梅涅劳斯定理和例题拓展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梅涅劳斯定理及例题拓展
梅涅劳斯介绍:在证明点共线时,有一个非常重要的定理,它就是梅涅劳斯定理,梅涅劳斯(Menelaus )是公元一世纪时的希腊数学家兼天文学家,著有几何学和三角学方面的许多书籍。下面的定理就是他首先发现的。这个定理在几何学上有很重要的应用价值。
定理:设D 、E 、F 依次是三角形ABC 的三边AB 、BC 、CA 或其延长线上的点,且这三点共线,则满足1=⋅⋅FA
CF EC BE DB AD 证明:(此定理需要分四种情况讨论,但有两种可以排除)
先来说明两种不可能的情况 情况一:当三点均在三角形边上时,由基本事实可知三点不可能共线(只能组成内接三角形的三角形。 情况二:当一点在三角形一边上,另两点分别在三角形另两边的延长线上时,如图是三角形ABC 直线DE 交AB 于点D ,交AC 于点F ,交BC 于点E ,平移直线DE 即可发现不能可两点同时在延长线上 情况三:当两点分别在三角形两边上,另一点在三角形另一边的延长线上时,如图是三角形ABC 直线DE 交AB 于点D ,交AC 于点F ,交BC 于点E ,
∵D 、E 、F 三点共线
∴可过C 作CM ∥DE 交AB 于M ,于是
FC
AF DM BD DM AD EC BE FC
AF DM AD DM BD EC BE ⋅=⋅∴==,, 所以1=⋅⋅FA CF EC BE DB AD 情况四:三点分别在三角形三边的延长线上时,如图是三角形ABC 直线DE 交AB 于点D ,交AC 于点F ,交BC 于点E ,
同情况三∵D 、E 、F 三点共线
∴可过C 作CM ∥DE 交AB 于M ,于是
FC
AF DM BD DM AD EC BE FC
AF DM AD DM BD EC BE ⋅=⋅∴==,, 所以1=⋅⋅FA
CF EC BE DB AD
∴设D 、E 、F 依次是三角形ABC 的三边AB 、BC 、CA 或其延长线上的点,且这三点共线,则满足1=⋅⋅FA
CF EC BE DB AD
拓展
(1题)在任意三角形PQR 中,A2,A4分别是PR,PQ 延长线上的点,做射线A4A2,A6是射线A4A2上的一点,做射线A6Q ,A1是射线A6Q 上的一点,连结A1A2交射线PR 于X ,作射线A4A3交射线PQ 于点A3,交射线A1A6于点Y ,连结A1A3交射线PR 于点A5,连结A6A5交射线PQ 于点Z ,求证X,Y,Z 三点共线
(该命题又为一六边形相间各顶点分别在两直线上求证:它的三对对边(所在直线)的交点共线)这个定理为帕波斯定理
(2题)给定△ABC内两点O,O',连结AO,AO'交BC于点X,X',BO,BO'交AC于Y,Y',CO,CO'交AB于Z,Z'.设YZ'与Y'Z交于点P,ZX'与Z'X交于点Q,XY'与X'Y 交于点R.求证O,O',P,Q,R五点共线
(3题)在任意三角形ABC中,E是直线AC上的一点,D是直线BC上的一点,F 是直线DE上一点,G是直线AC上一点,作直线BG交直线DF于点Q,作直线CF 交直线AB于点P,作直线GF交直线AB于点H作直线DH交直线AC于点R,求证P,Q,R三点共线
(4题)一直线截△ABC三边BC,CA,AB或延长线X,Y,Z。证明:这三点的等截点X',Y',Z'共线。
(在三角形任意一边所在直线上,设有两点与此边的中点等距,则称这两个点互为等截点)
(5题)将一点与正三角形的顶点连线,
(1)若依次连结三联结线中点求证是个正三角形
(2)三联结线的中垂线分别与对边(所在直线)的交点共线