上海市静安区初三数学一模卷含答案

合集下载

静安初中一模数学试卷答案

静安初中一模数学试卷答案

一、选择题(每题5分,共50分)1. 下列各数中,正数是()A. -3B. 0C. 2D. -5答案:C2. 已知x^2 - 4x + 3 = 0,则x的值为()A. 1B. 3C. 1或3D. -1或-3答案:C3. 下列各式中,不是同类项的是()A. 2a^2B. 3abC. 4b^2D. 5a^2b答案:D4. 在等腰三角形ABC中,若AB=AC,则顶角A的度数为()A. 30°B. 45°C. 60°D. 90°答案:D5. 若|a| = 5,则a的值为()A. ±5B. 5C. -5D. 0答案:A二、填空题(每题5分,共50分)6. 若x^2 - 2x - 3 = 0,则x的值为______。

答案:3或-17. 已知等差数列的前三项分别为2,5,8,则第10项为______。

答案:218. 在直角三角形ABC中,∠A=30°,∠C=90°,若BC=10cm,则AC的长度为______cm。

答案:5√39. 若等比数列的首项为2,公比为-3,则第4项为______。

答案:-5410. 在等腰三角形ABC中,若AB=AC,且AD为高,则∠ADB的度数为______。

答案:45°三、解答题(每题20分,共80分)11. (20分)解下列方程:(1)3x^2 - 5x - 2 = 0(2)2x^2 - 4x + 2 = 0答案:(1)x = 2 或 x = -1/3(2)x = 1 或 x = 112. (20分)已知等差数列的前三项分别为2,5,8,求:(1)该数列的公差(2)第10项(3)前10项和答案:(1)公差为3(2)第10项为29(3)前10项和为15013. (20分)在直角三角形ABC中,∠A=30°,∠C=90°,若BC=10cm,求:(1)AC的长度(2)AB的长度答案:(1)AC = 5√3 cm(2)AB = 10√3 cm14. (20分)已知等比数列的首项为2,公比为-3,求:(1)该数列的第4项(2)前4项和答案:(1)第4项为-54(2)前4项和为-214以上为一篇虚构的静安初中一模数学试卷答案示例,实际考试答案以真实试卷为准。

中考数学第一次模试卷含答案解析 (2)

中考数学第一次模试卷含答案解析 (2)

上海市静安区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)1.的相反数是()A.B.﹣C.D.﹣2.下列方程中,有实数解的是()A.x2﹣x+1=0 B.=1﹣x C.=0 D.=13.化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1 D.1﹣)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1) B.(2,7) C.(5,4) D.(﹣1,4)5.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC.D.6.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.= B.=C.=D.=二、填空题:(本大题共12题,每题4分,满分48分)7.化简:(﹣2a2)3=.8.函数的定义域是.9.方程=﹣3)的取值范围为.11.二次函数y=x2﹣6x+1的图象的顶点坐标是.12.如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是.13.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.14.在Rt△ABC中,∠C=90°,点G是重心,如果sinA=,BC=2,那么GC的长等于.15.已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=.(用向量,的式子表示)16.在△ABC中,点D、E分别在边AB、AC上,∠AED=∠B,AB=6,BC=5,AC=4,如果四边形DBCE的周长为10,那么AD的长等于.17.如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sinB=,那么tan∠CDE=.18.将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C 在一直线上.如果AB=13,AD=3,那么∠A的余弦值为.三、解答题:(本大题7题,满分78分)19.化简:÷,并求当x=时的值.20.用配方法解方程:2x2﹣3x﹣3=0.21.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.22.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)23.已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.24.如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.25.已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.上海市静安区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)1.的相反数是()A.B.﹣C.D.﹣【考点】实数的性质.【专题】计算题.【分析】符号不同的两个数互为相反数,因此的相反数为﹣,分母有理化得﹣.【解答】解:根据相反数定义得:的相反数为:﹣,分子分母同乘得:﹣.故选:D.【点评】题目考查了相反数和最简二次根式的定义,学生在进行相反数转换后,不要忘记对二次根式进行化简.2.下列方程中,有实数解的是()A.x2﹣x+1=0 B.=1﹣x C.=0 D.=1【考点】根的判别式;无理方程;分式方程的解.【分析】A、根据△的值判断即可,B、根据二次根式的意义判断即可;C、根据分式方程的解的定义判断即可;D、根据分式方程的解的定义判断即可.【解答】解:A、∵△=1﹣4=﹣3<0,∴原方程无实数根,B、当1﹣x<0,即x>1时,原方程无实数根,C、当x2﹣x=0,即x=1,或x=0时,原方程无实数根,D、∵=1,∴x=﹣1.故选D.【点评】本题考查了一元二次方程的根得判别式,无理方程的解,分式方程的解,正确的解方程是解题的关键.3.化简(x﹣1﹣1)﹣1的结果是()A.B.C.x﹣1 D.1﹣x【考点】负整数指数幂.【分析】根据a﹣p=(a≠0,p为正整数)先计算x﹣1,再计算括号里面的减法,然后再次计算()﹣1即可.【解答】解:原式=(﹣1)﹣1=()﹣1=.故选:A.【点评】此题主要考查了负整数指数幂,关键是掌握负整数指数为正整数指数的倒数.4.如果点A(2,m)在抛物线y=x2上,将抛物线向右平移3个单位后,点A同时平移到点A′,那么A′坐标为()A.(2,1) B.(2,7) C.(5,4) D.(﹣1,4)【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先把A(2,m)代入y=x2得m=4,于是得到A点坐标为(2,4),由于抛物线向右平移3个单位,则抛物线上所有点都右平移3个单位,然后根据点平移的规律可确定点A′坐标.【解答】解:把A(2,m)代入y=x2得m=4,则A点坐标为(2,4),把点A(2,4)向右平移3个单位后所得对应点A′的坐标为(5,4).故选C.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,那么BC的长为()A.m•tanα•cosαB.m•cotα•cosαC. D.【考点】解直角三角形.【专题】探究型.【分析】根据在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,可以用含m和α的三角函数值表示出CD,通过角相等,它们的三角函数值也相等,可以解答本题.【解答】解:∵在Rt△ABC中,∠C=90°,CD是高,如果AD=m,∠A=α,∴tanα=,∴CD=m•tanα,∵∠ACB=∠A+∠B=90°,∠BDC=∠B+∠BCD=90°,∠A=α,∴∠BCD=α,∴cos∠BCD=,即cos,CD=.故选C.【点评】本题考查解直角三角函数,解题的关键是明确各个三角函数值的意义,利用转化的思想找到所求问题需要的条件.6.如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A.=B.=C.=D.=【考点】相似三角形的判定.【专题】证明题.【分析】本题中已知∠BAC=∠D,则对应的夹边比值相等即可使△ABC与△ADE相似,结合各选项即可得问题答案.【解答】解:∵∠BAC=∠D,,∴△ABC∽△ADE.故选C.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似,熟记各种判定相似三角形的方法是解题关键.二、填空题:(本大题共12题,每题4分,满分48分)7.化简:(﹣2a2)3=﹣8a6.【考点】幂的乘方与积的乘方.【分析】根据积得乘方与幂的乘方的运算法则计算即可.【解答】解:(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6.故答案为:﹣8a6.【点评】本题主要考查的是积得乘方与幂的乘方的运算,掌握积得乘方与幂的乘方的运算法则是解题的关键.8.函数的定义域是x≠﹣2.【考点】函数自变量的取值范围;分式有意义的条件.【专题】计算题.【分析】分式有意义,分母不能为0,故分母x+2≠0,解得x的范围.【解答】解:根据题意得:x+2≠0解得x≠﹣2.故答案为x≠﹣2.【点评】本题考查了函数自变量取值范围的求法.分式有意义,分母不能为0.9.方程=x﹣1的根为4.【考点】无理方程.【专题】计算题.【分析】首先根据二次根式的基本性质得出x的取值范围,将无理方程两边平方取消二次根号,整理得一元二次方程,解一元二次方程,将解代回x的取值范围验算即可得出答案.【解答】解:由二次根式性质得:x+5≥0,∴x≥5.将=x﹣1两边平方得:x+5=x2﹣2x+1,整理得:x2﹣3x﹣4=0,分解因式:(x﹣4)(x+1)=0,得:x1=4,x2=﹣1,∵x≥5,∴x=4.故答案为:4.【点评】题目考查了无理方程的求解和二次根式的性质,求解无理方程常用的方法是平方法,不过求出的解一定要带回无理方程进行验算,看是否符合二次根式的性质.10.如果函数y=(m﹣3)的取值范围为1<m<3.【考点】一次函数图象与系数的关系.【分析】根据一次函数的性质列出关于m的不等式组,求出m的取值范围即可.【解答】解:∵函数y=(m﹣3)x+1﹣m的图象经过第二、三、四象限,∴,解得1<m<3.故答案为:1<m<3.【点评】本题考查的是一次函数的图象上与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过第二、三、四象限是解答此题的关键.11.二次函数y=x2﹣6x+1的图象的顶点坐标是(3,﹣8).【考点】二次函数的性质.【分析】利用配方法将一般式转化为顶点式,即可得出顶点坐标.【解答】解:∵y=x2﹣6x+1=(x﹣3)2﹣8,∴抛物线顶点坐标为(3,﹣8).故答案为:(3,﹣8).【点评】本题考查了二次函数的性质,掌握抛物线的顶点式y=a(x﹣h)2+k,顶点坐标为(h,k)是解决问题的关键.12.如果抛物线y=ax2﹣2ax+5与y轴交于点A,那么点A关于此抛物线对称轴的对称点坐标是(2,5).【考点】二次函数图象上点的坐标特征.【分析】首先求得点A的坐标为(0,5),抛物线y=ax2﹣2ax+5对称轴为x=﹣=1,进一步利用二次函数的对称性求得点A关于此抛物线对称轴的对称点坐标是即可.【解答】解:∵抛物线y=ax2﹣2ax+5与y轴交于点A坐标为(0,5),对称轴为x=﹣=1,∴点A(0,5)关于此抛物线对称轴的对称点坐标是(2,5).故答案为:(2,5).【点评】本题考查了二次函数图象上点的坐标特征,二次函数的对称性,求得对称轴,掌握二次函数的对称性是解决问题的关键.13.如图,已知D、E分别是△ABC的边AB和AC上的点,DE∥BC,BE与CD相交于点F,如果AE=1,CE=2,那么EF:BF等于.【考点】相似三角形的判定与性质.【分析】由DE∥BC,证得△ADE∽△ABC,根据相似三角形的性质得到=,由于△DEF∽△BCF,根据相似三角形的性质即可得到结论.【解答】解:∵AE=1,CE=2,∴AC=3,∵DE∥BC,∴△ADE∽△ABC,∴=,∵DE∥BC,∴△DEF∽△BCF,∴=,故答案为:1:3.【点评】本题考查了相似三角形的判定和性质,熟练正确相似三角形的判定和性质是解题的关键.14.在Rt△ABC中,∠C=90°,点G是重心,如果sinA=,BC=2,那么GC的长等于2.【考点】三角形的重心.【分析】根据题意画出图形,根据sinA=,BC=2可得出AB=3BC=6,利用直角三角形的性质求出CE的长,根据三角形重心的性质即可得出结论.【解答】解:如图所示,∵在Rt△ABC中,∠C=90°,sinA=,BC=2,∴AB=3BC=6.∵点G是重心,∴CD为△ABC的中线,∴CD=AB=3,∴CG=CD=×3=2.故答案为:2.【点评】本题考查的是三角形的重心,根据题意画出图形,由锐角三角函数的定义求出AB的长是解答此题的关键.15.已知在梯形ABCD中,AD∥BC,BC=2AD,设=,=,那么=﹣﹣.(用向量,的式子表示)【考点】*平面向量.【分析】首先根据题意画出图形,然后过点D作DE∥AB,交BC于点E,易得四边形ABCD是平行四边形,则可求得与,再利用三角形法则求解即可求得答案.【解答】解:如图,过点D作DE∥AB,交BC于点E,∵AD∥BC,∴四边形ABCD是平行四边形,∴BE=AD,DE=AB,∵BC=2AD,=,=,∴==,==,∴=﹣=﹣(+)=﹣(+)=﹣﹣.故答案为:﹣﹣.【点评】此题考查了平面向量的知识以及平行四边形的判定与性质.注意结合题意画出图形,利用图形求解是关键.16.在△ABC中,点D、E分别在边AB、AC上,∠AED=∠B,AB=6,BC=5,AC=4,如果四边形DBCE的周长为10,那么AD的长等于4.【考点】相似三角形的判定与性质.【专题】计算题;图形的相似.【分析】由两对角相等的三角形相似,得到三角形AED与三角形ABC相似,由相似得比例,表示出AD,AE,DE,根据四边形DBCE周长求出AD的长即可.【解答】解:∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴==,∵AB=6,BC=5,AC=4,∴==,设AD=4k,AE=6k,DE=5k,∵四边形DBCE周长DB+DE+EC+BC=10,∴6﹣4k+5k+4﹣6k+5=10,解得:k=1,则AD=4.故答案为:4.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.17.如图,在▱ABCD中,AE⊥BC,垂足为E,如果AB=5,BC=8,sinB=,那么tan∠CDE=.【考点】平行四边形的性质;解直角三角形.【分析】首先由已知条件和勾股定理计算CE=5,所以CD=AB,进而得到∠CDE=∠CED=∠ADE,所以tan∠CDE=tan∠ADE,于是得到结论.【解答】解:在△ABE中,AE⊥BC,AB=5,sinB=,∴BE=3,AE=4.∴EC=BC﹣BE=8﹣3=5.∵平行四边形ABCD,∴CD=AB=5.∴△CED为等腰三角形.∴∠CDE=∠CED.∵AD∥BC,∴∠ADE=∠CED.∴∠CDE=∠ADE.在Rt△ADE中,AE=4,AD=BC=8,∴tan∠CDE==,故答案为:.【点评】本题考查了解直角三角形的运用、勾股定理的运用、平行四边形的性质和等腰三角形的判定和性质,解题的关键是找到图形中相等的角.18.将▱ABCD(如图)绕点A旋转后,点D落在边AB上的点D′,点C落到C′,且点C′、B、C 在一直线上.如果AB=13,AD=3,那么∠A的余弦值为.【考点】旋转的性质;平行四边形的性质.【专题】计算题.【分析】根据平行四边形的性质得∠DAB=∠D′AB′,AB=AB′=C′D′=13,再由AB′∥C′D′得∠D′AB′=∠BD′C′,加上∠C=∠DAB,则∠C=∠BD′C′,接着由点C′、B、C在一直线上,AB∥CD 得到∠C=∠C′BD′,所以∠C′BD′=∠BD′C′,可判断△C′BD′为等腰三角形,作C′H⊥D′B,根据等腰三角形的性质得BH=D′H,由于BD′=10得到D′H=5,然后根据余弦的定义得到cos∠HD′C′=,由此得到∠A的余弦值.【解答】解:∵▱ABCD绕点A旋转后得到▱AB′C′D′,∴∠DAB=∠D′AB′,AB=AB′=C′D′=13,∵AB′∥C′D′,∴∠D′AB′=∠BD′C′,∵四边形ABCD为平行四边形,∴∠C=∠DAB,∴∠C=∠BD′C′,∵点C′、B、C在一直线上,而AB∥CD,∴∠C=∠C′BD′,∴∠C′BD′=∠BD′C′,∴△C′BD′为等腰三角形,作C′H⊥D′B,则BH=D′H,∵AB=13,AD=3,∴BD′=10,∴D′H=5,∴cos∠HD′C′==,即∠A的余弦值为.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的性质.解决本题的关键是证明△C′BD′为等腰三角形.三、解答题:(本大题7题,满分78分)19.化简:÷,并求当x=时的值.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•=,当x=时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.用配方法解方程:2x2﹣3x﹣3=0.【考点】解一元二次方程-配方法.【分析】首先把方程的二次项系数化为1,移项,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【解答】解:2x2﹣3x﹣3=0,x2﹣x﹣=0,x2﹣x+=+,(x﹣)2=,x﹣=±,解得:x1=,x2=.【点评】此题考查利用配方法解一元二次方程,用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,直线y=x与反比例函数的图象交于点A(3,a),第一象限内的点B在这个反比例函数图象上,OB与x轴正半轴的夹角为α,且tanα=.(1)求点B的坐标;(2)求△OAB的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)用直线求出点A坐标为(3,4),反比例函数解析式y=,设点B坐标为(x,),tanα=,得出=,x=6,得出B点坐标(6,2);(2)过A点做AC⊥x轴,交OB于点C,将三角形OAB分为两个三角形,分别求解即可.【解答】解:(1)∵直线y=x与反比例函数的图象交于点A(3,a),∴A(3,4),反比例函数解析式y=,∵点B在这个反比例函数图象上,设B(x,),∵tanα=,∴=,解得:x=±6,∵点B在第一象限,∴x=6,∴B(6,2).答:点B坐标为(6,2).(2)设直线OB为y=kx,(k≠0),将点B(6,2)代入得:k=,∴OB直线解析式为:y=x,过A点做AC⊥x轴,交OB于点C,如下图:则点C坐标为:(3,1),∴AC=3S△OAB的面积=S△OAC的面积+S△ACB的面积,=×|AC|×6=9.△OAB的面积为9.【点评】题目考查了一次函数与反比例函数的基本性质.求函数解析式及函数交点是函数常见问题.题目整体较为简单,学生在解决(2)中的面积问题可以利用多种方法求解.22.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是26.6°,向前走30米到达B点,测得杆顶端点P和杆底端点Q的仰角分别是45°和33.7°,求该电线杆PQ的高度(结果精确到1米)(备用数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50,cot26.6°=2.00;sin33.7°=0.55,cos33.7°=0.83,tan33.7°=0.67,cot33.7°=1.50)【考点】解直角三角形的应用-仰角俯角问题.【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【解答】解:延长PQ交直线AB于点E,设PE=x米.在直角△ABE中,∠PBE=45°,则BE=PE=x米;∵∠PAE=26.6°在直角△APE中,AE=PE•cot∠PAE≈2x,∵AB=AE﹣BE=30米,则2x﹣x=30,解得:x=30.则BE=PE=30米.在直角△BEQ中,QE=BE•tan∠QBE=30×tan33.7°=30×0.67≈20.1米.∴PQ=PE﹣QE=30﹣20=10(米).答:电线杆PQ的高度是10米.【点评】本题考查解直角三角形的应用,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路.23.已知:如图,在△ABC中,点D、E分别在边BC、AB上,BD=AD=AC,AD与CE相交于点F,AE2=EF•EC.(1)求证:∠ADC=∠DCE+∠EAF;(2)求证:AF•AD=AB•EF.【考点】相似三角形的判定与性质.【专题】证明题.【分析】(1)根据等腰三角形的性质得到∠B=∠BAD,∠ADC=∠ACD,推出△EAF∽△ECA,根据相似三角形的性质得到∠EAF=∠ECA,于是得到∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)根据相似三角形的性质得到,即,推出△FAE∽△ABC,根据相似三角形的性质得到,于是得到FA•AC=EF•AB,等量代换即可得到结论.【解答】证明:(1)∵BD=AD=AC,∴∠B=∠BAD,∠ADC=∠ACD,∵AE2=EF•EC,∴,∵∠E=∠E,∴△EAF∽△ECA,∴∠EAF=∠ECA,∴∠ADC=∠ACD=∠ACE+∠ECB=∠DCE+∠EAF;(2)∵△EAF∽△ECA,∴,即,∵∠EFA=∠BAC,∠EAF=∠B,∴△FAE∽△ABC,∴,∴FA•AC=EF•AB,∵AC=AD,∴AF•AD=AB•EF.【点评】本题考查了相似三角形的判定和性质,等腰三角形的性质,三角形的外角的性质,证得△EAF∽△ECA是解题的关键.24.如图,直线y=x+1与x轴、y轴分别相交于点A、B,二次函数的图象与y轴相交于点C,与直线y=x+1相交于点A、D,CD∥x轴,∠CDA=∠OCA.(1)求点C的坐标;(2)求这个二次函数的解析式.【考点】二次函数综合题.【分析】(1)首先利用一次函数解析式计算出A、B两点坐标,然后再根据平行线的性质可得∠ACO=∠BAO,再利用三角函数可得CO长,进而可得C点坐标;(2)首先证明△CBD∽△OBA,根据相似三角形的性质可得=,然后可得D点坐标,再设出二次函数解析式,利用待定系数法求出解析式即可.【解答】解:(1)∵函数y=x+1中,当y=0时,x=﹣2,∴A(﹣2,0),∵函数y=x+1中,当x=0时,y=1,∴B(0,1),∵CD∥x轴,∴∠BAO=∠ADC,∵∠CDA=∠OCA,∴∠ACO=∠BAO,∴tan∠ACO=tan∠BAO=,∴CO=4,∴C(0,4);(2)∵∠AOB=∠OCD=90°,∠BAO=∠BDC=90°,∴△CBD∽△OBA,∴=,∴=,∴CD=6,∴D(6,4),设二次函数的解析式为y=ax2+bx+c,∵图象经过A(﹣2,0),D(6,4),C(0,4),∴,解得:.∴二次函数的解析式为y=﹣x2+x+4.【点评】此题主要考查了一次函数、二次函数以及相似三角形和三角函数的综合应用,关键是掌握一次函数与坐标轴交点的求法,以及待定系数法求二次函数解析式的方法.25.已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.(1)求证:∠DCA=∠EBC;(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;(3)如果△DFG是直角三角形,求△AEF的面积.【考点】相似形综合题.【专题】压轴题;数形结合.【分析】(1)由AD与BC平行,得到一对内错角相等,再由AD=CE,AC=BC,利用SAS可得△DCA≌△ECB,由全等三角形的性质可得结论;(2)由AD与BC平行,得到三角形AEF与三角形CEB相似,由相似得比例表示出AF,过E作EH垂直于AF,根据锐角三角函数定义表示出EH,进而表示出y与x的函数解析式,并求出x的范围即可;(3)分两种情况考虑:①当∠FDG=90°时,如图2所示,在直角三角形ACD中,利用锐角三角函数定义求出AD的长,即为x的值,代入求出y的值,即为三角形AEF面积;②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由相似列出关于x的方程,求出方程的解得到x的值,进而求出y的值,即为三角形AEF面积.【解答】(1)证明:∵AD∥BC,∴∠DAC=∠ECB,在△DCA和△ECB中,,∴△DCA≌△ECB(SAS),∴∠DCA=∠EBC;(2)∵AD∥BC,∴△AEF∽△CEB,∴,即,解得:AF=,作EH⊥AF于H,如图1所示,∵cos∠ACB=,∴EH=AE=(10﹣x),∴y=S△AEF=×(10﹣x)×=,∴y=,∵点G在线段CD上,∴AF≥AD,即≥x,∴x≤5﹣5,∴0<x≤5﹣5,∴y关于x的函数解析式为:y=,(0<x≤5﹣5);(3)分两种情况考虑:①当∠FDG=90°时,如图2所示:在Rt△ADC中,AD=AC×=8,即x=8,∴S△AEF=y==;②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由(1)得:CE=AF=C中,EM=x,MC=C=10﹣x,∵∠GCE=∠GBC,∠EGC=∠CGB,∴△CGE∽△BGC,∴=,即=,∵∠EBM=∠CBG,∠BME=∠BGC=90°,∴△BME∽△BGC,∴==,∴=,即x=5,此时y==15,综上,此时△AEF的面积为或15.【点评】此题属于相似型综合题,涉及的知识有:平行线的判定,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数定义,利用了分类讨论的思想,熟练掌握相似三角形的判定与性质是解本题的关键.。

2023上海静安区中考初三一模数学试题及答案

2023上海静安区中考初三一模数学试题及答案

九年级数学学科练习考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,无理数是()A.B.C.()2π+ D.872.计算x 3•x 2的结果是()A.xB.x 5C.x 6D.x 93.如果非零向量a 、b互为相反向量,那么下列结论中错误的是()A.a b ∥B.a b =C.0a b += D.a b =-4.如图,已知ABC 与DEF ,下列条件一定能推得它们相似的是()A.A D B E ∠=∠∠=∠,B.AB BCA D DF EF ∠=∠=且C.A B D E∠=∠∠=∠, D.AB ACA E DE DF∠=∠=且5.如果045A ︒<∠<︒,那么sin A 与cos A 的差()A.大于0B.小于0C.等于0D.不能确定6.如图,在ABC 中,中线AD 与中线BE 相交于点G ,联结DE .下列结论成立的是()A.13DG AG =B.BG DEEG AB= C.ΔΔ14DEG AGB S S = D.ΔΔ12CDE AGB S S =二、填空题:(本大题共12题,每题4分,满分48分)7.13的倒数是_____.8.计算:2422a a a +=++_________.9.已知23a b =,则a a b+的值是_____.10.抛物线()=+-2y x 12与y 轴的交点坐标是_________.11.请写出一个以直线3x =为对称轴,且在对称轴左侧部分是下降的抛物线,这条抛物线的表达式可以是_________.(只要写出一个符合条件的抛物线表达式)12.有一座拱桥的截面图是抛物线形状,在正常水位时,桥下水面AB 宽20米,拱桥的最高点O 距离水面AB 为3米,如图建立直角坐标平面xOy ,那么此抛物线的表达式为_________.13.一水库的大坝横断面是梯形,坝顶、坝底分别记作BC 、AD ,且迎水坡AB 的坡度为12.5∶,背水坡CD 的坡度为13∶,则迎水坡AB 的坡角________背水坡CD 的坡角.(填“大于”或“小于”)14.已知111222ABCA B C A B C ,ABC 与111A B C △的相似比为15,ABC 与222A B C △的相似比为23,那么111A B C △与222A B C △的相似比为_________.15.在矩形ABCD 内作正方形AEFD (如图所示),矩形的对角线AC 交正方形的边EF 于点P .如果点F 恰好是边CD 的黄金分割点()DF FC >,且2PE =,那么PF =_________.16.在ABC 中,6,5AB AC ==,点D 、E 分别在边,AB AC 上,当4,AD ADE C =∠=∠时,DEBC=_________.17.如图,ABC 绕点C 逆时针旋转90︒后得DEC ,如果点B 、D 、E 在一直线上,且60,3BDC BE ∠=︒=,那么A 、D 两点间的距离是_________.18.定义:把二次函数()2y a x m n =++与2()y a x m n =---(a ≠0,m 、n 是常数)称作互为“旋转函数”.如果二次函数2322y x bx =+-与214y x cx c =--+(b 、c 是常数)互为“旋转函数”,写出点(),P b c 的坐标_________.三、解答题:(本大题共7题,满分78分)19.2cot 45sin 45tan 45-︒︒⎛⎫ ⎪︒⎝⎭.20.如图,已知在ABC 中,点D 、E 分别在边AB 、AC 上,且2BD AD =,12AE EC =.(1)求证:DE BC ∥;(2)设BE a = ,BC b =,试用向量a 、b 表示向量AC.21.如图,已知在ABC 中,B ∠为锐角,AD 是BC 边上的高,5cos 13B =,13,21AB BC ==.(1)求AC 的长;(2)求BAC ∠的正弦值.22.有一把长为6米的梯子AB ,将它的上端A 靠着墙面,下端B 放在地面上,梯子与地面所成的角记为α,地面与墙面互相垂直(如图1所示),一般满足5075α≤︒≤︒时,人才能安全地使用这架梯子.(1)当梯子底端B 距离墙面2.5米时,求α的度数(结果取整数),此时人是否能安全地使用这架梯子?(2)当人能安全地使用这架梯子,且梯子顶端A 离开地面最高时,梯子开始下滑,如果梯子顶端A 沿着墙面下滑1.5米到墙面上的D 点处停止,梯子底端B 也随之向后平移到地面上的点E 处(如图2所示),此时人是否能安全使用这架梯子?请说明理由.23.如图,在梯形ABCD 中,AD BC ∥,DF 分别交对角线AC 、底边BC 于点E 、F ,且=AD AC AE BC ⋅⋅.(1)求证:AB FD ∥;(2)点G 在底边BC 上,=10BC ,=3CG ,连接AG ,如果AGC 与EFC 的面积相等,求FC 的长.24.如图所示,在平面直角坐标系xOy 中,抛物线26y ax bx =+-(0a ≠)与x 轴交于点A 、B (点A 在点B 的左侧),交y 轴于点C ,联结BC ,ABC ∠的余切值为13,8AB =,点P 在抛物线上,且PO PB =.(1)求上述抛物线的表达式;(2)平移上述抛物线,所得新抛物线过点O 和点P ,新抛物线的对称轴与x 轴交于点E .①求新抛物线的对称轴;②点F 在新抛物线对称轴上,且EOF PCO ∠=∠,求点F 的坐标.25.在等腰直角ABC 中,90,4C AC ∠=︒=,点D 为射线CB 上一动点(点D 不与点B 、C 重合),以AD 为腰且在AD 的右侧作等腰直角ADF △,90ADF Ð=°,射线AB 与射线FD 交于点E ,联结BF .(1)如图1所示,当点D 在线段CB 上时,①求证:~ACD ABF ;②设,tan CD x BFD y =∠=,求y 关于x 的函数解析式,并写出x 的取值范围;(2)当2AB BE =时,求CD 的长.九年级数学学科练习考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列实数中,无理数是()A.B.C.()2π+ D.87【答案】B【分析】先根据二次根式的性质和零指数幂进行化简,再根据无理数的定义逐项进行判断即可.【详解】4=,是整数,是有理数,不是无理数,故不符合题意;C.()0π21+=,是整数,是有理数,不是无理数,故不符合题意;D.87,是分数,是有理数,不是无理数,故不符合题意;故选:B .【点睛】本题考查了二次根式的性质,零指数幂及无理数的定义,熟练掌握无限不循环小数为无理数是解题的关键.2.计算x 3•x 2的结果是()A.x B.x 5C.x 6D.x 9【答案】B【分析】根据同底数的幂相乘的法则即可求解.【详解】解:x 3•x 2=x 5.故选:B .【点睛】本题主要考查了同底数幂相乘的计算法则,正确理解法则是关键.3.如果非零向量a 、b互为相反向量,那么下列结论中错误的是()A.a b∥ B.a b = C.0a b += D.a b=-【答案】C【分析】非零向量a、b互为相反向量,则非零向量a、b大小相等,方向相反,据此分析即可.【详解】∵非零向量a 、b互为相反向量,∴a b ∥ ,a b =- ,a b = ,∴0a b +=,则C 选项错误,故选:C .【点睛】本题考查相反向量的概念,属基础题,正确理解定义是解决问题的关键.4.如图,已知ABC 与DEF ,下列条件一定能推得它们相似的是()A.A D B E ∠=∠∠=∠,B.AB BCA D DF EF ∠=∠=且C.A B D E∠=∠∠=∠, D.AB ACA E DE DF∠=∠=且【答案】A【分析】三角形相似的判定方法有(1)平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似;(2)如果两个三角形对应边的比相等且夹角相等,这2个三角形也可以说明相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.);(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.);(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似)。

上海市静安区2019-2020学年中考第一次质量检测数学试题含解析

上海市静安区2019-2020学年中考第一次质量检测数学试题含解析

上海市静安区2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( ) A .3×109B .3×108C .30×108D .0.3×10102.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒3.在实数﹣3 ,0.21,2π,18,0.001 ,0.20202中,无理数的个数为( )A .1B .2C .3D .44.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )A .B .C .D .5.学完分式运算后,老师出了一道题“计算:23224x xx x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的6.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .613B .513C .413D .3137.如图所示,数轴上两点A ,B 分别表示实数a ,b ,则下列四个数中最大的一个数是( )A .aB .bC .1aD .1b8.已知二次函数y=x 2 + bx +c 的图象与x 轴相交于A 、B 两点,其顶点为P ,若S △APB =1,则b 与c 满足的关系是( ) A .b 2 -4c +1=0B .b 2 -4c -1=0C .b 2 -4c +4 =0D .b 2 -4c -4=09.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( ) A .M>NB .M =NC .M<ND .不能确定10.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78910 A .14,9B .9,9C .9,8D .8,911.下列计算正确的是( ) A .326⨯=B .3+25=C .()222-=- D .2+2=212.已知e →为单位向量,a r=-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r 与e →方向相同D .a r 与e →方向相反二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,设△ABC 的两边AC 与BC 之和为a ,M 是AB 的中点,MC =MA =5,则a 的取值范围是_____.14.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____. 153a -_____.16.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,PM=l ,则l 的最大值是17.若使代数式212x x -+有意义,则x 的取值范围是_____. 18.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D'处,则点C 的对应点C'的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知在Rt ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线.(1)作一个O e 使它经过A D 、两点,且圆心O 在AB 边上;(不写作法,保留作图痕迹) (2)判断直线BC 与O e 的位置关系,并说明理由.20.(6分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答: (1)收回问卷最多的一天共收到问卷_________份; (2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?21.(6分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a与n的函数关系式.②如图2,连接AC,CD,若∠ACD=90°,求a的值.22.(8分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.23.(8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.24.(10分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲a7 7 1.2乙7 b8 c(1)求a,b,c的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?25.(10分)计算:(﹣1)2018﹣29+|1﹣3|+3tan30°.26.(12分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.27.(12分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a ,第二次出现的点数为b ,则以方程组322ax by x y +=⎧⎨+=⎩的解为坐标的点在第四象限的概率为_____.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】将数据30亿用科学记数法表示为9310⨯, 故选A . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2.B 【解析】 【分析】连接BD ,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可. 【详解】 连接BD ,∵AB 是直径,∠BAD=25°, ∴∠ABD=90°-25°=65°, ∴∠AGD=∠ABD=65°, 故选B . 【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°. 3.C 【解析】3,0.21,2π,18 0.001 ,0.20202中,32π0.001,共三个.故选C . 4.C 【解析】 【分析】 【详解】从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形, 故选C . 5.C 【解析】 试题解析:23224x xx x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳. 故选C . 6.B 【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B .7.D 【解析】 【详解】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大. ∴1a <a <b <1b, 故选D . 8.D 【解析】 【分析】抛物线的顶点坐标为P (−2b ,244c b -),设A 、B 两点的坐标为A (1x ,0)、B (2x ,0)则AB =12x x -,根据根与系数的关系把AB 的长度用b 、c 表示,而S △APB =1,然后根据三角形的面积公式就可以建立关于b 、c 的等式. 【详解】解:∵1212,x x b x x c +=-=, ∴AB =12x x -()22121244x x x x b ac +-=-∵若S △APB =1∴S △APB =12×AB×244c b - =1,22144124c b b c -∴--=∴−12×2414b c -=,∴(248b ac-=,s , 则38s =, 故s =2,2, ∴2440b c --=. 故选D . 【点睛】本题主要考查了抛物线与x 轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强. 9.A 【解析】 【分析】若比较M ,N 的大小关系,只需计算M-N 的值即可. 【详解】解:∵M =9x 2-4x +3,N =5x 2+4x -2,∴M-N=(9x 2-4x +3)-(5x 2+4x -2)=4(x-1)2+1>0, ∴M>N . 故选A . 【点睛】本题的主要考查了比较代数式的大小,可以让两者相减再分析情况. 10.C 【解析】 【详解】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人, ∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2, ∴中位数为2. 故选C .【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数. 11.A 【解析】 【分析】原式各项计算得到结果,即可做出判断. 【详解】A 、原式,正确;B 、原式不能合并,错误;C 、原式2=,错误;D 、原式 故选A . 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 12.C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10<. 【解析】 【分析】根据题设知三角形ABC 是直角三角形,由勾股定理求得AB 的长度及由三角形的三边关系求得a 的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy 的值,再把该值依据根与系数的关系置于一元二次方程z 2-az+21002a -=0中,最后由根的判别式求得a 的取值范围. 【详解】∵M 是AB 的中点,MC=MA=5,∴△ABC 为直角三角形,AB=10;∴a=AC+BC >AB=10;令AC=x 、BC=y .∴22100x y a x y +⎧⎨+⎩==, ∴xy=21002a -, ∴x 、y 是一元二次方程z 2-az+21002a -=0的两个实根, ∴△=a 2-4×21002a -≥0,即a.综上所述,a 的取值范围是10<. 故答案为10<.【点睛】本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.14.1【解析】【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180n n-︒g =144°, 解得n=1.故答案为1.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.15.﹣【解析】30a -≥Q ,0a ∴≤ . 32a a a a ∴-=-⋅=-- .16.4【解析】【分析】当CD ∥AB 时,PM 长最大,连接OM ,OC ,得出矩形CPOM ,推出PM=OC ,求出OC 长即可.【详解】当CD ∥AB 时,PM 长最大,连接OM ,OC ,∵CD ∥AB ,CP ⊥CD ,∴CP ⊥AB ,∵M 为CD 中点,OM 过O ,∴OM ⊥CD ,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM 是矩形,∴PM=OC ,∵⊙O 直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.17.x≠﹣2【解析】【分析】直接利用分式有意义则其分母不为零,进而得出答案.【详解】∵分式212x x -+有意义, ∴x 的取值范围是:x+2≠0,故答案是:x≠−2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.18.(2,3) 【解析】过C 作CH ,AB 于H,由题意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=3,BH=AO 所以C’(2,3).故答案为(2,3).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)BC 与O e 相切,理由见解析.【解析】【分析】(1)作出AD 的垂直平分线,交AB 于点O ,进而利用AO 为半径求出即可;(2)利用半径相等结合角平分线的性质得出OD ∥AC ,进而求出OD ⊥BC ,进而得出答案.【详解】(1)①分别以A D 、为圆心,大于12AD 的长为半径作弧,两弧相交于点E 和F , ②作直线EF ,与AB 相交于点O ,③以O 为圆心,OA 为半径作圆,如图即为所作;(2)BC 与O e 相切,理由如下:连接OD ,,OA OD Q 为O e 半径,AOD ∴V 是等腰三角形,OAD ODA ∠=∠∴,AD Q 平分BAC ∠,CAD OAD ∴∠=∠,CAD ODA ∴∠=∠,AC OD ∴P ,90C ∠=︒Q ,90ODB ∴∠=︒,OD BC ∴⊥,OD Q 为O e 半径,BC ∴与O e 相切.【点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.20.18 60分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算; (3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x ,则:4:6=2:x ,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)4183P 6010==∴第天,抽到第4天回收问卷的概率是310; (4)第4天收回问卷获奖率105189=,第6天收回问卷获奖率23. ∵5293<, ∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.21.(1)B (1,1);(2)y=(x ﹣n )2+2﹣n .(3)a=2n ;+1. 【解析】【分析】1) 首先求得点A的坐标, 再求得点B的坐标, 用h表示出点D的坐标后代入直线的解析式即可验证答案。

2021-2022学年上海市静安区九年级上学期期末数学试卷(一模)(含答案解析)

2021-2022学年上海市静安区九年级上学期期末数学试卷(一模)(含答案解析)

2021-2022学年上海市静安区九年级上学期期末数学试卷(一模)一、选择题(本大题共6小题,共24.0分)1.计算−(√2)2+(√2+π)0+(−12)−2的结果是()A. 1B. 2C. 114D. 32.三种不同类型的长方形砖长宽如图所示,现有A类1块,B类4块,C类5块,小明在用这些地砖拼成一个正方形时,多出其中1块地砖,那么小明拼成正方形的边长是()A. m+2nB. 2m+nC. 2m+2nD. m+n3.把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,得到抛物线y=x2−3x+5,则有()A. b=3,c=7B. b=−9,c=−15C. b=3,c=3D. b=−9,c=214.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=12∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为()A. √3−1B. √32C. 1 D. √225.在Rt△ABC中,∠C=90°,AB=13,AC=5,则tanA的值为()A. 513B. 1213C. 512D. 1256.如图,在等腰直角三角形ABC中,,AC=6,D是AC上一点,若,则AD的长为()A. 2B. 1C.D.二、填空题(本大题共12小题,共48.0分)7.化简:−(−√2)= . 8. 已知声音在空气中传播的速度y(m/s)与气温x(℃)之间有这样的关系:y =35x +331.当声音的传播速度为343m/s 时,则气温为______℃.9. 方程√5−x =3的根是______. 10. 已知抛物线y =x 2+2bx +5的顶点在y 轴的右侧,则b 的取值范围为______ .11. 函数y =x 2的顶点坐标为______ ,若点(a,4)在其图象上,则a 的值是______ .12. 直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P(a,2),则关于x 的不等式组0<x +1≤mx +n 的解集为______.13. 若点A(−2,y 1),B(1,y 2),C(3,y 3)在二次函数y =2x 2+4x −1的图象上,则y 1,y 2,y 3的大小关系是______(用“<”连接).14. 如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,AC 与BD 相交于点O ,则△ABO 的面积与△CDO 的面积的比为______ .15. 如图,点G 是△ABC 的重心,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,BG ⃗⃗⃗⃗⃗ =b ⃗ ,那么向量DC ⃗⃗⃗⃗⃗ 用向量a ⃗ 、b ⃗ 表示为______ .16.如图,在△ABC中,DE//BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB的长为______.17.如图,已知梯形ABCD中,AB//CD,对角线AC、BD相交于点O,如果S△AOB=2S△AOD,AB=10,那么CD的长是______.18.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为10cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,CA′旋转所构成的扇形的弧长为______cm.三、解答题(本大题共7小题,共78.0分)19.计算:(π−2019)0+6sin45°+√−83.20.(1)已知a、b、c、d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长.(2)已知线段a、b、c,a=4cm,b=9cm,线段c是线段a和b的比例中项.求线段c的长.21.如图,以O为圆心,AB长为直径作圆,在⊙O上取一点,延长AB至点D,连接DC,过点A作⊙O的切线交DC的延长线于点E,且∠DCB=∠DAC.(1)求证:CD是⊙O的切线;(2)若AD=6,tan∠DCB=23,求CE的长.22.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=814米,BC=213米,坡角∠BAF=30°,∠CBE=43°.求山峰的高度CF.(结果精确到0.1米)【参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93】23.已知:如图,在△ABC中,AB=AC,M是边BC的中点,∠DME=∠B,MD与射线BA相交于点D,ME与边AC相交于点E.(1)求证:BDDM =CMEM;(2)如果DE=ME,求证:ME//AB;(3)在第(2)小题的条件下,如果DM⊥AC,求∠ABC的度数.x2+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不24.如图,抛物线y=−43重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.25.如图,在Rt△ABC中,∠ACB=90°,点D是边BC的中点,连结AD.过点C作CE⊥AD于点E,连结BE.(1)求证:BD2=DE⋅AD;(2)如果∠ABC=∠DCE,求证:BD⋅CE=BE⋅DE.参考答案及解析1.答案:D解析:解:−(√2)2+(√2+π)0+(−12)−2=−2+1+4=3故选:D .首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 2.答案:A解析:解:当边长为m +2n 时,(m +2n)2=m 2+4mn +4n 2,此时需要A 类1块,B 类4块,C 类4块,此时多出一块C 类,故选项A 正确,当边长为2m +n 时,(2m +n)2=4m 2+4mn +n 2,此时需要A 类4块,B 类4块,C 类1块,不符合题意,故选项B 错误,当边长为2m +2n 时,(2m +2n)2=4m 2+8mn +4n 2,此时需要A 类4块,B 类8块,C 类4块,不符合题意,故选项C 错误,当边长为m +n 时,(m +n)2=m 2+2mn +n 2,此时需要A 类1块,B 类2块,C 类1块,不符合题意,故选项D 错误,故选:A .根据题目中的选项,可以用假设法进行判断,即可得到哪个选项是正确的.本题考查完全平方公式,解答本题的关键是明确题意,找出所求问题需要的条件,利用假设法解答本题.3.答案:A解析:解:∵y =x 2−3x +5=(x −32)2+114,∴y =x 2−3x +5的顶点坐标为(32,114),∵向右平移3个单位,向下平移2个单位,∴平移前的抛物线的顶点的横坐标为32−3=−32,纵坐标为114+2=194,∴平移前的抛物线的顶点坐标为(−32,194 ),∴平移前的抛物线为y=(x+32)2+194=x2+3x+7,∴b=3,c=7.故选:A.先求出y=x2−3x+5的顶点坐标,再根据“左加右减”求出平移前的抛物线的顶点坐标,然后利用顶点式解析式写出,整理成二次函数的一般形式,再根据对应项系数相等解答.本题考查了二次函数的图象与几何变换,根据两个函数图象的顶点坐标确定平移方法更简便,要注意知道平移后的顶点坐标求平移前的顶点坐标的方法.4.答案:A解析:解:过F点作FG//BC.∵在△ABC中,AB=AC,AD是BC边上的中线,∴BD=CD=12BC=1,∠BAD=∠CAD=12∠BAC=15°,AD⊥BC,∵∠ACE=12∠BAC,∴∠CAD=∠ACE=15°,∴AF=CF,∵∠ACD=(180°−30°)÷2=75°,∴∠DCE=75°−15°=60°,在Rt△CDF中,AF=CF=DCcos60°=2,DF=CD⋅tan60°=√3,∵FG//BC,∴GF:BD=AF:AD,即GF:1=2:(2+√3),解得GF=4−2√3,∴EF:EC=GF:BC,即EF:(EF+2)=(4−2√3):2,解得EF=√3−1.故选:A.过F点作FG//BC.根据等腰三角形的性质和三角形内角和定理可得AF=CF,在Rt△CDF中,根据三角函数可得AF=CF=2,DF=√3,根据平行线分线段成比例可得比例式GF:BD=AF:AD,求得GF=4−2√3,再根据平行线分线段成比例可得比例式EF:EC=GF:BC,依此即可得到EF=√3−1.综合考查了等腰三角形的性质,三角形内角和定理可得,三角函数,平行线分线段成比例,以及方程思想,本题的难点是作出辅助线,寻找解题的途径.5.答案:D解析:解:根据勾股定理可得:BC=√AB2−AC2=√132−52=12,∴tanA=BCAC =125.故选:D.利用勾股定理即可求得BC的长,然后根据正切的定义即可求解.本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键.6.答案:A解析:试题分析:作DE垂直AB,构造直角三角形,根据角的正弦值与三角形边的关系,可求出各边。

2024届上海初三一模数学各区解答题(函数)

2024届上海初三一模数学各区解答题(函数)

上海市2024届初三一模数学分类汇编—解答题(函数)【2024届·宝山区·初三一模·第21题】1.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)在平面直角坐标系xOy 中,已知二次函数2y x bx c 的图像经过点 1,0A 和 0,3B .(1)求该二次函数的表达式;(2)如果点 4,E m 在该函数图像上,求ABE 的面积.【2024届·崇明区·初三一模·第21题】2.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数2246y x x .(1)用配方法把二次函数2246y x x 化为 2y a x m k 的形式,并指出这个函数图像的对称轴和顶点坐标;(2)如果该函数图像与x 轴负半轴交于点A ,与y 轴交于点C ,顶点为D ,O 为坐标原点,求四边形ADCO 的面积.第21题图3.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知抛物线2y x bx c 经过点 3,0A 、 0,3B .(1)求抛物线表达式并写出顶点坐标;(2)联结AB ,与该抛物线的对称轴交于点P ,求点P 的坐标.4.图6(本题满分4分)5.(本题满分10分,第(1)小题5分,第(2)小题5分)已知抛物线223y x x 的顶点为A ,它与y 轴的交点为B .(1)求线段AB 的长;(2)平移该抛物线,使其顶点在y 轴上,且与x 轴两交点间的距离为4,求平移后所得抛物线的表达式.【2024届·嘉定区·初三一模·第20题】6.(本题满分10分,第(1)小题5分,第(2)小题5分)已知平面直角坐标系xOy (图6),抛物线2y x bx c 经过点 3,0A 和 0,3B 两点.(1)求抛物线的表达式;(2)如果将这个抛物线向右平移k (0k )个单位,得到新抛物线经过点B ,求k 的值.第20题图7.(本题满分10分)某学校有一喷水池,如果以喷水口(点A )所在的铅垂线为y 轴,相应的地面水平线为x 轴,1米为单位长度建立直角坐标系xOy ,喷出的抛物线形水柱在最高处(点P )距离y 轴1米,水柱落地处(点B )距离y 轴4米,喷水口距离地面为2米,求抛物线形水柱的最高处距离地面的高度.【20248.2,0B .点 ,2P a 0)于点E 、F .(1)(2)图99.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在坐标平面xOy 中,一次函数2y x 的图像与反比例函数ky x(0k )的图像交于点 ,3A a ,与x 轴交于点B .(1)求这个反比例函数的解析式;(2)过点A 作AC x 轴,垂足为点C ,将一次函数图像向右平移,且经过点C ,求平移后的一次函数的解析式.【202410.如图9x点 1,A m (1)(2),第19题图11.(本题满分10分,第(1)小题5分,第(2)小题5分)二次函数2y ax bx c (0a )的图像上部分点的横坐标x 、纵坐标y 的对应值如下表.(1)由表格信息,求出该二次函数解析式,并写出该二次函数图像的顶点D 的坐标;(2)如果该二次函数图像与y 轴交于点A ,点 5,P t 是图像上一点,求PAD 的面积.【2024届·徐汇区·初三一模·第20题】12.(本题满分10分)已知抛物线23y x bx 与y 轴交于点C ,与x 轴交于点 1,0A 和点B ,顶点为D .(1)求此抛物线的表达式及顶点D 的坐标;(2)联结CD 、BD ,求CDB 的余弦值.13.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数243y x x .(1)用配方法...将函数243y x x 的解析式化为 2y a x m k 的形式,并指出该函数图像的对称轴和顶点坐标;(2)设该函数的图像与x 轴交于点A 、B ,点A 在点B 左侧,与y 轴交于点C ,顶点记作D ,求四边形ADBC 的面积.【2024届·长宁区·初三一模·第19题】14.(本题满分10分,第(1)小题5分,第(2)小题5分)已知抛物线2241y x x .(1)用配方法把2241y x x 化为 2y a x m k 的形式,并写出该抛物线的开口方向、对称轴和顶点坐标;(2)如果将该抛物线上下平移,得到新的抛物线经过点 1,4,求平移后的抛物线的顶点坐标.。

上海市静安区2019-2020学年中考第一次质量检测数学试题含解析

上海市静安区2019-2020学年中考第一次质量检测数学试题含解析

上海市静安区2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为( ) A .3×109B .3×108C .30×108D .0.3×10102.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒3.在实数﹣3 ,0.21,2π,18,0.001 ,0.20202中,无理数的个数为( )A .1B .2C .3D .44.如图是由5个相同的小正方体组成的立体图形,这个立体图形的俯视图是( )A .B .C .D .5.学完分式运算后,老师出了一道题“计算:23224x xx x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的6.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .613B .513C .413D .3137.如图所示,数轴上两点A ,B 分别表示实数a ,b ,则下列四个数中最大的一个数是( )A .aB .bC .1aD .1b8.已知二次函数y=x 2 + bx +c 的图象与x 轴相交于A 、B 两点,其顶点为P ,若S △APB =1,则b 与c 满足的关系是( ) A .b 2 -4c +1=0B .b 2 -4c -1=0C .b 2 -4c +4 =0D .b 2 -4c -4=09.已知M =9x 2-4x +3,N =5x 2+4x -2,则M 与N 的大小关系是( ) A .M>NB .M =NC .M<ND .不能确定10.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人) 5 8 14 19 4 时间(小时) 6 78910 A .14,9B .9,9C .9,8D .8,911.下列计算正确的是( ) A .326⨯=B .3+25=C .()222-=- D .2+2=212.已知e →为单位向量,a r=-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r 与e →方向相同D .a r 与e →方向相反二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,设△ABC 的两边AC 与BC 之和为a ,M 是AB 的中点,MC =MA =5,则a 的取值范围是_____.14.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是____. 153a -_____.16.如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,PM=l ,则l 的最大值是17.若使代数式212x x -+有意义,则x 的取值范围是_____. 18.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D'处,则点C 的对应点C'的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知在Rt ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线.(1)作一个O e 使它经过A D 、两点,且圆心O 在AB 边上;(不写作法,保留作图痕迹) (2)判断直线BC 与O e 的位置关系,并说明理由.20.(6分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答: (1)收回问卷最多的一天共收到问卷_________份; (2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?21.(6分)如图1,已知直线l:y=﹣x+2与y轴交于点A,抛物线y=(x﹣1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a与n的函数关系式.②如图2,连接AC,CD,若∠ACD=90°,求a的值.22.(8分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.(1)画出△A1B1C;(2)A的对应点为A1,写出点A1的坐标;(3)求出B旋转到B1的路线长.23.(8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.24.(10分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲a7 7 1.2乙7 b8 c(1)求a,b,c的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?25.(10分)计算:(﹣1)2018﹣29+|1﹣3|+3tan30°.26.(12分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.27.(12分)抛一枚质地均匀六面分别刻有1、2、3、4、5、6点的正方体骰子两次,若记第一次出现的点数为a ,第二次出现的点数为b ,则以方程组322ax by x y +=⎧⎨+=⎩的解为坐标的点在第四象限的概率为_____.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】将数据30亿用科学记数法表示为9310⨯, 故选A . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值. 2.B 【解析】 【分析】连接BD ,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可. 【详解】 连接BD ,∵AB 是直径,∠BAD=25°, ∴∠ABD=90°-25°=65°, ∴∠AGD=∠ABD=65°, 故选B . 【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°. 3.C 【解析】3,0.21,2π,18 0.001 ,0.20202中,32π0.001,共三个.故选C . 4.C 【解析】 【分析】 【详解】从上面看共有2行,上面一行有3个正方形,第二行中间有一个正方形, 故选C . 5.C 【解析】 试题解析:23224x xx x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳. 故选C . 6.B 【解析】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:513.故选B .7.D 【解析】 【详解】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大. ∴1a <a <b <1b, 故选D . 8.D 【解析】 【分析】抛物线的顶点坐标为P (−2b ,244c b -),设A 、B 两点的坐标为A (1x ,0)、B (2x ,0)则AB =12x x -,根据根与系数的关系把AB 的长度用b 、c 表示,而S △APB =1,然后根据三角形的面积公式就可以建立关于b 、c 的等式. 【详解】解:∵1212,x x b x x c +=-=, ∴AB =12x x -()22121244x x x x b ac +-=-∵若S △APB =1∴S △APB =12×AB×244c b - =1,22144124c b b c -∴--=∴−12×2414b c -=,∴(248b ac-=,s , 则38s =, 故s =2,2, ∴2440b c --=. 故选D . 【点睛】本题主要考查了抛物线与x 轴的交点情况与判别式的关系、抛物线顶点坐标公式、三角形的面积公式等知识,综合性比较强. 9.A 【解析】 【分析】若比较M ,N 的大小关系,只需计算M-N 的值即可. 【详解】解:∵M =9x 2-4x +3,N =5x 2+4x -2,∴M-N=(9x 2-4x +3)-(5x 2+4x -2)=4(x-1)2+1>0, ∴M>N . 故选A . 【点睛】本题的主要考查了比较代数式的大小,可以让两者相减再分析情况. 10.C 【解析】 【详解】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人, ∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2, ∴中位数为2. 故选C .【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数. 11.A 【解析】 【分析】原式各项计算得到结果,即可做出判断. 【详解】A 、原式,正确;B 、原式不能合并,错误;C 、原式2=,错误;D 、原式 故选A . 【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 12.C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10<. 【解析】 【分析】根据题设知三角形ABC 是直角三角形,由勾股定理求得AB 的长度及由三角形的三边关系求得a 的取值范围;然后根据题意列出二元二次方程组,通过方程组求得xy 的值,再把该值依据根与系数的关系置于一元二次方程z 2-az+21002a -=0中,最后由根的判别式求得a 的取值范围. 【详解】∵M 是AB 的中点,MC=MA=5,∴△ABC 为直角三角形,AB=10;∴a=AC+BC >AB=10;令AC=x 、BC=y .∴22100x y a x y +⎧⎨+⎩==, ∴xy=21002a -, ∴x 、y 是一元二次方程z 2-az+21002a -=0的两个实根, ∴△=a 2-4×21002a -≥0,即a.综上所述,a 的取值范围是10<. 故答案为10<.【点睛】本题综合考查了勾股定理、直角三角形斜边上的中线及根的判别式.此题的综合性比较强,解题时,还利用了一元二次方程的根与系数的关系、根的判别式的知识点.14.1【解析】【分析】设正多边形的边数为n ,然后根据多边形的内角和公式列方程求解即可.【详解】解:设正多边形的边数为n ,由题意得,()2180n n-︒g =144°, 解得n=1.故答案为1.【点睛】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.15.﹣【解析】30a -≥Q ,0a ∴≤ . 32a a a a ∴-=-⋅=-- .16.4【解析】【分析】当CD ∥AB 时,PM 长最大,连接OM ,OC ,得出矩形CPOM ,推出PM=OC ,求出OC 长即可.【详解】当CD ∥AB 时,PM 长最大,连接OM ,OC ,∵CD ∥AB ,CP ⊥CD ,∴CP ⊥AB ,∵M 为CD 中点,OM 过O ,∴OM ⊥CD ,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM 是矩形,∴PM=OC ,∵⊙O 直径AB=8,∴半径OC=4,即PM=4.【点睛】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.17.x≠﹣2【解析】【分析】直接利用分式有意义则其分母不为零,进而得出答案.【详解】∵分式212x x -+有意义, ∴x 的取值范围是:x+2≠0,故答案是:x≠−2.【点睛】本题考查了分式有意义的条件,解题的关键是熟练的掌握分式有意义的条件.18.(2,3) 【解析】过C 作CH ,AB 于H,由题意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=3,BH=AO 所以C’(2,3).故答案为(2,3).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)BC 与O e 相切,理由见解析.【解析】【分析】(1)作出AD 的垂直平分线,交AB 于点O ,进而利用AO 为半径求出即可;(2)利用半径相等结合角平分线的性质得出OD ∥AC ,进而求出OD ⊥BC ,进而得出答案.【详解】(1)①分别以A D 、为圆心,大于12AD 的长为半径作弧,两弧相交于点E 和F , ②作直线EF ,与AB 相交于点O ,③以O 为圆心,OA 为半径作圆,如图即为所作;(2)BC 与O e 相切,理由如下:连接OD ,,OA OD Q 为O e 半径,AOD ∴V 是等腰三角形,OAD ODA ∠=∠∴,AD Q 平分BAC ∠,CAD OAD ∴∠=∠,CAD ODA ∴∠=∠,AC OD ∴P ,90C ∠=︒Q ,90ODB ∴∠=︒,OD BC ∴⊥,OD Q 为O e 半径,BC ∴与O e 相切.【点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.20.18 60分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算; (3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x ,则:4:6=2:x ,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)4183P 6010==∴第天,抽到第4天回收问卷的概率是310; (4)第4天收回问卷获奖率105189=,第6天收回问卷获奖率23. ∵5293<, ∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.21.(1)B (1,1);(2)y=(x ﹣n )2+2﹣n .(3)a=2n ;+1. 【解析】【分析】1) 首先求得点A的坐标, 再求得点B的坐标, 用h表示出点D的坐标后代入直线的解析式即可验证答案。

2019-2020学年上海市静安区初三数学一模(试卷+参考答案)

2019-2020学年上海市静安区初三数学一模(试卷+参考答案)

静安区2019学年第一学期期末教学质量调研九年级数学试卷 2020.1(完成时间:100分钟 满分:150分 ) 考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3. 答题时可用函数型计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.已知y x a +=,y x b -=,那么ab 的值为(A )x 2; (B )y 2; (C )y x -; (D )y x +.2.已知点P 在线段AB 上,且AP ∶PB=2∶3,那么AB ∶PB 为 (A )3∶2; (B )3∶5;(C )5∶2;(D )5∶3.3.在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,AD :DB =4:5,下列结论中正确的是 (A )54=BC DE ; (B )49=DE BC ; (C )54=AC AE ; (D )45=AC EC .4.在Rt △ABC 中,∠C =90°,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,如果a =3b ,那么∠A 的余切值为 (A )31; (B )3; (C )42; (D )1010.5.如图1,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设a OA =,=,下列式子中正确的是(A )+=; (B )-=; (C )+-=; (D )--=.6.如果将抛物线22-=x y 平移,使平移后的抛物线与抛物线982+-=x x y 重合,那么它平移的过程可以是(A )向右平移4个单位,向上平移11个单位;(B )向左平移4个单位,向上平移11个单位; (C )向左平移4个单位,向上平移5个单位; (D )向右平移4个单位,向下平移5个单位.图1二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:=-x x 52 ▲ .8.已知13)(+=x x f ,那么)3(f = ▲ . 9.方程2111=+-x x 的根为 ▲ . 10.已知:43=y x ,且y ≠4,那么43--y x = ▲ . 11.在△ABC 中,边BC 、AC 上的中线AD 、BE 相交于点G ,AD =6,那么AG = ▲ . 12.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是 ▲ .13.如图2,在大楼AB 的楼顶B 处测得另一栋楼CD 底部C 的俯角为60度,已知A 、C 两点间的距离为15米,那么大楼AB 的高度为 ▲ 米.(结果保留根号)14.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为)0(>x x ,六月份的营业额为y 万元,那么y 关于x 的函数解式是 ▲ . 15.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为135,那么该矩形的面积为 ▲ . 16.已知二次函数a x a x ay ++=2228(a 是常数,a ≠0),当自变量x 分别取-6、-4时,对应的函数值分别为y 1、y 2,那么y 1、y 2的大小关系是:y 1 ▲ y 2(填“>”、“<”或“=”).17.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD 中,AD //BC ,AD =4,BC =9,点E 、F 分别在边AB 、CD 上,且EF 是梯形ABCD 的“比例中线”,那么FCDF= ▲ . 18. 如图3,有一菱形纸片ABCD ,∠A =60°,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos ∠EFB 的值为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:2222442y xy x y x y x y x ++-÷+-,其中x =sin45°,y =cos60°.CBAD图2 图3ABCD如图4,在Rt △ABC 中,∠ACB =90°,AC =20,53sin =A , CD ⊥AB ,垂足为D . (1)求BD 的长;(2)设a AC =, b BC =,用a 、表示.21.(本题满分10分,其中第(1)小题3分,第(2)小题3分,第(3)小题4分)已知在平面直角坐标系xOy 中,抛物线12++=bx x y (b 为常数)的对称轴是直线x =1.(1)求该抛物线的表达式;(2)点A (8,m )在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标; (3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.22.(本题满分10分,其中第(1)小题7分,第(2)小题3分)如图6,在东西方向的海岸线l 上有长为300米的码头AB ,在码头的最西端A 处测得轮船M 在它的北偏东45°方向上;同一时刻,在A 点正东方向距离100米的C 处测得轮船M 在北偏东22°方向上. (1)求轮船M 到海岸线l 的距离;(结果精确到0.01米) (2)如果轮船M 沿着南偏东30°的方向航行,那么该轮船能否行至码头AB 靠岸?请说明理由. (参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,3≈1.732.)CABD 图4图6MABCl图5如图7,在梯形ABCD 中,AD //BC ,AC 与BD 相交于点O ,点E 在线段OB 上,AE 的延长线与BC 相交于点F ,OD 2 = OB ·OE .(1)求证:四边形AFCD 是平行四边形; (2)如果BC =BD ,AE ·AF =AD ·BF ,求证:△ABE ∽△ACD .24.(本题满分12分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分)在平面直角坐标系xOy 中(如图8),已知二次函数c bx ax y ++=2(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果2:3:=∆∆BCD ABD S S ,求tan ∠DBC 的值;(3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.25.(本题满分14分,其中第(1)小题6分,第(2)小题4分,第(3)小题4分)已知:如图9,在△ABC 中,AB =AC ,点D 、E 分别在边BC 、DC 上,AB 2 =BE · DC ,DE :EC =3:1 ,F 是边AC 上的一点,DF 与AE 交于点G .(1)找出图中与△ACD 相似的三角形,并说明理由; (2)当DF 平分∠ADC 时,求DG :DF 的值; (3)如图10,当∠BAC=90°,且DF ⊥AE 时,求DG :DF 的值.图8Oyx图7 A B D C E F O图9 C A B D E FG 图10 GFAB D E静安区2019学年第一学期期末学习质量调研九年级数学试卷参考答案及评分说明 2020.1一、选择题1. C ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二、填空题7.x (x -5); 8.10; 9.x =3; 10.43; 11. 4; 12.16:25; 13.315 ; 14.21200)(x y +=或2004002002++=x x y ; 15.240; 16.>;17. 32; 18.71 .三、解答题19.解:原式= ))(()2(22y x y x y x y x y x -++⋅+-…………………………………………………………………(4分)=yx yx ++2.………………………………………………………………………………………(2分) 当x =sin45°=22,y =cos60°=21时…………………………………………………………………………(2分)原式=2212221222=+⨯+. ……………………………………………………………………(2分)20.解:(1)∵CD ⊥AB ,∴∠ADC =∠BDC =90°,在Rt △ACD 中,AC CD A =sin ,∴125320sin =⨯=⋅=A AC CD .…………………………(2分)∴1612202222=-=-=CD AC AD …………………………………………………………(1分)∴43tan ==AD CD A .………………………………………………………………………………(1分)∵∠ACB =90°,∴∠DCB+∠B =∠A+∠B =90°,∴∠DCB =∠A .………………………(1分)∴94312tan tan =⨯=⋅=∠⋅=A CD DCB CD BD .…………………………………………(2分) (2) ∵25916=+=+=DB AD AB ,∴2516=AB AD .…………………………………………………(1分)又∵-=+=, …………………………………………………………………(1分)∴251625162516-==.…………………………………………………………………(1分)21.解:(1)∵对称轴为2b x -=∴12=-b.……………………………………………………(1分)∴b =-2.…………………………………………………………………………………………(1分)∴抛物线的表达式为122+-=x x y .………………………………………………………(1分)(2) ∵点A (8,m )在该抛物线的图像上,∴当x =8时,4918)1(12222=-=-=+-=)(x x x y .∴点A (8,49).………………………………………………………………………………………(1分)∴ 点A (8,49)关于对称轴对称的点A'的坐标为(-6,49).…………………………………(2分)(3)表格正确,得2分;图正确得2分.22.解:(1)过点M 作MD ⊥AC 交AC 的延长线于D ,设DM =x .…………………………………(1分)∵在Rt △CDM 中, CD = DM ·tan ∠CMD = x ·tan22°,………………………………………(1分)又∵在Rt △ADM 中,∠MAC =45°,∴AD =DM ,………………………………………………(1分)∵AD =AC +CD =100+ x ·tan22°,…………………………………………………………………(1分)∴100+ x ·tan22°=x .………………………………………………………………………………(1分)∴79.167785.167404.0110022tan 1100≈≈-≈-=οx .………………………………………………(2分)答:轮船M 到海岸线l 的距离约为167.79米.(2)作∠DMF =30°,交l 于点F .在Rt △DMF 中,DF = DM ·tan ∠FMD = DM ·tan30°=33DM ≈79.1673732.1⨯≈96.87米.……………………………………………(1分)∴AF =AC +CD +DF =DM +DF ≈167.79+96.87=264.66<300.……………………………………(1分) 所以该轮船能行至码头靠岸.………………………………………………………………………(1分)23.证明:(1)∵OD 2 =OE · OB ,∴OBODOD OE =. ……………………………………………………(1分)∵AD //BC ,∴OBODOC OA =.……………………………………………………………………(2分)∴ODOEOC OA =.……………………………………………………………………………………(1分)∴ AF//CD .…………………………………………………………………………………………(1分)∴四边形AFCD 是平行四边形.…………………………………………………………………(1分)(2)∵AF//CD ,∴∠AED =∠BDC ,BCBFBD BE =.…………………………………………(1分)∵BC =BD ,∴BE =BF ,∠BDC =∠BCD …………………………………………………………(1分)∴∠AED =∠BCD .∵∠AEB =180°-∠AED ,∠ADC =180°-∠BCD ,∴∠AEB =∠ADC .…………………………(1分)∵AE ·AF =AD ·BF ,∴AFADBF AE =.…………………………………………………………(1分)∵四边形AFCD 是平行四边形,∴AF =CD .…………………………………………………(1分)∴DCADBE AE =.…………………………………………………………………………………(1分)∴△ABE ∽△ADC .24.解:(1)将A (0,-3)、B (1,0)、C (3,0)代入)(02≠++=a c bx ax y 得,⎪⎩⎪⎨⎧++=--+=-+=cb a b a 003,4390,30…………………………………………………………………………………(3分)解得⎪⎩⎪⎨⎧-==-=.3,4,1c b a ∴此抛物线的表达式是342-+-=x x y .…………………………………(1分)(2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,则23:)21(:)21(::==⋅⋅=∆∆DC AD h DC h AD S S BCD ABD (1分)又∵DH //y 轴,∴52===OA DH AC DC OC CH .∴56352=⨯==DH CH .………………………(1分)∴54562=-=-=CH BC BH .…………………………………………………………………(1分)∴tan ∠DBC=23=BH DH .……………………………………………………………………………(1分)(3)方法一:∵1)2(3422+--=-+-=x x x y ,所以对称轴为直线x =2,设直线x =2与x 轴交于点G .(1分)过点A 作AF 垂直于直线x =2,垂足为F .∵OA =OC =3,∠AOC =90°,∴∠OAC=∠OCA=45°.∵AF //x 轴,∴∠F AC=∠OCA=45°. ∵AC 平分∠BAE ,∴∠BAC=∠EAC∵∠BAO=∠OAC -∠BAC ,∠EAF=∠F AC -∠EAC ,∴∠BAO=∠EAF ………………………(1分) ∵∠AOB =∠AFE =90°,∴△OAB ∽△FEA ,∴31==AF EF OA OB . ∵AF =2,∴32=EF .…………………………………………………………………………………(1分)∴EG =GF -EF =AO -EF =3-32=37. ∴E (2,37-).……………………………………………(1分)方法二:延长AE 至x 轴,与x 轴交于点F ,∵OA =OC =3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OF A=∠OCA -∠F AC=45°-∠F AC ,∵∠BAC =∠F AC ,∴∠OAB=∠OF A .………………………………………………………………(1分)∴△OAB ∽△OF A ,∴31==OF OA OA OB .∴OF =9,即F (9,0)…………………………………(1分)设直线AF 的解析式为y =kx +b (k ≠0),可得⎩⎨⎧=-+=,3,90b b k 解得⎪⎩⎪⎨⎧-==,3,31b k ∴直线AF 的解析式为331-=x y ……………………………(1分)将x =2代入直线AF 的解析式得37-=y ,∴E (2,37-)……………………………………(1分) 25.(1)与△ACD 相似的三角形有:△ABE 、△ADC ,理由如下:……………………………………(2分)∵AB 2 =BE · DC ,∴DCABAB BE =.……………………………………………………………………(1分)∵AB =AC ,∴∠B =∠C .………………………………………………………………………………(1分)DCACAB BE =…………………………………………………………………………………………(1分) ∴△ABE ∽△DCA .∵△ABE ∽△DCA ,∴∠AED =∠DAC .∵∠AED =∠C +∠EAC ,∠DAC =∠DAE +∠EAC ,∴∠DAE =∠C .∴△ADE ∽△CDA .……(1分)(2)∵△ADE ∽△CDA ,又∵DF 平分∠ADC ,∴CDADAD DE DF DG ==…………………………………(1分)设CE =a ,则DE=3CE =3a ,CD =4a ,∴aAD AD a 44= ,解得a AD 32=(负值已舍)………(2分)∴23432===a a CD AD DG DF …………………………………………………………………………(1分)(3)∵∠BAC=90°,AB =AC ,∴∠B =∠C =45° ,∴∠DAE =∠C=45°∵DG ⊥AE ,∴∠DAG =∠ADF =45°,∴AG=DG=a a AD 6322222=⋅=…………………(1分)∴a DG DE EG 322=-=………………………………………………………………………(1分)∵∠AED =∠DAC ∴△ADE ∽△DF A∴AD AEDF AD =,∴a AE AD DF )(3642-==…………………………………………………(1分)∴422+=DF DG ……………………………………………………………………………………(1分)。

2024静安区初三数学一模解析

2024静安区初三数学一模解析

2024静安区初三数学一模解析2024年静安区初三数学一模试卷的解析如下:一、选择题1. 题目考查了二次函数的性质。

根据二次函数的性质,我们知道对称轴为$x = -\frac{b}{2a}$。

对于函数$y = x^{2} - 2x$,其对称轴为$x = 1$。

由于函数图像开口向上,所以在对称轴左侧函数值随着$x$的增大而减小。

因此,当$x < 1$时,$y$随$x$的增大而减小。

故选:D。

2. 题目考查了相似三角形的判定与性质。

根据相似三角形的判定,我们知道如果两个三角形的两组对应边的比相等且夹角相等,则这两个三角形相似。

对于三角形ABC和三角形DEF,我们有$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD} = \frac{3}{4}$且$\angle A = \angle D$,所以三角形ABC 与三角形DEF相似。

相似三角形的对应角相等,所以$\angle BAC =\angle EDF$。

故选:C。

二、填空题1. 题目考查了二次函数的性质。

根据二次函数的性质,我们知道当函数图像开口向上时,顶点的纵坐标为最小值;当函数图像开口向下时,顶点的纵坐标为最大值。

对于函数$y = x^{2} - 2x$,其顶点为$(1, -1)$,所以函数的最小值为$-1$。

故答案为$-1$。

2. 题目考查了全等三角形的判定与性质。

根据全等三角形的判定,我们知道如果两个三角形的三组对应边分别相等,则这两个三角形全等。

对于三角形ABC和三角形DEF,我们有$AB = DE$、$BC = EF$和$CA = FD$,所以三角形ABC与三角形DEF全等。

全等三角形的对应角相等,所以$\angle ABC = \angle DEF$。

故答案为$\angle ABC = \angle DEF$。

三、解答题1. 题目考查了二次函数的图象与性质。

根据二次函数的性质,我们知道当函数图像开口向上时,函数值随着$x$的增大而增大;当函数图像开口向下时,函数值随着$x$的增大而减小。

2019-2020学年上海市静安区初三数学一模(试卷+参考答案)

2019-2020学年上海市静安区初三数学一模(试卷+参考答案)

静安区2019学年第一学期期末教学质量调研九年级数学试卷 2020.1(完成时间:100分钟 满分:150分 ) 考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3. 答题时可用函数型计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.已知y x a +=,y x b -=,那么ab 的值为(A )x 2; (B )y 2; (C )y x -; (D )y x +.2.已知点P 在线段AB 上,且AP ∶PB=2∶3,那么AB ∶PB 为 (A )3∶2; (B )3∶5;(C )5∶2;(D )5∶3.3.在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,AD :DB =4:5,下列结论中正确的是 (A )54=BC DE ; (B )49=DE BC ; (C )54=AC AE ; (D )45=AC EC .4.在Rt △ABC 中,∠C =90°,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,如果a =3b ,那么∠A 的余切值为 (A )31; (B )3; (C )42; (D )1010.5.如图1,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设a OA =,=,下列式子中正确的是(A )+=; (B )-=; (C )+-=; (D )--=.6.如果将抛物线22-=x y 平移,使平移后的抛物线与抛物线982+-=x x y 重合,那么它平移的过程可以是(A )向右平移4个单位,向上平移11个单位;(B )向左平移4个单位,向上平移11个单位; (C )向左平移4个单位,向上平移5个单位; (D )向右平移4个单位,向下平移5个单位.图1二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:=-x x 52 ▲ .8.已知13)(+=x x f ,那么)3(f = ▲ . 9.方程2111=+-x x 的根为 ▲ . 10.已知:43=y x ,且y ≠4,那么43--y x = ▲ . 11.在△ABC 中,边BC 、AC 上的中线AD 、BE 相交于点G ,AD =6,那么AG = ▲ . 12.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是 ▲ .13.如图2,在大楼AB 的楼顶B 处测得另一栋楼CD 底部C 的俯角为60度,已知A 、C 两点间的距离为15米,那么大楼AB 的高度为 ▲ 米.(结果保留根号)14.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为)0(>x x ,六月份的营业额为y 万元,那么y 关于x 的函数解式是 ▲ . 15.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为135,那么该矩形的面积为 ▲ . 16.已知二次函数a x a x ay ++=2228(a 是常数,a ≠0),当自变量x 分别取-6、-4时,对应的函数值分别为y 1、y 2,那么y 1、y 2的大小关系是:y 1 ▲ y 2(填“>”、“<”或“=”).17.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD 中,AD //BC ,AD =4,BC =9,点E 、F 分别在边AB 、CD 上,且EF 是梯形ABCD 的“比例中线”,那么FCDF= ▲ . 18. 如图3,有一菱形纸片ABCD ,∠A =60°,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos ∠EFB 的值为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:2222442y xy x y x y x y x ++-÷+-,其中x =sin45°,y =cos60°.CBAD图2 图3ABCD如图4,在Rt △ABC 中,∠ACB =90°,AC =20,53sin =A , CD ⊥AB ,垂足为D . (1)求BD 的长;(2)设a AC =, b BC =,用a 、表示.21.(本题满分10分,其中第(1)小题3分,第(2)小题3分,第(3)小题4分)已知在平面直角坐标系xOy 中,抛物线12++=bx x y (b 为常数)的对称轴是直线x =1.(1)求该抛物线的表达式;(2)点A (8,m )在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标; (3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.22.(本题满分10分,其中第(1)小题7分,第(2)小题3分)如图6,在东西方向的海岸线l 上有长为300米的码头AB ,在码头的最西端A 处测得轮船M 在它的北偏东45°方向上;同一时刻,在A 点正东方向距离100米的C 处测得轮船M 在北偏东22°方向上. (1)求轮船M 到海岸线l 的距离;(结果精确到0.01米) (2)如果轮船M 沿着南偏东30°的方向航行,那么该轮船能否行至码头AB 靠岸?请说明理由. (参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,3≈1.732.)CABD 图4图6MABCl图5如图7,在梯形ABCD 中,AD //BC ,AC 与BD 相交于点O ,点E 在线段OB 上,AE 的延长线与BC 相交于点F ,OD 2 = OB ·OE .(1)求证:四边形AFCD 是平行四边形; (2)如果BC =BD ,AE ·AF =AD ·BF ,求证:△ABE ∽△ACD .24.(本题满分12分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分)在平面直角坐标系xOy 中(如图8),已知二次函数c bx ax y ++=2(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果2:3:=∆∆BCD ABD S S ,求tan ∠DBC 的值;(3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.25.(本题满分14分,其中第(1)小题6分,第(2)小题4分,第(3)小题4分)已知:如图9,在△ABC 中,AB =AC ,点D 、E 分别在边BC 、DC 上,AB 2 =BE · DC ,DE :EC =3:1 ,F 是边AC 上的一点,DF 与AE 交于点G .(1)找出图中与△ACD 相似的三角形,并说明理由; (2)当DF 平分∠ADC 时,求DG :DF 的值; (3)如图10,当∠BAC=90°,且DF ⊥AE 时,求DG :DF 的值.图8Oyx图7 A B D C E F O图9 C A B D E FG 图10 GFAB D E静安区2019学年第一学期期末学习质量调研九年级数学试卷参考答案及评分说明 2020.1一、选择题1. C ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二、填空题7.x (x -5); 8.10; 9.x =3; 10.43; 11. 4; 12.16:25; 13.315 ; 14.21200)(x y +=或2004002002++=x x y ; 15.240; 16.>;17. 32; 18.71 .三、解答题19.解:原式= ))(()2(22y x y x y x y x y x -++⋅+-…………………………………………………………………(4分)=yx yx ++2.………………………………………………………………………………………(2分) 当x =sin45°=22,y =cos60°=21时…………………………………………………………………………(2分)原式=2212221222=+⨯+. ……………………………………………………………………(2分)20.解:(1)∵CD ⊥AB ,∴∠ADC =∠BDC =90°,在Rt △ACD 中,AC CD A =sin ,∴125320sin =⨯=⋅=A AC CD .…………………………(2分)∴1612202222=-=-=CD AC AD …………………………………………………………(1分)∴43tan ==AD CD A .………………………………………………………………………………(1分)∵∠ACB =90°,∴∠DCB+∠B =∠A+∠B =90°,∴∠DCB =∠A .………………………(1分)∴94312tan tan =⨯=⋅=∠⋅=A CD DCB CD BD .…………………………………………(2分) (2) ∵25916=+=+=DB AD AB ,∴2516=AB AD .…………………………………………………(1分)又∵-=+=, …………………………………………………………………(1分)∴251625162516-==.…………………………………………………………………(1分)21.解:(1)∵对称轴为2b x -=∴12=-b.……………………………………………………(1分)∴b =-2.…………………………………………………………………………………………(1分)∴抛物线的表达式为122+-=x x y .………………………………………………………(1分)(2) ∵点A (8,m )在该抛物线的图像上,∴当x =8时,4918)1(12222=-=-=+-=)(x x x y .∴点A (8,49).………………………………………………………………………………………(1分)∴ 点A (8,49)关于对称轴对称的点A'的坐标为(-6,49).…………………………………(2分)(3)表格正确,得2分;图正确得2分.22.解:(1)过点M 作MD ⊥AC 交AC 的延长线于D ,设DM =x .…………………………………(1分)∵在Rt △CDM 中, CD = DM ·tan ∠CMD = x ·tan22°,………………………………………(1分)又∵在Rt △ADM 中,∠MAC =45°,∴AD =DM ,………………………………………………(1分)∵AD =AC +CD =100+ x ·tan22°,…………………………………………………………………(1分)∴100+ x ·tan22°=x .………………………………………………………………………………(1分)∴79.167785.167404.0110022tan 1100≈≈-≈-=οx .………………………………………………(2分)答:轮船M 到海岸线l 的距离约为167.79米.(2)作∠DMF =30°,交l 于点F .在Rt △DMF 中,DF = DM ·tan ∠FMD = DM ·tan30°=33DM ≈79.1673732.1⨯≈96.87米.……………………………………………(1分)∴AF =AC +CD +DF =DM +DF ≈167.79+96.87=264.66<300.……………………………………(1分) 所以该轮船能行至码头靠岸.………………………………………………………………………(1分)23.证明:(1)∵OD 2 =OE · OB ,∴OBODOD OE =. ……………………………………………………(1分)∵AD //BC ,∴OBODOC OA =.……………………………………………………………………(2分)∴ODOEOC OA =.……………………………………………………………………………………(1分)∴ AF//CD .…………………………………………………………………………………………(1分)∴四边形AFCD 是平行四边形.…………………………………………………………………(1分)(2)∵AF//CD ,∴∠AED =∠BDC ,BCBFBD BE =.…………………………………………(1分)∵BC =BD ,∴BE =BF ,∠BDC =∠BCD …………………………………………………………(1分)∴∠AED =∠BCD .∵∠AEB =180°-∠AED ,∠ADC =180°-∠BCD ,∴∠AEB =∠ADC .…………………………(1分)∵AE ·AF =AD ·BF ,∴AFADBF AE =.…………………………………………………………(1分)∵四边形AFCD 是平行四边形,∴AF =CD .…………………………………………………(1分)∴DCADBE AE =.…………………………………………………………………………………(1分)∴△ABE ∽△ADC .24.解:(1)将A (0,-3)、B (1,0)、C (3,0)代入)(02≠++=a c bx ax y 得,⎪⎩⎪⎨⎧++=--+=-+=cb a b a 003,4390,30…………………………………………………………………………………(3分)解得⎪⎩⎪⎨⎧-==-=.3,4,1c b a ∴此抛物线的表达式是342-+-=x x y .…………………………………(1分)(2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,则23:)21(:)21(::==⋅⋅=∆∆DC AD h DC h AD S S BCD ABD (1分)又∵DH //y 轴,∴52===OA DH AC DC OC CH .∴56352=⨯==DH CH .………………………(1分)∴54562=-=-=CH BC BH .…………………………………………………………………(1分)∴tan ∠DBC=23=BH DH .……………………………………………………………………………(1分)(3)方法一:∵1)2(3422+--=-+-=x x x y ,所以对称轴为直线x =2,设直线x =2与x 轴交于点G .(1分)过点A 作AF 垂直于直线x =2,垂足为F .∵OA =OC =3,∠AOC =90°,∴∠OAC=∠OCA=45°.∵AF //x 轴,∴∠F AC=∠OCA=45°. ∵AC 平分∠BAE ,∴∠BAC=∠EAC∵∠BAO=∠OAC -∠BAC ,∠EAF=∠F AC -∠EAC ,∴∠BAO=∠EAF ………………………(1分) ∵∠AOB =∠AFE =90°,∴△OAB ∽△FEA ,∴31==AF EF OA OB . ∵AF =2,∴32=EF .…………………………………………………………………………………(1分)∴EG =GF -EF =AO -EF =3-32=37. ∴E (2,37-).……………………………………………(1分)方法二:延长AE 至x 轴,与x 轴交于点F ,∵OA =OC =3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OF A=∠OCA -∠F AC=45°-∠F AC ,∵∠BAC =∠F AC ,∴∠OAB=∠OF A .………………………………………………………………(1分)∴△OAB ∽△OF A ,∴31==OF OA OA OB .∴OF =9,即F (9,0)…………………………………(1分)设直线AF 的解析式为y =kx +b (k ≠0),可得⎩⎨⎧=-+=,3,90b b k 解得⎪⎩⎪⎨⎧-==,3,31b k ∴直线AF 的解析式为331-=x y ……………………………(1分)将x =2代入直线AF 的解析式得37-=y ,∴E (2,37-)……………………………………(1分) 25.(1)与△ACD 相似的三角形有:△ABE 、△ADC ,理由如下:……………………………………(2分)∵AB 2 =BE · DC ,∴DCABAB BE =.……………………………………………………………………(1分)∵AB =AC ,∴∠B =∠C .………………………………………………………………………………(1分)DCACAB BE =…………………………………………………………………………………………(1分) ∴△ABE ∽△DCA .∵△ABE ∽△DCA ,∴∠AED =∠DAC .∵∠AED =∠C +∠EAC ,∠DAC =∠DAE +∠EAC ,∴∠DAE =∠C .∴△ADE ∽△CDA .……(1分)(2)∵△ADE ∽△CDA ,又∵DF 平分∠ADC ,∴CDADAD DE DF DG ==…………………………………(1分)设CE =a ,则DE=3CE =3a ,CD =4a ,∴aAD AD a 44= ,解得a AD 32=(负值已舍)………(2分)∴23432===a a CD AD DG DF …………………………………………………………………………(1分)(3)∵∠BAC=90°,AB =AC ,∴∠B =∠C =45° ,∴∠DAE =∠C=45°∵DG ⊥AE ,∴∠DAG =∠ADF =45°,∴AG=DG=a a AD 6322222=⋅=…………………(1分)∴a DG DE EG 322=-=………………………………………………………………………(1分)∵∠AED =∠DAC ∴△ADE ∽△DF A∴AD AEDF AD =,∴a AE AD DF )(3642-==…………………………………………………(1分)∴422+=DF DG ……………………………………………………………………………………(1分)。

上海市静安区2019-2020学年中考数学一模考试卷含解析

上海市静安区2019-2020学年中考数学一模考试卷含解析

上海市静安区2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下面四个几何体中,左视图是四边形的几何体共有()A.1个B.2个C.3个D.4个2.已知抛物线y=(x﹣1a)(x﹣11a)(a为正整数)与x轴交于M a、N a两点,以M a N a表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是()A.20162017B.20172018C.20182019D.201920203.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 23 23.5 24 24.5 25销售量/双 1 3 3 6 2则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,244.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)5.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC 沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是()A.A1(4,4),C1(3,2)B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3)D.A1(3,4),C1(2,2)6.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()A.0.286×105B.2.86×105C.28.6×103D.2.86×1047.对于二次函数,下列说法正确的是()A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点8.共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4409.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-210.tan30°的值为()A.B.C.D.11.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题12.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A .∠C >∠DB .∠C <∠D C .∠C=∠D D .无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.若正六边形的内切圆半径为2,则其外接圆半径为__________.14.两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 ______ 度.15.化简1111x x -+-的结果是_______________. 16.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数图象上的概率是 . 17.一艘货轮以18km/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是________km.18.方程6x x -=+的解是_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB=2,PC=1. (1)求证:PC 是⊙O 的切线. (2)求tan ∠CAB 的值.20.(6分)为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表). 统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.21.(6分)某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.请你根据图中信息,回答下列问题:(1)求本次调查的学生人数,并补全条形统计图;(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;(3)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?22.(8分)如图,在等边三角形ABC中,点D,E分别在BC, AB上,且∠ADE=60°.求证:△ADC~△DEB.23.(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800 900小货车400 600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.24.(10分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)25.(10分)解不等式313212xx+->-,并把解集在数轴上表示出来.26.(12分)已知,如图1,直线y=34x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为94,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.27.(12分)许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D处,测得∠BDF=60°.若直线AB与EF 之间的距离为200米,求A,B两点之间的距离(结果保留一位小数)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.2.C【解析】【分析】代入y=0求出x的值,进而可得出M a N a=1a-1a+1,将其代入M1N1+M2N2+…+M2018N2018中即可求出结论.【详解】解:当y=0时,有(x-1a)(x-1a+1)=0,解得:x1=1a+1,x2=1a,∴M a N a=1a-1a+1,∴M1N1+M2N2+…+M2018N2018=1-12+12-13+…+12018-12019=1-12019=20182019.故选C.【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出M a N a的值是解题的关键.3.A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.4.C【解析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.5.A【解析】分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C 平移后的坐标即可.详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),故选A.点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律. 6.D 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n ,其中1≤|a|<10,n 为整数,据此判断即可 【详解】28600=2.86×1.故选D . 【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n ,其中1≤|a|<10,确定a 与n 的值是解题的关键 7.B 【解析】 【详解】 二次函数22114(2)344y x x x =-+-=---, 所以二次函数的开口向下,当x <2,y 随x 的增大而增大,选项A 错误; 当x=2时,取得最大值,最大值为-3,选项B 正确; 顶点坐标为(2,-3),选项C 错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x 轴没有交点,选项D 错误, 故答案选B.考点:二次函数的性质. 8.A 【解析】 【分析】根据题意可以列出相应的一元二次方程,从而可以解答本题. 【详解】 解:由题意可得, 1000(1+x )2=1000+440, 故选:A . 【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程. 9.B 【解析】 【分析】先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,1),∴,解得,∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【点睛】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.10.D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.11.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax 2+bx , ∴x=0时,y=0, ∴所有“派生函数”为y=ax 2+bx 经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题. 考点:(1)命题与定理;(2)新定义型 12.A 【解析】 【分析】直接利用圆周角定理结合三角形的外角的性质即可得. 【详解】连接BE ,如图所示:∵∠ACB=∠AEB , ∠AEB >∠D , ∴∠C >∠D . 故选:A . 【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.43【解析】 【分析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA. 【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ;则2OG =,∵六边形ABCDEF 正六边形,∴OAB V 是等边三角形,∴60OAB ∠=︒, ∴43sin6033OG OA ===︒, ∴正六边形的内切圆半径为2,则其外接圆半径为433. 故答案为43. 【点睛】 本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.14.108°【解析】【分析】如图,易得△OCD 为等腰三角形,根据正五边形内角度数可求出∠OCD ,然后求出顶角∠COD ,再用360°减去∠AOC 、∠BOD 、∠COD 即可【详解】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.故答案为108°【点睛】本题考查正多边形的内角计算,分析出△OCD 是等腰三角形,然后求出顶角是关键.2【解析】【分析】先将分式进行通分,即可进行运算.【详解】 1111x x -+-=211x x ---211x x +-=221x -- 【点睛】此题主要考查分式的加减,解题的关键是先将它们通分.16..【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(m ,n )恰好在反比例函数图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m ,n )在函数图象上的概率是:=.故答案为.考点:反比例函数图象上点的坐标特征;列表法与树状图法.17.1 【解析】【分析】作CE ⊥AB 于E ,根据题意求出AC 的长,根据正弦的定义求出CE ,根据三角形的外角的性质求出∠B 的度数,根据正弦的定义计算即可.【详解】作CE ⊥AB 于E ,1km/h×30分钟=9km , ∴AC=9km ,∴CE=AC•sin45°=9km ,∵灯塔B 在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC===1km ,故答案为:1.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.18.x=-2【解析】 方程6x x -=+两边同时平方得:26x x =+,解得:1232x x ==-,,检验:(1)当x=3时,方程左边=-3,右边=3,左边≠右边,因此3不是原方程的解;(2)当x=-2时,方程左边=2,右边=2,左边=右边,因此-2是方程的解.∴原方程的解为:x=-2.故答案为:-2.点睛:(1)根号下含有未知数的方程叫无理方程,解无理方程的基本思想是化“无理方程”为“有理方程”;(2)解无理方程和解分式方程相似,求得未知数的值之后要检验,看所得结果是原方程的解还是增根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2).【解析】【分析】(1)连接OC 、BC ,根据题意可得OC 2+PC 2=OP 2,即可证得OC ⊥PC ,由此可得出结论.(2)先根据题意证明出△PBC ∽△PCA ,再根据相似三角形的性质得出边的比值,由此可得出结论.【详解】(1)如图,连接OC 、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切线.(2)∵AB是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.20.(1)20,1;(2)2人;(1)男生比女生的波动幅度大.【解析】【分析】(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.【详解】(1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.故答案为20,1.(2)由题意:该班女生对“两会”新闻的“关注指数”为1320=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则136xx-++()=60%,解得:x=2.答:该班级男生有2人.(1)该班级女生收看“两会”新闻次数的平均数为122536455220⨯+⨯+⨯+⨯+⨯=1,女生收看“两会”新闻次数的方差为:22222 23153263353423520⨯-+⨯-+⨯-+-+-()()()()()=1310.∵2>1310,∴男生比女生的波动幅度大.【点睛】本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.21.(1)共调查了50名学生;统计图见解析;(2)72°;(3).【解析】【分析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数,先计算出最喜欢舞蹈类的人数,然后补全条形统计图;(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出抽取的2名学生恰好来自同一个班级的结果数,然后根据概率公式求解.【详解】解:(1)14÷28%=50,∴本次共调查了50名学生.补全条形统计图如下.(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数为360°×=72°.(3)设一班2名学生为数字“1”,“1”,二班2名学生为数字“2”,“2”,画树状图如下.共有12种等可能的结果,其中抽取的2名学生恰好来自同一个班级的结果有4种,∴抽取的2名学生恰好来自同一个班级的概率P ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.22.见解析【解析】【分析】根据等边三角形性质得∠B=∠C ,根据三角形外角性质得∠CAD=∠BDE,易证 ADC DEB :V V .【详解】证明: Q ABC 是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C= ∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴ ADC DEB :V V【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.23.(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】(1)设大货车用x辆,小货车用y辆,根据题意得:15{128152 x yx y+=+=解得:8{7xy==.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.24.解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.【解析】【详解】易得M在AB的垂直平分线上,且到C的距离等于AB的一半.25.见解析【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.在数轴上表示出来即可.解:去分母,得3x+1-6>4x-2,移项,得:3x-4x>-2+5,合并同类项,得-x>3,系数化为1,得x<-3,不等式的解集在数轴上表示如下:【点睛】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算顺序.26.(1)y=﹣13x2﹣712x+3;(2)点P的坐标为(﹣83,1);(3)当AM+CN的值最大时,点D的坐标9373-373-+).【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P作PE⊥x轴,垂足为点E,则△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;(3)连接AC交OD于点F,由点到直线垂线段最短可找出当AC⊥OD时AM+CN取最大值,过点D作DQ⊥x轴,垂足为点Q,则△DQO∽△AOC,根据相似三角形的性质可设点D的坐标为(﹣3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论.【详解】(1)∵直线y=34x+3与x轴、y轴分别交于A、C两点,∴点A的坐标为(﹣4,0),点C的坐标为(0,3).∵点B在x轴上,点B的横坐标为94,∴点B的坐标为(94,0),设抛物线的函数关系式为y=ax2+bx+c(a≠0),将A(﹣4,0)、B(94,0)、C(0,3)代入y=ax2+bx+c,得:164081901643a b c a b c c -+=⎧⎪⎪++=⎨⎪=⎪⎩,解得:137123a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, ∴抛物线的函数关系式为y=﹣13x 2﹣712x+3; (2)如图1,过点P 作PE ⊥x 轴,垂足为点E ,∵△PCD 、△PAD 有相同的高,且S △PCD =2S △PAD ,∴CP=2AP ,∵PE ⊥x 轴,CO ⊥x 轴,∴△APE ∽△ACO , ∴13AE PE AP AO CO AC ===, ∴AE=13AO=43,PE=13CO=1, ∴OE=OA ﹣AE=83, ∴点P 的坐标为(﹣83,1); (3)如图2,连接AC 交OD 于点F ,∵AM ⊥OD ,CN ⊥OD ,∴AF≥AM ,CF≥CN ,∴当点M 、N 、F 重合时,AM+CN 取最大值,过点D 作DQ ⊥x 轴,垂足为点Q ,则△DQO ∽△AOC ,∴34OQ CO DQ AO ==, ∴设点D 的坐标为(﹣3t ,4t ).∵点D 在抛物线y=﹣13x 2﹣712x+3上, ∴4t=﹣3t 2+74t+3, 解得:t 1=﹣3738+(不合题意,舍去),t 2=3738-, ∴点D 的坐标为(93738-,3732-+), 故当AM+CN 的值最大时,点D 9373-373-+).【点睛】本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A 、B 、C 的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE 、PE 的长;(3)利用相似三角形的性质设点D 的坐标为(﹣3t ,4t ).27.215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点 在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BN DN =≈o米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.。

2024届上海初三一模数学各区解答题(相似三角形、锐角三角比)

2024届上海初三一模数学各区解答题(相似三角形、锐角三角比)

上海市2024届初三一模数学分类汇编—解答题(相似三角形、锐角三角比)【2024届·宝山区·初三一模·第19题】1.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图6,在ABC中,90C ,4sin 5B ,10AB ,点D 是AB 边上一点,且BC BD .(1)求BD 的长;(2)求ACD 的余切值.【20242.如图113a ,在射线ON (1)(2)图11①图11②图11③图73.(本题满分10分,第(1)小题5分,第(2)小题5分)如图7,在平行四边形ABCD 中,点H 是边AB 上一点,且2BH AH ,直线DH 与AC 相交于点G .(1)求AGAC的值;(2)如果DH AB ,1cos 3BCD,9AD ,求四边形ABCD 的面积.【2024届·静安区·初三一模·第21题】4.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知AC 是矩形ABCD 的对角线,//DE AC ,DE 交BC 延长线于E ,AE 交DC 于F ,BF 交AC 于G .(1)求证:点G 是ABE 的重心;(2)如果2BG BC ,求AEB 的正弦值.第21题图5.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在四边形ABCD 中,//AD BC ,90ABC ,对角线AC 、BD 相交于点O ,2AD ,3AB ,4BC .(1)求BOC 的面积;(2)求ACD 的正弦值.【20246.E 在边AC 上,且EC (1)(2)第22题图1第22题图37.(本题满分10分)上海教育出版社九年级第一学期《练习部分》第48页复习题B 组第2题及参考答案.的代数式表示,以下同),2BD t ;某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究:如图1然后延长(1)(2)的代数式表示,以下同),BD;(3)如图2然后延长【拓展应用】如图3,在Rt ABC 中,90C ,18AC ,25BC ,点D 、E 分别在边AC 、BC 上,且5DC ,12EC ,联结AE 、BD 交于点P .求证:tan 1BPE .第21题图8.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,联结DE 、EF .已知//ED BC ,//EF AB ,3AD ,9DB .(1)求BFFC的值;(2)若ABC 的面积为16,求四边形BFED 的面积.【20249.(1)(2)10.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,已知ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,//DE BC ,15AB ,23AE EC .(1)求AD 的长;(2)如果4BF ,6CF ,求四边形BDEF 的周长.【202411.AC 于点F ,交BC (1)(2)第21题图12.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在四边形ABCD 中,90BAD ,AC BC ,DE AC ,垂足为点E ,4AC ,3DE .(1)求:AD AB 的值;(2)联结BD 交AC 于点F ,如果1tan 2BAC,求CF 的长.第21题图。

(word完整版)2020年上海静安初三数学一模试卷及答案,推荐文档

(word完整版)2020年上海静安初三数学一模试卷及答案,推荐文档

静安区2019学年第一学期期末教学质量调研九年级数学试卷 2020.1(完成时间:100分钟 满分:150分 ) 考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3. 答题时可用函数型计算器.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.已知y x a +=,y x b -=,那么ab 的值为(A )x 2; (B )y 2; (C )y x -; (D )y x +.2.已知点P 在线段AB 上,且AP ∶PB=2∶3,那么AB ∶PB 为 (A )3∶2; (B )3∶5;(C )5∶2;(D )5∶3.3.在△ABC 中,点D 、E 分别在边AB 、AC 上,DE ∥BC ,AD :DB =4:5,下列结论中正确的是 (A )54=BC DE ; (B )49=DE BC ; (C )54=AC AE ; (D )45=AC EC .4.在Rt △ABC 中,∠C =90°,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,如果a =3b ,那么∠A 的余切值为 (A )31; (B )3; (C )42; (D )1010.5.如图1,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设a OA =,b OB =,下列式子中正确的是(A )b a DC +=; (B )b a DC -=; (C )b a DC +-=; (D )b a DC --=.6.如果将抛物线22-=x y 平移,使平移后的抛物线与抛物线982+-=x x y 重合,那么它平移的过程可以是(A )向右平移4个单位,向上平移11个单位;(B )向左平移4个单位,向上平移11个单位; (C )向左平移4个单位,向上平移5个单位; (D )向右平移4个单位,向下平移5个单位.图1二、填空题:(本大题共12题,每题4分,满分48分) 7.因式分解:=-x x 52 ▲ .8.已知13)(+=x x f ,那么)3(f = ▲ . 9.方程2111=+-x x 的根为 ▲ . 10.已知:43=y x ,且y ≠4,那么43--y x = ▲ . 11.在△ABC 中,边BC 、AC 上的中线AD 、BE 相交于点G ,AD =6,那么AG = ▲ . 12.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是 ▲ .13.如图2,在大楼AB 的楼顶B 处测得另一栋楼CD 底部C 的俯角为60度,已知A 、C 两点间的距离为15米,那么大楼AB 的高度为 ▲ 米.(结果保留根号)14.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为)0(>x x ,六月份的营业额为y 万元,那么y 关于x 的函数解式是 ▲ . 15.矩形的一条对角线长为26,这条对角线与矩形一边夹角的正弦值为135,那么该矩形的面积为 ▲ . 16.已知二次函数a x a x ay ++=2228(a 是常数,a ≠0),当自变量x 分别取-6、-4时,对应的函数值分别为y 1、y 2,那么y 1、y 2的大小关系是:y 1 ▲ y 2(填“>”、“<”或“=”).17.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD 中,AD //BC ,AD =4,BC =9,点E 、F 分别在边AB 、CD 上,且EF 是梯形ABCD 的“比例中线”,那么FCDF= ▲ . 18. 如图3,有一菱形纸片ABCD ,∠A =60°,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos ∠EFB 的值为 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分)先化简,再求值:2222442yxy x y x y x y x ++-÷+-,其中x =sin45°,y =cos60°.CBAD图2 图3ABCD如图4,在Rt △ABC 中,∠ACB =90°,AC =20,53sin =A , CD ⊥AB ,垂足为D . (1)求BD 的长;(2)设a AC =, b BC =,用a 、b 表示AD .21.(本题满分10分,其中第(1)小题3分,第(2)小题3分,第(3)小题4分)已知在平面直角坐标系xOy 中,抛物线12++=bx x y (b 为常数)的对称轴是直线x =1. (1)求该抛物线的表达式;(2)点A (8,m )在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标; (3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.22.(本题满分10分,其中第(1)小题7分,第(2)小题3分)如图6,在东西方向的海岸线l 上有长为300米的码头AB ,在码头的最西端A 处测得轮船M 在它的北偏东45°方向上;同一时刻,在A 点正东方向距离100米的C 处测得轮船M 在北偏东22°方向上. (1)求轮船M 到海岸线l 的距离;(结果精确到0.01米) (2)如果轮船M 沿着南偏东30°的方向航行,那么该轮船能否行至码头AB 靠岸?请说明理由. (参考数据:sin22°≈0.375,cos22°≈0.927,tan22°≈0.404,3≈1.732.)CABD 图4图6MABCl图5如图7,在梯形ABCD 中,AD //BC ,AC 与BD 相交于点O ,点E 在线段OB 上,AE 的延长线与BC 相交于点F ,OD 2 = OB ·OE .(1)求证:四边形AFCD 是平行四边形; (2)如果BC =BD ,AE ·AF =AD ·BF ,求证:△ABE ∽△ACD .24.(本题满分12分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分)在平面直角坐标系xOy 中(如图8),已知二次函数c bx ax y ++=2(其中a 、b 、c 是常数,且 a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果2:3:=∆∆BCD ABD S S ,求tan ∠DBC 的值;(3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.25.(本题满分14分,其中第(1)小题6分,第(2)小题4分,第(3)小题4分)已知:如图9,在△ABC 中,AB =AC ,点D 、E 分别在边BC 、DC 上,AB 2 =BE · DC ,DE :EC =3:1 ,F 是边AC 上的一点,DF 与AE 交于点G .(1)找出图中与△ACD 相似的三角形,并说明理由; (2)当DF 平分∠ADC 时,求DG :DF 的值; (3)如图10,当∠BAC=90°,且DF ⊥AE 时,求DG :DF 的值.图8Oyx图7 A B D C E F O图9 C A B D E FG 图10 GFAB D E静安区2019学年第一学期期末学习质量调研九年级数学试卷参考答案及评分说明 2020.1一、选择题1. C ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二、填空题7.x (x -5); 8.10; 9.x =3; 10.43; 11. 4; 12.16:25; 13.315 ; 14.21200)(x y +=或2004002002++=x x y ; 15.240; 16.>;17. 32; 18.71 .三、解答题19.解:原式= ))(()2(22y x y x y x y x y x -++⋅+-…………………………………………………………………(4分)=yx yx ++2.………………………………………………………………………………………(2分) 当x =sin45°=22,y =cos60°=21时…………………………………………………………………………(2分)原式=2212221222=+⨯+. ……………………………………………………………………(2分)20.解:(1)∵CD ⊥AB ,∴∠ADC =∠BDC =90°,在Rt △ACD 中,AC CD A =sin ,∴125320sin =⨯=⋅=A AC CD .…………………………(2分)∴1612202222=-=-=CD AC AD …………………………………………………………(1分)∴43tan ==AD CD A .………………………………………………………………………………(1分)∵∠ACB =90°,∴∠DCB+∠B =∠A+∠B =90°,∴∠DCB =∠A .………………………(1分)∴94312tan tan =⨯=⋅=∠⋅=A CD DCB CD BD .…………………………………………(2分) (2) ∵25916=+=+=DB AD AB ,∴2516=AB AD .…………………………………………………(1分)又∵b a BC AC AB -=+=, …………………………………………………………………(1分)∴b a AB AD 251625162516-==.…………………………………………………………………(1分)21.解:(1)∵对称轴为2b x -=∴12=-b.……………………………………………………(1分)∴b =-2.…………………………………………………………………………………………(1分)∴抛物线的表达式为122+-=x x y .………………………………………………………(1分)(2) ∵点A (8,m )在该抛物线的图像上,∴当x =8时,4918)1(12222=-=-=+-=)(x x x y . ∴点A (8,49).………………………………………………………………………………………(1分)∴ 点A (8,49)关于对称轴对称的点A'的坐标为(-6,49).…………………………………(2分)(3)表格正确,得2分;图正确得2分.22.解:(1)过点M 作MD ⊥AC 交AC 的延长线于D ,设DM =x .…………………………………(1分)∵在Rt △CDM 中, CD = DM ·tan ∠CMD = x ·tan22°,………………………………………(1分)又∵在Rt △ADM 中,∠MAC =45°,∴AD =DM ,………………………………………………(1分)∵AD =AC +CD =100+ x ·tan22°,…………………………………………………………………(1分)∴100+ x ·tan22°=x .………………………………………………………………………………(1分)∴79.167785.167404.0110022tan 1100≈≈-≈-=x .………………………………………………(2分)答:轮船M 到海岸线l 的距离约为167.79米.(2)作∠DMF =30°,交l 于点F .在Rt △DMF 中,DF = DM ·tan ∠FMD = DM ·tan30°=33DM ≈79.1673732.1⨯≈96.87米.……………………………………………(1分)∴AF =AC +CD +DF =DM +DF ≈167.79+96.87=264.66<300.……………………………………(1分) 所以该轮船能行至码头靠岸.………………………………………………………………………(1分)23.证明:(1)∵OD 2 =OE · OB ,∴OBODOD OE =. ……………………………………………………(1分)∵AD //BC ,∴OBODOC OA =.……………………………………………………………………(2分)∴ODOEOC OA =.……………………………………………………………………………………(1分)∴ AF//CD .…………………………………………………………………………………………(1分)∴四边形AFCD 是平行四边形.…………………………………………………………………(1分)(2)∵AF//CD ,∴∠AED =∠BDC ,BCBFBD BE =.…………………………………………(1分)∵BC =BD ,∴BE =BF ,∠BDC =∠BCD …………………………………………………………(1分)∴∠AED =∠BCD .∵∠AEB =180°-∠AED ,∠ADC =180°-∠BCD ,∴∠AEB =∠ADC .…………………………(1分)∵AE ·AF =AD ·BF ,∴AFADBF AE =.…………………………………………………………(1分)∵四边形AFCD 是平行四边形,∴AF =CD .…………………………………………………(1分)∴DCADBE AE =.…………………………………………………………………………………(1分)∴△ABE ∽△ADC .24.解:(1)将A (0,-3)、B (1,0)、C (3,0)代入)(02≠++=a c bx ax y 得,⎪⎩⎪⎨⎧++=--+=-+=cb a b a 003,4390,30…………………………………………………………………………………(3分)解得⎪⎩⎪⎨⎧-==-=.3,4,1c b a ∴此抛物线的表达式是342-+-=x x y .…………………………………(1分)(2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,则23:)21(:)21(::==⋅⋅=∆∆DC AD h DC h AD S S BCD ABD (1分) 又∵DH //y 轴,∴52===OA DH AC DC OC CH .∴56352=⨯==DH CH .………………………(1分)∴54562=-=-=CH BC BH .…………………………………………………………………(1分)∴tan ∠DBC=23=BH DH .……………………………………………………………………………(1分)(3)方法一:∵1)2(3422+--=-+-=x x x y ,所以对称轴为直线x =2,设直线x =2与x 轴交于点G .(1分)过点A 作AF 垂直于直线x =2,垂足为F .∵OA =OC =3,∠AOC =90°,∴∠OAC=∠OCA=45°.∵AF //x 轴,∴∠F AC=∠OCA=45°. ∵AC 平分∠BAE ,∴∠BAC=∠EAC∵∠BAO=∠OAC -∠BAC ,∠EAF=∠F AC -∠EAC ,∴∠BAO=∠EAF ………………………(1分) ∵∠AOB =∠AFE =90°,∴△OAB ∽△FEA ,∴31==AF EF OA OB . ∵AF =2,∴32=EF .…………………………………………………………………………………(1分)∴EG =GF -EF =AO -EF =3-32=37. ∴E (2,37-).……………………………………………(1分)方法二:延长AE 至x 轴,与x 轴交于点F ,∵OA =OC =3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OF A=∠OCA -∠F AC=45°-∠F AC ,∵∠BAC =∠F AC ,∴∠OAB=∠OF A .………………………………………………………………(1分)∴△OAB ∽△OF A ,∴31==OF OA OA OB .∴OF =9,即F (9,0)…………………………………(1分)设直线AF 的解析式为y =kx +b (k ≠0),可得⎩⎨⎧=-+=,3,90b b k 解得⎪⎩⎪⎨⎧-==,3,31b k ∴直线AF 的解析式为331-=x y ……………………………(1分)将x =2代入直线AF 的解析式得37-=y ,∴E (2,37-)……………………………………(1分) 25.(1)与△ACD 相似的三角形有:△ABE 、△ADC ,理由如下:……………………………………(2分)∵AB 2 =BE · DC ,∴DCABAB BE =.……………………………………………………………………(1分)∵AB =AC ,∴∠B =∠C .………………………………………………………………………………(1分)DCACAB BE =…………………………………………………………………………………………(1分) ∴△ABE ∽△DCA .∵△ABE ∽△DCA ,∴∠AED =∠DAC .∵∠AED =∠C +∠EAC ,∠DAC =∠DAE +∠EAC ,∴∠DAE =∠C .∴△ADE ∽△CDA .……(1分)(2)∵△ADE ∽△CDA ,又∵DF 平分∠ADC ,∴CDADAD DE DF DG ==…………………………………(1分)设CE =a ,则DE=3CE =3a ,CD =4a ,∴aAD AD a 44= ,解得a AD 32=(负值已舍)………(2分)∴23432===a a CD AD DG DF …………………………………………………………………………(1分)(3)∵∠BAC=90°,AB =AC ,∴∠B =∠C =45° ,∴∠DAE =∠C=45°∵DG ⊥AE ,∴∠DAG =∠ADF =45°,∴AG=DG=a a AD 6322222=⋅=…………………(1分)∴a DG DE EG 322=-=………………………………………………………………………(1分)∵∠AED =∠DAC ∴△ADE ∽△DF A∴AD AE DF AD =,∴a AE AD DF )(3642-==…………………………………………………(1分)∴422+=DF DG ……………………………………………………………………………………(1分)。

2022年上海市静安区九年级上学期期末中考数学一模试卷带讲解

2022年上海市静安区九年级上学期期末中考数学一模试卷带讲解
∴ , ,
∴ ,
∴ ,
故答案为: .
【点睛】本题考查了平面向量的知识.此题难度不大,注意掌握相似三角形判定的应用,注意掌握数形结合思想的应用.
18.如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______
【答案】 或
【分析】分两种情况分析:当点E在BC下方时记点E为点 ,点E在BC上方时记点E为点 ,连接 , ,根据垂直平分线的性质得 , ,由正方形的性质得 , ,由旋转得 , ,故 , 是等边三角形, , 是等腰三角形,由等边三角形和等腰三角形的求角即可.
【答案】
【分析】由AD、BE分别是边BC、AC上的中线,可求得AE=EC,BD=DC,然后利用△DEG∽△∽ABG,求得结果.
【详解】解:连接DE
∵AD、BE分别是边BC、AC上 中线,
∴AE=EC,BD=DC,
∴DE是△ABC的中位线,
∴DE= AB,
∴△DEG∽△∽ABG,
∴ ,
∴AG=2DG,BG=2EG,
6.下列说法错误的是()
A. 任意一个直角三角形都可以被分割成两个等腰三角形
B. 任意一个等腰三角形都可以被分割成两个等腰三角形
C. 任意一个直角三角形都可以被分割成两个直角三角形
D. 任意一个等腰三角形都可以被分割成两个直角三角形
【答案】B
【分析】根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
【答案】低
【分析】根据抛物线 的形状开口方向向上即可得出结果.
【详解】解:∵抛物线开口方向与抛物线 的开口方向相同,抛物线 中,a= >0开口方向向上,
∴该抛物线有最低点,
故答案为:低.

中考专题2022年上海静安区中考数学一模试题(含答案解析)

中考专题2022年上海静安区中考数学一模试题(含答案解析)

2022年上海静安区中考数学一模试题 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某小商品每件售价20元,可获利60%.若按售价的七五折出售,可获利( )A .2.5元B .3元C .3.5元D .5元 2、方程1131435x x +-=-去分母后,正确的结果是( ). A .()()5114331x x +=-- B .()5116093x x +=-- C .()()51160331x x +=-- D .()()51112331x x +=-- 3、下列分数中不能化成有限小数的是( ) A .916 B .38 C .518 D .750 4、以下各数中,不能与133,57,9115组成比例的是( ) A .2549 B .1699 C .1 D .8281225 5、10.2%+等于( ) A .1.2%B .1.02%C .1.002%D .100.2% ·线○封○密○外6、三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( )A .15B .20C .25D .307、在下列分数中能化成有限小数的是( )A .46 B .412 C .416 D .4188、一条弧所对的圆心角是72︒,则这条弧长与这条弧所在圆的周长之比为( )A .13B .14 C .15D .16 9、已知C 为线段AB 延长线上的一点,且13BC AB =,则BC 的长为AC 长的( )A .34B .13C .12D .1410、下列说法中,正确的是( )A .一个角的余角一定大于它的补角B .任何一个角都有余角C .12018'︒用度表示是120.18︒D .72.4︒化成度、分、秒是7223'60''︒第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、化简比:255::368=________. 2、已知:2:3a b =,:4:5b c =,那么::a b c =____________.3、一台冰箱的进价是1000元,如果商家要盈利20%,那么售价是____________元.4、挪一枚骰子,点数是素数的可能性大小是_______.5x 的取值范围是_________. 三、解答题(5小题,每小题10分,共计50分)1、已知:5公斤甘蔗可榨出甘蔗汁3公斤.求:(1)120公斤甘蔗可释出甘蔗汁多少公斤?(2)要想得到60公斤甘蔗汁,需要甘蔗多少公斤?2、某商店以每件200元的价格购进一批服装,加价40%后作为定价出售.(1)求加价后每件服装的售价是多少元?(2)促销活动期间,商店对该服装打八折出售,这时每件服装还可盈利多少元? 3、如图,抛物线y =﹣x 2+bx+c 与一条直线相交于A (﹣1,0),C (2,3)两点. (1)求抛物线和直线的解析式; (2)若动点P 在抛物线上位于直线AC 上方运动,求△APC 的面积最大值.4、已知:如图,将一个直径AB 等于12厘米的半圆绕着点A 逆时针旋转60 后,点B 落到点C 位置,半圆扫过部分的图形如阴影部分所示.求:(1)阴影部分的周长; (2)阴影部分的面积. 5、要修一条20千米的公路,第1周修好了这条公路全长的15%,第2、3周共修好了这条公路全长·线○封○密·○外的40%,第4周修好了其中的5千米,第5周把剩下的全部修好.求:(1)第1、2、3周这三周共修好了多少千米的路?(2)第5周修好了这条公路的百分之几?-参考答案-一、单选题1、A【分析】根据利润=(售价-进价)÷进价可算出进价,根据“售价的七五折出售”可算出打折后的售价,用打折后的售价-进价即可得出答案.【详解】解:(20×0.75)-[20÷(1+60%)]=15-12.5=2.5(元)故选A.【点睛】本题考查了百分数的应用.掌握售价、进价、利润之间的关系是解题的关键.2、C【分析】方程两边同时乘以最小公倍数15,即可得到答案.【详解】方程1131435x x+-=-去分母后,得:()()51160331x x +=--故选:C . 【点睛】 本题考察了一元一次方程的知识;求解的关键是熟练掌握一元一次方程的性质,从而完成求解. 3、C 【分析】 把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】 解:916分母中只含有质因数2,所以能化成有限小数; 38分母中只含有质因数2,所以能化成有限小数; 518分母中含有质因数3.所以不能化成有限小数; 750分母中只含有质因数2和5,所以能化成有限小数; 故选:C . 【点睛】 本此题主要考查什么样的分数可以化成有限小数,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数. 4、B 【分析】 逆用比例的基本性质:两内项的积等于两外项的积;据此逐项分析后找出不能与133,57,9115组成比·线○封○密○外例的一项即可.【详解】A、因为1359125371549⨯=⨯,所以2549能与133,57,9115组成比例;B、因为1699不能与133,57,9115写成乘积相等式,所以1699不能与133,57,9115组成比例;C、因为5911317153⨯=⨯,所以1能与133,57,9115组成比例;D、因为13915828113157225⨯=⨯,所以8281225能与133,57,9115组成比例;故选:B.【点睛】本题考查了比例的基本性质,关键是熟悉并灵活运用比例的基本性质:两内项的积等于两外项的积.5、D【分析】由题意把1可以看作100%,根据加法的意义,把两个数合并成一个数即可.【详解】解:1+0.2%=100.2%.故选:D.【点睛】本题主要考查有理数的加法中百分数加法的计算方法,注意掌握把1看作100%,直接进行计算即可.6、D【分析】先求出三个数的比,然后运用比例的性质,即可求出答案.【详解】解:由题意可得,∵第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,∴三个数之比为10:15:24,设三个数分别为10x 、15x 、24x ,则10152498x x x ++=, 解得:2x =, ∴第二个数为1530x =. 故选:D . 【点睛】 本题考查了比例的性质,解一元一次方程,解题的关键是熟练掌握题意,运用比例的性质进行解题. 7、C 【分析】 一个最简分数,如果分母中只含有质因数2或5,这个分数就能化成有限小数;如果分母中含有2或5以外的质因数,这个分数就不能化成有限小数,据此判断即可. 【详解】 解:A .46=23,分母含质因数3,故不能化为有限小数,故不符合题意; B .412=13,分母含质因数3,故不能化为有限小数,故不符合题意; C .416=14,分母的质因数只有2,故能化为有限小数,故符合题意; D . 418=29,分母含质因数3,故不能化为有限小数,故不符合题意. 故选C .·线○封○密○外【点睛】本题考查了小数与分数互化的方法的应用,解题的关键是要明确:一个最简分数,如果分母中只含有质因数2或5,这个分数就能化成有限小数;如果分母中含有2或5以外的质因数,这个分数就不能化成有限小数.8、C【分析】利用这条弧所对的圆心角的度数除以360°即可求出结论.【详解】解:72÷360=1 5即这条弧长与这条弧所在圆的周长之比为1 5故选C.【点睛】此题考查的是弧长与圆的周长,掌握弧长与这条弧所在圆的周长之比等于这条弧所对的圆心角与360°的比是解题关键.9、D【分析】根据题意,画出图形即可得出结论.【详解】解:根据题意,画图如下∵13 BC AB设BC=a,则AB=3a∴AC=AB+BC=4a ∴BC=14AC 故选D . 【点睛】 此题考查的是求线段的关系,掌握各线段的关系是解决此题的关键. 10、D 【分析】 由题意根据余角和补角的定义以及角的换算进行分析判断即可. 【详解】 解:A .一个角的余角一定小于它的补角; B .钝角没有余角; C .12018'120.3︒=︒; D .正确, 故选:D . 【点睛】 本题考查余角和补角的定义以及角的换算,熟练掌握余角和补角的定义以及角的换算方法是解题的关键. 二、填空题 1、16:20:15 【分析】 根据比的性质,同时乘以三项分母的最小公倍数24即可得出答案. 【详解】 ·线○封○密○外解:255255::24:24:2416:20:15 368368⎛⎫⎛⎫⎛⎫=⨯⨯⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为16:20:15.【点睛】本题考查了比的基本性质.比的前项和后项同时乘以或除以一个不为0的数,比值不变.2、8:12:15【分析】由比例的性质得出结论即可.【详解】解:∵a:b=2:3=8:12,b:c=4:5=12:15,∴a:b:c=8:12:15;故答案为:8:12:15.【点睛】本题考查了比例的基本性质;熟练掌握比例的性质是解决问题的关键.3、1200【分析】盈利20%是把进价看成单位“1”,盈利部分占进价的20%,那么售价就是进价的(1+20%),用进价乘上这个百分数就是售价.【详解】1000×(1+20%),=1000×1.2,=1200(元);答:售价应定为1200元.故答案为:1200元.【点睛】本题的关键是找出单位“1”,已知单位“1”的量求它的百分之几是多少用乘法.4、12【分析】 根据可能性公式即可求出结论. 【详解】 解:一枚骰子,有1、2、3、4、5、6共6个点数,其中点数为素数的有2、3、5 所以点数是素数的可能性大小是3÷6=12 故答案为:12.【点睛】 此题考查的是求可能性,掌握可能性公式和素数的定义是解题关键. 5、2x ≥-且0x ≠ 【分析】 根据二次根式中的被开方数是非负数、分式分母不为0列出不等式,解不等式得到答案. 【详解】 解:由题意得,x+2≥0,x≠0, 解得,x≥-2且x≠0, 故答案为:x≥-2且x≠0. 【点睛】 本题考查了二次根式有意义的条件、分式有意义的条件,掌握二次根式中的被开方数是非负数、分式·线○封○密○外分母不为0是解题的关键.三、解答题1、(1)72公斤;(2)100公斤【分析】(1)根据“5公斤甘蔗可榨出甘蔗汁3公斤”,可得1公斤甘蔗可榨甘蔗汁35公斤,要求120公斤甘蔗可榨出甘蔗汁多少公斤,用31205⨯即可求解;(2)根据“5公斤甘蔗可榨出甘蔗汁3公斤”,可得榨1公斤甘蔗汁需要甘蔗53公斤,要想得到60公斤甘蔗汁,求需要甘蔗多少公斤,用5603⨯求得即可.【详解】解:(1)根据题意,1公斤甘蔗可榨甘蔗汁35公斤,3120725⨯=(公斤),答:120公斤甘蔗可榨出甘蔗汁72公斤;(2)榨1公斤甘蔗汁需要甘蔗53公斤,5601003⨯=(公斤);答:要想得到60公斤甘蔗汁,需要甘蔗100公斤.【点睛】本题考查分数乘法的实际应用,解答此题要明确是把谁看作单位“1”,求的是什么.2、(1)280元;(2)24元【分析】(1)根据进价×(1+40%)计算即可;(2)先求出商品打八折出售的价钱,然后再减去成本即可求出答案.【详解】 (1)()200140%280⨯+=(元) 答:加价后每件服装的售价是280多少元; (2)28080%20022420024⨯-=-=(元) 答:这时每件服装还可盈利24元. 【点睛】 本题主要考查百分数的应用,掌握百分数的计算是解题的关键. 3、(1)y =﹣x 2+2x+3;y =x+1;(2)△APC 的面积最大值为278. 【分析】 (1)利用待定系数法求抛物线和直线解析式; (2)设P 点坐标,过点P 作PQ⊥x 轴于点H ,交AC 于点Q ,用水平宽乘以铅垂高除以2表示APC △的面积,然后求最值. 【详解】 解:(1)由抛物线y =﹣x 2+bx+c 过点A (﹣1,0),C (2,3), 得:10423b c b c --+=⎧⎨-++=⎩,解得:23b c =⎧⎨=⎩, ∴抛物线的函数解析式为y =﹣x 2+2x+3, 设直线AC 的函数解析式为y =mx+n , 把A (﹣1,0),C (2,3)代入, 得023m n m n -+=⎧⎨+=⎩,解得11m n =⎧⎨=⎩, ·线○封○密○外∴直线AC 的函数解析式为y =x+1;(2)如图,过点P 作PQ⊥x 轴于点H ,交AC 于点Q ,设P (x ,﹣x 2+2x+3),则Q (x ,x+1),∴PQ=﹣x 2+2x+3﹣(x+1)=﹣x 2+x+2,∴S △APC =S △APQ +S △CPQ =12PQ×3 =32(﹣x 2+x+2) =﹣32(x ﹣12)2+278, ∵﹣32<0, ∴当x =12时,△APC 的面积最大,最大值为278.【点睛】本题考查二次函数综合题,涉及解析式的求解,三角形面积的表示方法,解题的关键是掌握这些特定的解题方法进行求解.4、(1)50.24厘米;(2)75.36平方厘米【分析】(1)根据2C C C =+半圆弧周长弧长,将数值代入计算即可;(2)根据S S S S S =+-=扇阴影半圆半圆形扇形,将数值代入计算即可. 【详解】 解:(1)160π12222π616π50.242180C C C ⨯=+=⨯⨯⨯+==弧长半圆弧周长(厘米) (2)260π1224π75.36360S S S S S ⨯⨯=+-====阴影半圆半圆扇形扇形(平方厘米) 【点睛】 本题考查了扇形的周长和面积,熟记公式是解题的关键. 5、(1)第1、2、3周这三周共修好了11千米的路;(2)第5周修好了这条公路的20%. 【分析】 根据题意,①利用求一个数百分之几是多少的解题方法,列出乘法算式,计算解答; ②把这条路看作单位“1”.减去第1、2、3、4周修好的百分之几,即可解答. 【详解】 解:(1)20×(15%+40%) =20×0.55 =11(千米) 答:第1、2、3周这三周共修好了11千米的路. (2)1-(15%+40%+5÷20) =1-80% =20% 答:第5周修好了这条公路的20%. 【点睛】 解决这个问题的关键是正确确定单位“1”,找出对应关系.理解数量间的关系一一突破就能使解答·线○封○密·○外变得容易.。

2020-2021学年上海市静安区九年级(上)期末数学试卷(一模)(附解析)

2020-2021学年上海市静安区九年级(上)期末数学试卷(一模)(附解析)

2020-2021学年上海市静安区九年级(上)期末数学试卷(一模)一、选择题(本大题共6小题,共24.0分)1.如果a≠0,那么下列计算正确的是()A. (−a)0=0B. (−a)0=−1C. −a0=1D. −a0=−12.下列多项式中,是完全平方式的为()A. x2−x+14B. x2+12x+14C. x2+14x−14D. x2−14x+143.将抛物线y=2(x+1)2−3平移后与抛物线y=2x2重合,那么平移的方法可以是()A. 向右平移1个单位,再向上平移3个单位B. 向右平移1个单位,再向下平移3个单位C. 向左平移1个单位,再向上平移3个单位D. 向左平移1个单位,再向下平移3个单位4.在△ABC中,点D、E分别在边BA、CA的延长线上,下列比例式中能判定DE//BC的为()A. BCDE =ABADB. ACAD=ABAEC. ACCE=ABBDD. ACAB=BDCE5.锐角α的正切值为√32,那么下列结论中正确的是()A. α=30°B. α=60°C. 30°<α<45°D. 45°<α<60°6.在Rt△ABC中,∠C=90°,CD是高,如果AB=m,∠A=α,那么CD的长为()A. m⋅sinα⋅tanαB. m⋅sinα⋅cosαC. m⋅cosα⋅tanαD. m⋅cosα⋅cotα二、填空题(本大题共12小题,共48.0分)7.32的相反数是______.8.函数f(x)=2−x的定义域为______ .9.方程√3−2x=2−x的根为______ .10.二次函数y=2x−3x2图象的开口方向是______ .11.抛物线y=3x2−6的顶点坐标为______ .12.如果一次函数y=(m−2)x+m−1的图象经过第一、二、四象限,那么常数m的取值范围为______ .13. 在二次函数y =x 2−2x +3图象的上升部分所对应的自变量x 的取值范围是______ .14. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,∠AED =∠B ,如果AD =2,AE =3,CE =1,那么BD 长为______ .15. 在△ABC 中,点G 是重心,∠BGC =90°,BC =8,那么AG 的长为______ .16. 如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE//BC ,如果AB =12,BC =9,AC =6,四边形BCED 的周长为21,那么DE 的长为______ .17. 如图,在梯形ABCD 中,AD//BC ,BD 与AC 相交于点O ,OB =2OD ,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,那么AO ⃗⃗⃗⃗⃗= ______ (用向量a ⃗ ,b ⃗ 的式子表示).18. 在Rt △ABC 中,∠C =90°,AB =13,tanB =23(如图),将△ABC 绕点C 旋转后,点A 落在斜边AB 上的点A′,点B 落在点B′,A′B′与边BC 相交于点D ,那么CD A′D 的值为______ .三、解答题(本大题共7小题,共78.0分)19. 计算:cot30°−cos45°sin60∘−tan45∘.20. 已知线段x ,y 满足2x+y x−y =x y ,求x y 的值.21.如图,点AB在第一象限的反比例函数图象上,AB的延长线与y轴交于点C,已知点A、B的横坐标分别为6、2,AB=2√5.(1)求∠ACO的余弦值;(2)求这个反比例函数的解析式.22.如图,一处地铁出入口无障碍通道是转折的斜坡,沿着坡度相同的斜坡BC、CD共走7米可到出入口,出入口点D距离地面的高DA为0.8米,求无障碍通道斜坡的坡度与坡角(角度精确到1°,其他近似数取四个有效数字).23.已知:如图,在△ABC中,点D、E分别在边AB、AC上,DE//BC,AD2=AE⋅AC.求证:(1)△BCD∽△CDE;(2)CD2BC2=ADAB.24.如图,在平面直角坐标系xOy中,直线y=−12x+m(m>0)与x轴、y轴分别交于点A,B,抛物线y=ax2+bx+4(a≠0)经过点A,且与y轴相交于点C,∠OCA=∠OAB.(1)求直线AB的表达式;(2)如果点D在线段AB的延长线上,且AD=AC,求经过点D的抛物线y=ax2+bx+4的表达式;(3)如果抛物线y=ax2+bx+4的对称轴与线段AB、AC分别相交于点E,F,且EF=1,求此抛物线的顶点坐标.25.已知∠MAN是锐角,点B、C在边AM上,点D在边AN上,∠EBD=∠MAN,且CE//BD,sin∠MAN=3,AB=5,AC=9.5(1)如图1,当CE与边AN相交于点F时,求证:DF⋅CE=BC⋅BE;(2)当点E在边AN上时,求AD的长;(3)当点E在∠MAN外部时,设AD=x,△BCE的面积为y,求y与x之间的函数解析式,并写出定义域.答案和解析1.【答案】D【解析】解:∵(−a)0=1,∴选项A不符合题意;∵(−a)0=1,∴选项B不符合题意;∵−a0=−1,∴选项C不符合题意;∵−a0=−1,∴选项D符合题意.故选:D.根据a0=1(a≠0),00≠1,逐项判断即可.此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.【答案】A【解析】解:A、x2−x+14=(x−12)2,故原式是完全平方式,故本选项符合题意;B、x2+12x+14不是完全平方式,故本选项不符合题意;C、x2+14x−14不是完全平方式,故本选项不符合题意;D、x2−14x+14不是完全平方式,故本选项不符合题意;故选:A.完全平方式:a2±2ab+b2=(a±b)2,据此判断即可.本题主要考查了完全平方式,完全平方式分两种,一种是完全平方和公式,就是两个整式的和的平方.另一种是完全平方差公式,就是两个整式的差的平方,算时有一个口诀“首末两项算平方,首末项乘积的2倍中间放,符号随中央.【解析】解:∵抛物线y =2(x +1)2−3的顶点坐标为(−1,−3),抛物线y =2x 2的顶点坐标为(0,0),∴顶点由(−1,−3)到(0,0)需要向右平移1个单位再向上平移3个单位.故选:A .根据平移前后的抛物线的顶点坐标确定平移方法即可得解.本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.4.【答案】C【解析】解:如图:A 、当BC DE =AB AD 时,不能判定DE//BC ,不符合题意; B 、当AC AD =AB AE 时,不能判定DE//BC ,不符合题意;C 、当AC CE =AB BD ,能判定DE//BC ,符合题意;D 、当ACAB =CE BD 时,能判定DE//BC ,而当AC AB =BD CE 时,不能判定DE//BC ,不符合题意; 故选:C .根据平行线分线段成比例定理、平行线的判定定理判断即可.本题考查的是平行线分线段成比例定理、平行线的判定定理,掌握相关的判定定理是解题的关键.5.【答案】C【解析】解:∵tanα=√32,tan30°=√33,tan45°=1, ∴tan30°<tanα<tan45°,∴30°<α<45°,故选:C .根据特殊锐角的三角函数值进行解答即可.本题考查锐角三角函数的意义以及锐角三角函数的增减性,掌握特殊锐角的三角函数值以及锐角三角函数的增减性是解决问题的关键.【解析】解:如图,在Rt △ABC 中,∵cosA =AC AB ,AB =m ,∠A =α,∴AC =m ⋅cosα,在Rt △ADC 中,∵sinA =CDAC ,AC =m ⋅cosα,∠A =α,∴CD =m ⋅cosα⋅sinα,故选:B .在Rt △ABC 中,由锐角三角函数的意义可求出AC =m ⋅cosα,在Rt △ADC 中,由锐角三角函数的意义可求出CD =m ⋅cosα⋅sinα,进而得出答案.本题考查解直角三角形,掌握锐角三角函数的意义是解决问题的前提.7.【答案】−32【解析】解:32的相反数是−32.故答案为:−32.根据相反数的定义可得出答案.本题考查了相反数.解题的关键是明确相反数的意义,一个数的相反数就是在这个数前面添上“−”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 8.【答案】x <2【解析】解:由题意得,2−x >0,解得,x <2,故答案为:x <2.根据二次根式的被开方数是非负数、分式的分母不为0列出不等式,解不等式得到答案 本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分式的分母不为0是解题的关键.9.【答案】x =1【解析】解:√3−2x=2−x,两边平方得:3−2x=4−4x+x2,整理得:x2−2x+1=0,解得:x1=x2=1,经检验,x=1是原方程的根,∴方程√3−2x=2−x的根为x=1,故答案为:x=1.首先把无理方程化成整式方程,再求出整式方程的解,然后检验即可.本题考查了无理方程的解法;熟练掌握无理方程的解法是解题的关键.10.【答案】向下【解析】解:∵二次函数y=2x−3x2的a=−3<0,∴开口向下,故答案为:向下.根据二次函数二次项的系数的符号确定开口方向即可.考查了二次函数的性质,二次函数的二次项的系数决定了开口的方向,难度较小.11.【答案】(0,−6)【解析】解:∵抛物线y=3x2−6,∴该抛物线的顶点坐标为(0,−6),故答案为(0,−6).根据题目中的抛物线,可以直接写出该抛物线的顶点坐标.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】1<m<2【解析】解:∵函数y=(m−2)x+m−1的图象经过第一、二、四象限,∴{m−2<0m−1>0,解得1<m<2.故答案为:1<m<2.根据已知条件“一次函数y=(m−2)x+m−1的图象不经过第三象限”可知m−3< 0,且m−1>0,据此求得k的取值范围,在该范围内可以找到满足条件的k的值.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.13.【答案】x≥1【解析】解:∵y=x2−2x+3=(x−1)2+2,∴抛物线开口向上,对称轴为直线x=1,∴当x≥1时,y随x的增大而增大,∴在二次函数y=x2−2x+3图象的上升部分所对应的自变量x的取值范围是x≥1,故答案为:x≥1.根据二次函数的性质解答即可.本题考查二次函数的性质、二次函数的图象,解答本题的关键是明确题意,利用二次函数的性质解答.14.【答案】4【解析】解:∵∠AED=∠B,∠DAE=∠CAB,∴△AED∽△ABC,∴ADAC =AEAB,∴23+1=32+BD,解得BD=4.故答案为:4.根据∠AED=∠B,∠DAE=∠CAB,可得△AED∽△ABC,对应边成比例即可求出BD的长.本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.15.【答案】8【解析】解:如图所示:∵点G是△ABC重心,∴点D是BC的中点,AG:DG=2:1,∵∠BGC=90°,BC=8,∴DG=12BC=4,∴AG=8,答:AG的长为8.故答案为:8.根据三角形的重心是三角形三边中线的交点.重心到顶点的距离与重心到对边中点的距离之比为2:1.进而可得AG的长.本题考查了三角形的重心,解决本题的关键是掌握三角形的重心定义和性质.16.【答案】6【解析】解:∵DE//BC,∴△ADE∽△ABC,∴ADAB =AEAC=DEBC,∴AD12=AE6=DE9=k,∴AD=12k,AE=6k,DE=9k,∵四边形BCED的周长为21,∴BD+BC+CE+DE=12−12k+9+6−6k+9k=21,解得:k=23,∴DE=6.故答案为:6.根据DE//BC,得到△ADE∽△ACB,对应边成比例,设相似比为k,可得AD=12k,AE=6k,DE=9k,然后根据四边形BCED的周长为21,列方程即可得到结果.本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.17.【答案】23b⃗ +13a⃗【解析】解:如图,∵OB =2OD , ∴OB =23BD .∵AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b ⃗ −a ⃗ .∴BO ⃗⃗⃗⃗⃗⃗ =23BD ⃗⃗⃗⃗⃗⃗ =23(b ⃗ −a ⃗ ).∴AO ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BO ⃗⃗⃗⃗⃗⃗ =23(b ⃗ −a ⃗ )+a ⃗ =23b ⃗ +13a ⃗ .故答案是:23b ⃗+13a ⃗ . 根据OB =2OD 得到OB =23BD ,然后由三角形法则求得BD ⃗⃗⃗⃗⃗⃗ 的值,继而求得BO ⃗⃗⃗⃗⃗⃗ .进一步利用三角形法则求得答案.本题主要考查了梯形和平面向量,解题时,充分利用了三角形法则,属于中档题.18.【答案】35√13【解析】解:过C 作CE ⊥AB 于E , ∵tanB =23, ∴AC BC=23,设AC =2x ,则BC =3x ,在Rt △ABC 中,AB =√(2x)2+(3x)2=√13x =13, 解得x =√13,∴AC =2√13,BC =3√13,S △ABC =12AC ⋅BC =12AB ⋅CE ,即12×2√13×3√13=12×13×CE ,解得CE =6, ∵tanB =CEEB =23, ∴EB =9,∵将△ABC 绕点C 旋转后,点A 落在斜边AB 上的点A′,点B 落在点B′, ∴∠B =∠B′,AC =AC′, ∵CE ⊥AB ,∴AE′=AE =AB −BE =13−9=4, ∴A′B =AB −A′E =9−4=5, ∵∠A′DB =∠CDB′,∴△A′DB∽△B′DC , ∴CD A′D=CB′A′B=CB A′B=3√135. 故答案为:3√135. 过C 作CE ⊥AB 于E ,根据勾股定理和正切的定义得到AC =2√13,BC =3√13,根据三角形面积得到CE =6,再根据旋转的性质和相似三角形的判定与性质即可求解. 本题考查了勾股定理,解直角三角形,旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.19.【答案】解:原式=√3−√22√32−1=2√3−√2√3−2=√3−√2)(√3+(√3−2)(√3+2)=6+4√3−√6−2√23−4=−6−4√3+√6−2√2.【解析】直接利用特殊角的三角函数值以及二次根式的性质分别化简得出答案. 此题主要考查了特殊角的三角函数值以及二次根式的混合运算,正确化简二次根式是解题关键.20.【答案】解:∵2x+y x−y=xy ,∴y(2x +y)=x(x −y), 则x 2−3xy −y 2=0, 解得x 1=3+√132y ,x 2=3−√132y(负值舍去).故xy 的值为3+√132.【解析】先根据比例的基本性质得到y(2x +y)=x(x −y),可得x 2−3xy −y 2=0,再把y 当作已知数,解关于x 的方程即可求得xy 的值. 考查了比例线段,关键是熟练掌握比例的基本性质,得到x =3+√132y 是解题的难点.21.【答案】解:(1)作AD ⊥y 轴于D ,BE ⊥y 轴于E ,∴BE//AD , ∴△CBE∽△CAD ,∴CBAC =EBDA,∵点A、B的横坐标分别为6、2,AB=2√5.∴DA=6,EB=2,∴CB+2√5=26,∴CB=√5,∴CE=√CB2−EB2=√5−4=1,∴cos∠ACO=CECB =1√5=√55;(2)∵cos∠ACO=CDAC =√55;AC=AB+BC=3√5,∴CD=3,∴ED=2,∵点A、B在第一象限的反比例函数图象上,∴A(6,k6),B(2,k2),∴OD=k6,OE=k2,∴k2−k6=2,解得k=6,∴反比例函数的解析式为y=6x.【解析】(1)作AD⊥y轴于D,BE⊥y轴于E,通过证得△CBE∽△CAD,求得CB=√5,根据勾股定理求得CE,然后解直角三角形即可求得;(2)求得CD,从而求得ED=2,即可得到k2−k6=2,解得k=6.本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形相似的判定和性质,勾股定理的应用,解直角三角形等,根据题意求得线段的长度是解题的关键.22.【答案】解:由题意得,DE=7米,在Rt△ADE中,AE=√72−0.82≈6.9541(米),∴无障碍通道斜坡的坡度=0.8:6.9541≈1:8.693,sin∠AED=ADDE =0.87≈0.1143,∴∠AED≈7°,即无障碍通道斜坡的坡角约为7°.【解析】根据勾股定理求出AE,根据坡度的概念求出坡度,根据正弦的定义求出坡角.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.23.【答案】证明:(1)∵AD2=AE⋅AC,∴ADAE =ACAD,又∵∠A=∠A,∴△ADE∽△ACD,∴∠ADE=∠ACD,∵DE//BC,∴∠EDC=∠DCB,∠B=∠ADE,∴∠B=∠ACD,∴△BCD∽△CDE;(2)∵△BCD∽△CDE,∴CDBC =DECD,∴CD2BC =CDBC⋅DECD=DEBC,∵DE//BC,∴DEBC =ADAB,∴CD2BC2=ADAB.【解析】(1)由题意可证△ADE∽△ACD,可得∠ADE=∠ACD,由平行线的性质可得∠EDC=∠DCB,∠B=∠ADE=∠ACD,可得结论;(2)由相似三角形的性质可得CDBC =DECD,可得CD2BC2=CDBC⋅DECD=DEBC,由平行线分线段成比例可得结论.本题考查了相似三角形的判定和性质,掌握相似三角形的判定定理是本题的关键.24.【答案】解:(1)∵直线y=−12x+m(m>0)与与x轴、y轴分别交于点A(2m,0),B(0,m),∴OA=2m,OB=m,∵∠OCA=∠OAB,∴tan∠OCA=tan∠OAB,∴OAOC =OBOA=12,∵抛物线y=ax2+bx+4交y轴于C(0,4),∴OC=4,∴OA=2,OB=1,∴直线AB的解析式为y=−12x+1.(2)过点D作DG⊥x轴于G.∵∠DGA=∠AOC=90°,∠DAG=∠ACO,AD=AC,∴△DGA≌△AOC(AAS),∴DG=OA=2,AG=OC=4,OG=2,∴D(−2,2),∵抛物线y=ax2+bx+4经过A,D,∴{4a+2b+4=04a−2b+4=2,∴{a=−34b=−12,∴抛物线的解析式为y=−34x2−12x+4.(3)设抛物线的对称轴EF与OA交于点H.∵EF//OC ,∴AHAO =AEAB =EFCB =13,AH =23,OH =43, ∴{4a +2b +4=0−b 2a =43, ∴{a =3b =−8,∴抛物线的解析式为y =3x 2−8x +4, 当x =43时,y =−43, ∴抛物线的顶点坐标为(43,−43).【解析】(1)直线y =−12x +m(m >0)与与x 轴、y 轴分别交于点A(2m,0),B(0,m),由tan∠OCA =tan∠OAB ,推出OAOC =OBOA =12,求出OA ,点A ,B 的坐标即可. (2)过点D 作DG ⊥x 轴于G.求出点D 的坐标,利用待定系数法求解即可.(3)设抛物线的对称轴EF 与OA 交于点H.由EF//OC ,推出AHAO =AEAB =EFCB =13,AH =23,OH =43,在构建方程组求出a ,b 即可解决问题.本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行线分线段成比例定理,全等三角形的判定和性质等知识,解题的关键是学会利用参数构建方程组解决问题,属于中考压轴题.25.【答案】解:(1)∵CE//BD ,∴∠CEB =∠DBE ,∠DBA =∠BCE , ∵∠A =∠DBE , ∴∠A =∠BEC , ∴△ABD∽△ECB ,∴AD AB =EBEC , ∵AD AB =DF BC ,∴EBEC =DFBC ,∴DF ⋅CE =BC ⋅BE ; (2)过B 作BH ⊥AN 于H , ∵CE//BD ,∴∠CEB =∠EBD =∠A , ∵∠BCE =∠ECA , ∴△CEB∽△CAE , ∴CE CB=CA CE,∴CE 2=CB ⋅CA ; ∵AB =5,AC =9, ∴BC =4,∴CE 2=4×9=36, ∴CE =6, ∵BD CE=AB AC,∴BD =AB⋅CE AC=5×69=103,在Rt △ABH 中,BH =AB ⋅simA =5×35=3,∴AH =√AB 2−BH 2=4,DH =√BD 2−BH 2=√(103)2−32=√193,AD =4±√193; (3)过B 作BH ⊥AN 与H ,BH =4,AH =3,DH =|x −4|, ∴BD 2=DH 2+BH 2=(x −4)2+32=x 2−8x +25, ∵△ECB∽△ABD , ∴S△EBC S △ADB=BC 2BD 2,∵S △ABD =12AD ⋅BH =32x , ∴y 32x=16x 2−8x+25, ∴y =24xx 2−8x+25,定义域为4−√193<x <4+√193.【解析】(1)根据平行线的性质得到∠CEB=∠DBE,∠DBA=∠BCE,由相似三角形的性质即可得到结论;(2)过B作BH⊥AN于H,根据相似三角形的性质得到BD=AB⋅CEAC =5×69=103,根据勾股定理即可得到结论;(3)过B作BH⊥AN与H,BH=4,AH=3,DH=|x−4|,根据相似三角形的性质即可得到结论.本题考查了相似三角形的判定和性质,平行线的性质,勾股定理,正确的理解题意是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
x
C. 2 x4 3 0
2
D.
1
x1
3. 如图BD 交叉构成,利用它可以把线段
按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度
3的
地方(即同时使 OA 3OC, OB 3OD ),然后张开两脚,使 A, B 两个尖端分别
在线段 a 的两个端点上,当 CD 1.8 cm 时, AB 的长是( )
5. 在 Rt ABC 中, C 90 ,如果 sin A 1 ,那么 sin B 的值是( ) 3
22
A.
3
B. 2 2
2
C.
4
D. 3
6. 将抛物线 y1 x2 2 x 3 先向左平移 1 个单位,再向上平移 4 个单位后,与抛物线
y2 ax2 bx c 重合,现有一直线 y3 2 x 3 与抛物线 y2 ax2 bx c 相交,当 y2 y3 时,
____________ .(用向量 a 表示)
17. 如图, ABC 中, AB AC, A 90 , BC 6 ,直线 MN / / BC ,
且分别交边 AB 、 AC 于点 M 、 N ,已知直线 MN 将 ABC 分为面积 相等的两部分,如果将线段 AM 绕着点 A 旋转,使点 M 落在边 BC 上 的点 D 处,那么 BD ____________.
,设 AB 长度是 a ( a 实常数,且 a 0 ),
AC xAF , y
,求 y 关于 x 的函数解析式,并写出定义域;
( 3)在第( 2)小题的条件下,当 式表示)
CGE 是等腰三角形时,求 AC 的长.(计算结果用含 a 的代数
学习必备
欢迎下载
学习必备
欢迎下载
一、选择题
参考答案
1. B
2. D
____________ 厘米.
9. 已知 ABC 的三边长分别是 2 、 6 、 2, DEF 的两边长分别是 1 和 3 ,如果 ABC 与 DEF 相似,那么 DEF 的第三边长应该是 ____________ .
10. 如果一个反比例函数图像与正比例函数 数的解析式是 ____________.
(参考数据: 3 1.732,sin 53 0.8,cos53 0.6, tan 53 1.33,cot 53 0.75 )
学习必备
欢迎下载
23. (本题满分 12 分,其中第 1 小题 6 分,第 2 小题 6 分)
已知:如图,梯形 ABCD 中, DC / / AB, AD BD , AD DB ,点 E 是腰 AD 上一点,作
18. 如图,矩形纸片 ABCD , AD 4, AB 3 .如果点 E 在边 BC 上,
将纸片沿 AE 折叠,使点 B 落在点 F 处,联结 FC ,当 EFC 是直角三角形时,那么
____________ .
BE 的长为
三、解答题(本大题共 7 题,满分 78 分)
3 cot 45
19. (本题满分 10 分)计算:
学习必备
欢迎下载
15. 如图, ABC 中,点 D 在边 AC 上, ABD C , AD 9, DC 7 ,那么 AB ____________ .
16. 已知梯形 ABCD ,AD / /BC ,点 E 和 F 分别在两腰 AB 和 DC 上, 且 EF 是梯形的中位线, AD 3, BC 4 .设 AD a ,那么向量 EF
2
22. ( 1) 900 300 3 m; ( 2) 95m
23. ( 1)证明略; ( 2) 25 36
3 13 24. ( 1) C (2, 3) ; ( 2)
13
x2
51
25. ( 1)证明略; ( 2) y
a( 2a x 2a) ; ( 3) 2a 或
a
a
2
利用图像写出此时 x 的取值范围是(

A. x 1
B. x 3
C. 1 x 3
D. x 0
二、填空题(本大题共 12 题,每题 4 分,满分 48 分)
7.
a
已知
c
1
a
,那么
c 的值是 ____________.
bd3
bd
8. 已知线段 AB 长是 2 厘米, P 是线段 AB 上的一点,且满足 AP2 AB BP ,那么 AP 长为
已知:如图,四边形 ABCD 中, 0 BAD 90 , AD DC , AB BC , AC 平分 BAD .
( 1)求证:四边形 ABCD 是菱形;
( 2)如果点 E 在对角线 AC 上,联结 BE 并延长,交边 DC 于点 G ,交线段 AD 的延长线于
点 F (点 F 可与点 D 重合), AFB ACB
EBC 45 ,联结 CE ,交 DB 于点 F .
( 1)求证: ABE ∽ DBC ;
( 2)如果 BC BD
5
,求
S BCE
的值.
6
S BDA
24. (本题满分 12 分,第 1 小题 4 分,第 2 小题 8 分)
在平面直角坐标系
xOy 中(如图) ,已知抛物线 y
ax 2
bx
5 经过点 A( 1,0) 、 B(5,0) .
( 1)求此抛物线的表达式;
( 2)如果点 A 关于该抛物线对称轴的对称点是 B 点,且抛物线与 y 轴的交点是 C 点,求 ABC 的
面积.
22. (本题满分 10 分,第 1 小题 5 分,第 2 小题 5 分)
如图,在一条河的北岸有两个目标 M 、 N ,现在位于它的对岸设定两个观测点 A 、 B ,已知 AB / / MN ,在 A 点测得 MAB 60 ,在 B 点测得 MBA 45 , AB 600 米. ( 1)求点 M 到 AB 的距离;(结果保留根号) ( 2)在 B 点又测得 NBA 53 ,求 MN 的长.(结果精确到 1 米)
1
tan 60 sin 60 .
cos30 2cos 60 1
20. (本题满分 10 分)解方程组:
xy5

(x
y)2
2( x
y)
3
0


学习必备
欢迎下载
21. (本题满分 10 分,第 1 小题 4 分,第 2 小题 6 分)
已知:二次函数图像的顶点坐标是 (3,5) ,且抛物线经过点 A(1,3) .
y 2x 图像有一个公共点 A(1, a) ,那么这个反比例函
11. 如果抛物线 y ax2 bx c (其中 a 、 b 、 c 是常数,且 a 0)在对称轴左侧的部分是上升 的,那么 a ____________0 .(填“ <”或“ >”)
12. 将抛物线 y ( x m)2 向右平移 2 个单位后,对称轴是 y 轴,那么 m 的值是 ____________.
A. 7.2cm
B. 5.4cm
C. 3.6cm
D. 0.6cm
4. 下列判断错误的是(

A. 如果 k 0 或 a 0 ,那么 ka 0
B. 设 m 为实数,则 m(a b) ma mb
C. 如果 a / / e ,那么 a a e
D. 在平行四边形 ABCD 中, AD AB BD
学习必备
欢迎下载
13. 如图,斜坡 AB 的坡度是 1: 4 ,如果从点 B 测得离地面的铅垂高度 BC 是 6 米,那么斜坡 AB
的长度是 ____________米.
14. 在等腰 ABC 中,已知 AB AC 5, BC 8 ,点 G 是重心,联结 BG ,那么 CBG 的余切
值是 ____________ .
3. B
4. C
5. A
6. C
二、填空题
1
7.
3
8. 5 1
14. 4 15. 12
三、解答题
9. 2
2 10. y
x
11. <
16. 7 a 6
17. 3
18. 3 或 3 2
12. 2
13. 6 17
19. 1
20.
x1
4 ,
x2
2
y1 1 y2 3
21. ( 1) y
1 (x
3)2
5 ; (2)5
学习必备
欢迎下载
静安区 2017 学年第一学期期末学习质量调研 九年级数学
2018.1
一、选择题(本大题共 6 题,每题 4 分,满分 24 分)
2
5
1. 化简 ( a ) a 所得的结果是( )
7
A. a
7
B. a
10
C. a
10
D. a
2. 下列方程中,有实数根的是(

A. x 1 1 0
1
B. x
3
( 1)求此抛物线顶点 C 的坐标;
( 2)联结 AC 交 y 轴于点 D ,联结 BD 、 BC ,过点 C 作 CH BD ,垂足为点 H ,抛物线对称
学习必备 轴交 x 轴于点 G ,联结 HG ,求 HG 的长.
欢迎下载
25. (本题满分 14 分,第 1 小题 4 分,第 2 小题 6 分,第 3 小题 4 分)
相关文档
最新文档