2^2 = ?$
分析
根据整数指数幂的除法运算 法则,$2^3 \div 2^2 = 2^(3-2) = 2^1 = 2$。
负整数指数幂的除法练习
总结词
详细描述
例题
分析
理解并掌握负整数指数幂的 除法运算法则
负整数指数幂的除法运算是 基于幂的运算法则和除法的 运算法则的组合。具体来说 ,对于两个幂 $a^m$ 和 $b^n$,其中 $m$ 和 $n$ 是负整数,它们的除法运算 可以表示为 $a^m \div b^n = (a \div b)^{m-n}$ 。注意,当 $m < n$ 时, 根据负整数指数幂的定义, 可以转化为正整数指数幂进 行计算。
例子
$2^{4} \div 2^{2} = 2^{4 - 2} = 2^{2} = 4$。
02
运算性质
运算性质
公式
$a^m/a^n=a^(m-n)$
解释
同底数幂相除,指数相减,底数不变。
应用
在解决涉及同底数幂除法的问题时,可以直接使 用该公式进行计算。
运算性质的适用范围
01
该公式只适用于底数相同的幂相 除的情况。
同底数幂的除法
汇报人:
日期:
• 定义和公式 • 运算性质 • 计算方法 •
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同底数幂的除法同底数幂的除法目标:1.掌握同底数幂的除法运算法则;2.会正确的运用同底数幂除法的运算性质进行运算,并能说出每一步运算的依据重难点:同底数幂的除法法则的推导及应用练习导入:1、 计算题: 1.23)43()43(-⨯- 2.43)(x - 3.32)3(x 4.2232x x +①先认定是什么运算,再选择运算方法;②整式加法、同底数幂的乘法、幂的乘方、积的乘方是极.2、一颗人造地球卫星运行的速度是7.9×103 m/s,一架喷气式飞机的速度是1.0×103 km/h.人造卫星的速度是飞机速度的倍?新课导入:做一做:计算下列各式: (1)351010÷ = 332101010⨯ =210 (2)()()2433-÷-= =(3))0(47≠÷a a a = =(4))0(70100≠÷a a a = =你发现了什么?同底数幂的除法法则的推导当a ≠0 , m 、n 是正整数 , 且m >n 时()()(________)(________)______________a aa a a a a a a a a a a a a a a a a a an a n a a a n m n m ===个个个个个43421Λ48476Λ48476Λ4434421Λ4484476Λ⋅⋅⋅⋅⋅⋅⨯⨯⨯⨯⨯⨯=÷ 归纳法则:同底数幂的除法:★ 。

例题:(1)、28x x ÷ (2)、 )()(4a a -÷-(3)、25)()(ab ab ÷ (4)、 m是正整数)(322p p m ÷+如果将上题中的第四小问中的3p 改为3-m p 又该怎么计算了?(5)m是正整数)(322-+÷m m p p本节课开始的问题: 1000100.13600109.733⨯⨯⨯⨯=课堂练习:1、如果x x x n m =÷2,则m,n 的关系是( )A 、m=2nB 、m=-2nC 、m-2n=1D 、m-2n=12、计算:(1)、443÷ (2)、26)41()41(-÷-(3)、222m m÷ (4)、)()(7q q -÷-(5)、37)()(ab ab -÷- (6)、y y x x 48÷(7)、22333÷÷m (8)、232432)()(z y x z y x -÷-(9)、34)()(y x y x +÷--课后练习:1、月球距离地球大约3.84 ×105千米,一架飞机的速度约为8×102千米/小时,如果乘坐此飞机飞行这么远的距离,大约需要多少时间?2计算题:(1)(a3 .a2 ) 3÷(-a2 ) 2÷a2(2)(x4 ) 2÷(x4 ) 2 (x2 ) 2·x2(3)若x m = 2 , x n = 5 ,则x m+n = , x m-n =(4)计算:4384)24m+÷⨯mm)((m(5)计算:(ab) 12÷[(ab) 4÷(ab) 3] 2教学反思:把同底数幂乘法与同底数幂相除进行比较,并且要把同底数幂乘法与同底数幂相除进行区分。

提取公因式教学目的:1.在上节课的基础上,使学生进一步理解分解因式)am++bm++中,m不仅可以表示单项=(ccmbam式,也可表示多项式,并能熟练地找出公因式。

2.通过公因式是多项式的多项式的因式分解,进一步培养学生整体思想、化归的数学思想。

教学重点:公因式是多项式的提取公因式法的因式分解。

教学难点:在确定公因式时的符号的变换。

教学过程:一、复习提问:1.因式分解的定义,强调结论一定是积的形式。

2. 提取公因式法时,公因式及另一个因式的确定方法。

3. 通过讲评作业,进一步复习、巩固上节课所学内容。

4. 练习:P10 练习1。

二、新课讲解: 1. 引例:将m am 32-进行因式分解。

然后将m 替换成)(c b +。

2. 例1:把)(3)(2c b c b a +-+分解因式。

分析:由引例可知,若设m c b =+)(,这样就可将问题归结是公因式是单项式的因式,就可用提取公因式法进行因式分解,则原式可分解成)32(-a m ,再将m 换回)(c b +,就能对原式进行因式分解了。

这种变换思想是整体变换的数学思想,在解一些数学问题中常常用到。

解:)32)(()(3)(2-+=+-+a c b c b c b a 3. 练习:把下列各多项式进行因式分解: ⑴)()(y x b y x a -+- ⑵)3()3(+-+a y a x ⑶)3(5)3(6-+-p n p m ⑷)()()(b a z b a y b a x +++-+ 4. 结合所做的P10练习1,问:多项式)(5)(a b b a m ---是否有公因式? 答:如果将多项式中的第二项)(a b -变为)(b a --,则多项式就有公因式)(b a -。

5. 例2:把)2()2(6x x x -+-分解因式。

分析:因为)2(-x 与)2(x -只差一个符号,如果将)2(x -变号,即)2()2(--=-x x ,就有公因式)2(-x 。

解:)6)(2()2()2(6)2()2(6x x x x x x x x --=---=-+-6. 例3:把32)(12)(18b a b a b ---分解因式。

分析:根据上节课所讲的公因式的确定方法及结合前面所讲的公因式也可为多项式的内容,可确定原多项式的公因式为2)(6b a -。

解: 32)(12)(18b a b a b --- )](23[)(62b a b b a ---= )223()(62b a b b a +--= )25()(62a b b a --= 注意:一般情况下,括号为单重,若遇双重括号,应进行化简。

7. 例4:把23)(10)(5x y y x -+-分解因式。

分析:要找出多项式的公因式,关键在于2)y-(x 的变形,在变形过程中,要特别注意符号的变化规律,即:22)2=xy---。

=x-((y[)](yx)解:23)x-y+-)y(10(5x3)2x-+-=yx10()(5y=]2xyx-y(52+)-[()-xyx=y)2()(52+-8.练习:P10—11,练习2,3。

三、课堂小结:1.在运用提取公因式法进行因式分解时,首先要观察多项式的结构特点,确定公因式。

当多项式各基的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可将这个多项式因式看作一个整体,直接提取公因式。

当多基式的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

2.在提取公因式时,关键在于确定公因式。

在确定公因式时,若系数是整数时为最大公约数;若系数是分数时为它们分母的最小公倍数;若首项符号为“-”时系数为负,目的是使另一个因式的所有系数为整数,且第一项为正,以利于下一步有可能进一步分解因式。

教学反思:理解公因式的概念等,并且准确提取公因式进行因式分解。

运用“平方差公式”分解因式一、教学目的和要求1. 使学生进一步了解因式分解的意义,乘法公式和因式分解的区别与联系。

2. 使学生掌握平方差公式的特点,并能熟练地运用公式将多项式进行因式分解。

3. 进一步培养学生的逆向思维及转化的思想。

二、教学重点和难点重点:掌握平方差公式的特点。

难点:准确熟练地运用公式把多项式分解因式。

三、教学过程(一)复习、引入提问:1. 什么叫因式分解?因式分解与整式乘法有什么区别和联系?(是一种互逆的运算)。

2. 上节课讲了哪种因式分解的方法?在分解时,要注意什么问题?(提取公因式法,要注意把公因式提干净,提出负号各项要变号)。

练习:把下列各式分解因式)2()(3)(6)(3.3)())(()()(.2)2)(2(2)4(228.122222233n m q p p q n q p m b a b b a a b a a b b a a y x y x xy y x xy xy y x --=----=+--=----+=-=-1题提出公因式xy 2后,剩下的因式224y x-还可以分解吗?(二)新课 我们知道,整式乘法与因式分解相反,因此,利用这种关系,可以得到因式分解的方法。

如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法,今天我们研究公式中的一种。

板书“平方差公式”。

把乘法公式22))((b ab a b a -=-+ 反过来,就得到))((22b a b a b a -+=-这就是说,两个数的平方差,等于这两个数的和与这两个数的差的积。

平方差公式特点是,等号左边项数二项,且符号相反,每项可以写成完全平方的形式,等号右边分解成两个因式,每个因式的第一项相等,第二项互为相反数。

下面我们举例说明,如何利用平方差公式分解因式:))(()92222y x y x y x =-=- )()(a =-)214)(214()(1)4(41162222n m n m n m n m -+=-=- )()(b a =-注意:要先将每项都变为平方的形式,才可使用公式分解,值得指出的是:平方差公式中的字母b a 、不仅可以表示数,而且可以表示代数式。

例1 把下列各式分解因式22224925)2(04.0)1(b a c b -- )75)(75()7()5(4925)2()2.0)(2.0()2.0(04.0)1(22222222ab c ab c ab c b a c b b b b -+=-=--+=-=-解:例2 把下列各式分解因式2222)(9)(4)2()2()()1(n m n m b a b a --+--+分析:把)2()(b a b a -+与各看成一个数,则22)2()(b a b a --+符合平方差公式,可以因式分解。

222222)(9)(4,)](3[)(9,)](2[)(4n m n m n m n m n m n m --+--++把改写成改写成看成是)(3)(2n m n m -+与两数的平方差。

解:22)2()()1(b a b a --+)5)(5()](3)(2[)](3)(2[)](3[)](2[)(9)(4)2()2(3)2(3)2(3)]2()[()]2()[(2222m n n m n m n m n m n m n m n m n m n m a b a b a a b a a b a b a b a b a --=--+-++=--+=--+---=+-=--+-++=或注意:分解后的因式中的同类项要合并整理,合并后的多项式因式要使首项为正。

相关文档
最新文档