东北大学高等数学(下)期末试题2013-2015

合集下载

东北大学历年期末高等数学试题

东北大学历年期末高等数学试题

八、高等数学试题 2005/1/10一、填空题(本题20分,每小题4分)1.已知==⎪⎭⎫⎝⎛-+∞→a a x a x xx ,则9lim2.设函数⎪⎩⎪⎨⎧>+≤+=1112)(2x b ax x x x f ,,,当a = ,b = 时,f (x )在x =1处可导。

3.方程017=-+x x 共有 个正根。

4.当=x 时,曲线c bx ax y ++=2的曲率最大。

5.⎰=20sin πxdx x 。

二、选择题(本大题24分,共有6小题,每小题4分) 1.下列结论中,正确的是( )(A )若a x n n =∞→2lim ,a x n n =+∞→12lim ,则a x n n =∞→lim ;(B )发散数列必然无界;(C )若a x n n =-∞→13lim ,a x n n =+∞→13lim ,则a x n n =∞→lim ;(D )有界数列必然收敛。

2.函数)(x f 在0x x =处取得极大值,则必有( )。

(A )0)(0='x f ; (B )0)(0<''x f ;(C )0)(0='x f 或)(0x f '不存在; (D )0)(0='x f 且0)(0<''x f 。

3.函数⎰=xa dt t f x F )()(在][b a ,上可导的充分条件是:)(x f 在][b a ,上( )(A )有界; (B )连续; (C )有定义; (D )仅有有限个间断点。

4.设⎰-+=2242cos 1sin ππxdx x x M ,⎰-+=2243)cos (sin ππdx x x N ,⎰--=22432)cos sin (ππdx x x x P ,则必有关系式( )(A ) M P N <<;(B )P M N <<;(C )N P M <<;(D )N M P <<。

第二学期高数下期末考试试卷及答案

第二学期高数下期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1一、 填空题(每空 3 分,共 15 分) 1.设()=⎰22t xFx e dt ,则()F x '=-22x xe.2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:=(),-⎰⎰2302xxdx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰ÑD LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5.级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1.当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0;B. 等于13;C. 等于14; D. 不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA.e ;B. ()+e dx dy ;C. ()-+1edx dy ; D. ()+x e dx dy .4.若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定.5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3xae ; B.()+3x ax b e ;C. ()+3x xax b e ; D. ()+23x x ax b e .三.(8分)设一平面通过点(),,-312,而且通过直线-+==43521x y z,求该平面方程. 解:()(),,,,,--312430QA B(),,∴=-142u u u rAB 平行该平面∴该平面的法向量()()(),,,,,,=⨯-=--5211428922rn∴所求的平面方程为:()()()----+=83912220x y z即:---=8922590x y z四.(8分)设(),=yz fxy e ,其中(),f u v 具有二阶连续偏导数,试求∂∂z x 和∂∂∂2zx y. 解:令=u xy ,=y v e五.(8分)计算对弧长的曲线积分⎰L其中L 是圆周+=222xy R 与直线,==00x y在第一象限所围区域的边界.解:=++123L L L L其中: 1L :(),+=≥≥22200xy R x y2L :()=≤≤00x y R3L :()=≤≤00y x R而Re ==⎰⎰1202RR L e Rdt ππ故:()Re =+-⎰212R R Le π六、(8分)计算对面积的曲面积分∑⎛⎫++ ⎪⎝⎭⎰⎰423z x y dS ,其中∑为平面++=1234x y z在第一卦限中的部分. 解:Q xy D :≤≤⎧⎪⎨≤≤-⎪⎩023032x y x=3-==⎰⎰323200x dx七.(8分)将函数()=++2143f x x x ,展开成x 的幂级数.解:()⎛⎫=-=⋅-⋅ ⎪+++⎝⎭+111111121321613Q f x xx x x , 而 ()∞=⋅=-+∑01111212n nn x x , (),-11 ()∞=-⋅=+∑01116313nn n n x x , (),-33 ()()∞+=⎛⎫∴=-+ ⎪⎝⎭∑10111123nnn n f x x , (),-11八.(8分)求微分方程:()()+-+-+=42322253330xxy y dx x y xy y dy 的通解.解:∂∂==-∂∂263Q P Qxy y y x,∴原方程为:通解为:++-=532231332x y x y y x C九.幂级数:()()!!!!=++++⋅⋅⋅++⋅⋅⋅246212462nx x x x y x n1.试写出()()'+y x y x 的和函数;(4分)2.利用第1问的结果求幂级数()!∞=∑202nn x n 的和函数.(8分)解:1、()()!!!-'=+++⋅⋅⋅++⋅⋅⋅-35213521n x x x y x x n (),-∞∞于是()()!!'+=++++⋅⋅⋅=23123x x x y x y x x e (),-∞∞ 2、令:()()!∞==∑202nn x S x n由1知:()()'+=x S x S x e 且满足:()=01S通解:()()--=+=+⎰12x x x xx Sx e C e e dx Ce e 由()=01S ,得:=12C ;故:()()-=+12xx S x e e十.设函数()f t 在(),+∞0上连续,且满足条件其中Ωt 是由曲线⎧=⎨=⎩2z ty x ,绕z 轴旋转一周而成的曲面与平面=zt (参数>0t )所围成的空间区域。

高等数学下期末试题七套附答案

高等数学下期末试题七套附答案

高等数学(下)试卷一一、 填空题(每空3分,共15分)(1)函数z =的定义域为 (2)已知函数arctany z x =,则zx ∂=∂(3)交换积分次序,2220(,)y y dy f x y dx⎰⎰=(4)已知L 是连接(0,1),(1,0)两点的直线段,则()Lx y ds +=⎰(5)已知微分方程230y y y '''+-=,则其通解为二、选择题(每空3分,共15分)(1)设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,则( ) A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交(2)设是由方程xyz =(1,0,1)-处的dz =( ) A.dx dy +B.dx +D.dx(3)已知Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()x y dv Ω+⎰⎰⎰在柱面坐标系下化成三次积分为( ) A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰(4)已知幂级数,则其收敛半径( )A. 2B. 1C. 12D. (5)微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=( )A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题(每题8分,共48分)1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 已知22(,)z f xy x y =,求zx ∂∂, z y ∂∂3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)x f x y e x y y =++的极值5、计算曲线积分2(23sin)()yLxy x dx x e dy++-⎰,其中L为摆线sin1cosx t ty t=-⎧⎨=-⎩从点(0,0)O到(,2)Aπ的一段弧6、求微分方程xxy y xe'+=满足11xy==的特解四.解答题(共22分)1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面z=与上半球面z=(10)'2、(1)判别级数111(1)3nnnn∞--=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(6')(2)在(1,1)x∈-求幂级数1nnnx∞=∑的和函数(6')高等数学(下)试卷二一.填空题(每空3分,共15分)(1)函数z=的定义域为;(2)已知函数xyz e=,则在(2,1)处的全微分dz=;(3)交换积分次序,ln10(,)e xdx f x y dy⎰⎰=;(4)已知L是抛物线2y x=上点(0,0)O与点(1,1)B之间的一段弧,则=⎰;(5)已知微分方程20y y y'''-+=,则其通解为.二.选择题(每空3分,共15分)(1)设直线L为30x y zx y z++=⎧⎨--=⎩,平面π为10x y z--+=,则L与π的夹角为();A. 0B. 2πC. 3πD. 4π(2)设是由方程333z xyz a-=确定,则zx∂=∂();A.2yzxy z- B. 2yzz xy- C. 2xzxy z- D. 2xyz xy-(3)微分方程256xy y y xe'''-+=的特解y*的形式为y*=();A.2()xax b e+ B.2()xax b xe+ C.2()xax b ce++ D.2()xax b cxe++(4)已知Ω是由球面2222x y z a++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为();A222000sin ad d r drππθϕϕ⎰⎰⎰B.22000ad d rdrππθϕ⎰⎰⎰C.2000ad d rdrππθϕ⎰⎰⎰D.22000sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D. 三.计算题(每题8分,共48分)5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin 3n nnn π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1n n x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy ∑++⎰⎰,∑为抛物面22z xy =+(01)z ≤≤的下侧高等数学(下)模拟试卷三一. 填空题(每空3分,共15分)1、 函数arcsin(3)y x =-的定义域为 .2、22(2)lim 332n n n n →∞++-= .3、已知2ln(1)y x =+,在1x =处的微分dy = . 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx = .二.选择题(每空3分,共15分)1、2x =是函数22132x y x x -=-+的 间断点 (A )可去 (B )跳跃(C )无穷 (D )振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是 。

高等数学下册期末测试题含答案

高等数学下册期末测试题含答案

综合测试题(下册)A 卷 一、填空题(每空4分,共20分) 1、 曲线cos ,sin ,tan2tx t y t z ===在点(0,1,1)处的一个切向量与OX 轴正向夹角为锐角,则此向量与OZ 轴正向的夹角是_________________ . 2、 设:1,01D x y ≤≤≤,则3()Dx y yd σ+⎰⎰= _________ . 3、 设2222:x y z a ∑++=,则曲面积分222()xy z ds ∑++⎰⎰ =__________.4、 周期为2π的函数()f x ,它在一个周期上的表达式为10()10x f x x ππ--≤<⎧=⎨≤<⎩,设它的傅立叶级数的和函数为()S x ,则5()2S π= . 5、 微分方程x dyy e dx-+=的通解为______________. 二、选择题(每题4分,共20分)1、函数(,)f x y 在00(,)x y 点可微是函数(,)f x y 在00(,)x y 点连续且可导的 [ ] (A) 充分非必要条件 (B) 必要非充分条件 (C) 充要条件 (D) 无关条件2、设空间区域2222222212:,0;:,0,0,0x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥,则 [ ] (A)124xdv xdv ΩΩ=⎰⎰⎰⎰⎰⎰ (B) 124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰ (D) 124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰3、设L 为221x y +=一周,则2Lx ds ⎰ [ ](A) 等于0 (B) 等于π (C) 等于2π (D) 等于1 4、如果幂级数nn n c x∞=∑和11n nn nc x∞-=∑的收敛半径分别是1R 和2R ,则1R 与2R 的大小关系是 [ ] (A) 1R 大于2R (B) 1R 小于2R (C) 1R 等于2R (D) 不能确定 5、微分方程256xy y y xe '''-+=的特解形式是 [ ](A) 2xAe Bx C ++ (B) 2()x Ax B e + (C) 22()x x Ax B e + (D) 2()x x Ax B e +三、解答题1、(11分)函数(,)z z x y =由方程(,)0z zF x y y x++=所确定 ,其中F 具有一阶偏导数,计算x zxy x y∂∂+∂∂ 2、(9分)计算曲线积分22(23)(2)Lx y x y dx x y xy dy +-+-+⎰ ,其中L 为圆周222x y +=的顺时针方向3、(12分)在曲面z =231x y z -+=的距离最短4、(9分)计算曲面积分xdydz ydzdx zdxdy ∑++⎰⎰,其中∑是曲面 221z x y =-- 在xoy 面上方部分的上侧5、(10分)求幂级数111(1)n n n nx ∞--=-∑的收敛区间与和函数()S x6、(9分)求微分方程4cos y y x x ''+=的通解.综合测试题(下册)A 卷答案 一、填空题 1、34π 2、23 3、44a π 4、1 5、()x y e x C -=+二、选择题1、A2、C3、B4、C5、D 三、解答题1、解:1212122211(),(),()()x y z z z F F F F F F F F F x y y x=+-=-+=+ 由隐函数计算公式得 22112()()y zF x F z x x xF yF -∂=∂+21212()()x zF y F z y y xF yF -∂=∂+ 则 22211212()()()y zF x F x zF y F x z x y z xy x y xF yF -+-∂∂+==-∂∂+2、解:由格林公式 原式=22(13)Dyx dxdy -+-+⎰⎰=220)d r rdr πθ-⎰=2412(24r r ππ-=.3、解:设曲面上(,,)x y z 点到平面距离为d ,则2214(231)d x y z =-+-且 22224z x y =++ 即 222420x y z +-+= 令 2222(231)(42)F x y z x y z λ=-+-++-+2(231)204(231)806(231)20x yz F x y z x F x y z x F x y z x z λλλ=-+-+=⎧⎪=--+-+=⎪⎨=-+--=⎪⎪=⎩得唯一解x y z ===. 由实际问题知最小值存在,即为点()4. 4、解:补上一块 221:0,1z x y ∑=+≤ 取下侧,且 10xdydz ydzdx zdxdy ∑++=⎰⎰由高斯公式 原式=222213303(1)2x y dxdydz x y dxdy πΩ+≤-=--=⎰⎰⎰⎰⎰.其中Ω是由1,∑∑所围立体. 5、解:1limlim 11n n n n a nR a n →∞→∞+===+,在 1x =±时,级数发散. 则收敛区间为(1,1)-. 令 111()(1)n n n S x nx ∞--==-∑则1111011()(1)(1)1xn n n n n n xS x dx nx dx x x∞∞---===-=-=+∑∑⎰⎰ 21()()1(1)x S x x x '==++. 6、解:特征方程 240r += , 解得特征根 2r i =±.对应的齐次方程的通解 12cos2sin 2Y C x C x =+. 因为 0,1,i i λωλω==+= 不是特征根 方程的特解形式为 *()c o s ()s i ny a x b x c x d x =+++ 将其代入原方程 解得 12,0,0,39a b c d ====. 所以 *12cos sin 39y x x x =+, 方程的通解 1212cos 2sin 2cos sin 39Y C x C x x x x =+++.综合测试题(下册)B 卷一、填空题(每题3分,总计18分)1、函数y xy ax x y x f 22),(22+++=在点)1,1(-处取得极值,则常数a =______. 2、若曲面2132222=++z y x 的切平面平行于平面02564=++-z y x ,则切点坐标为______________________.3、二重积分dx ey dy y x ⎰⎰-1103的值为______________.4、设()f x 是周期为2的周期函数,它在区间(1,1]-的定义为2,10(),01x f x x x -<≤⎧=⎨ <≤⎩,则()f x 的傅里叶级数在1x =收敛于 .5、级数1nn nx∞=∑的和函数为 .6、微分方程2yx yy +='的通解为_____________________. 二、选择题(每题3分,总计15分)1、),(00y x f x 和),(00y x f y 存在是函数),(y x f 在点),(00y x 连续的 [ ] (A) 必要非充分的条件; (B)充分非必要的条件;(C) 充分且必要的条件; (D) 即非充分又非必要的条件.2、设)ln(222z y x u ++=,则)(u grad div = [ ] (A)2221z y x ++;(B)2222z y x ++;(C)2222)(1z y x ++;(D)2222)(2z y x ++ 3、设D 是xoy 面上以)1,1(),1,1(),1,1(---为顶点的三角形区域,1D 是D 中在第一象限的部分,则积分⎰⎰+Dd y x y x σ)sin cos (33= [ ](A)σd y x D ⎰⎰1sin cos 23; (B)⎰⎰132D yd x σ; (C)⎰⎰+1)sin cos (433D d y x y x σ; (D)04、设∑为曲面)0(222>=+R R y x 上的10≤≤z 部分,则⎰⎰∑++dS y x ey x )sin(2222=[ ](A)0; (B)2sin Re R R π; (C)R π4; (D)2sin Re 2R R π5、设二阶线性非齐次方程)()()(x f y x q y x p y =+'+''有三个特解x y =1,xe y =2,x e y 23=,则其通解为 [ ](A)xxe C e C x 221++; (B)xx eC e C x C 2321++;(C))()(221x x x e x C e e C x -+-+; (D))()(2221x e C e e C x x x -+- 三、计算题(每题7分,总计28分)1、已知22),,(z xy z y x f -=及点)1,1,2(-A 、)1,1,3(-B ,求函数),,(z y x f 在点A 处沿由A 到B 方向的方向导数,并求此函数在点A 处方向导数的最大值.2、设),(xy y x f z -=具有连续的二阶偏导数,求yx z∂∂∂2.3、将函数223)(x x x f --=展开成x 的幂级数,并指出收敛域.4、计算222L dsx y z ++⎰,其中L 是螺旋线t z t y t x ===,sin 8,cos 8对应π20≤≤t 的弧段.四、计算题(每题8分,总计32分) 1、计算⎰⎰⎰Ωdv z ,其中Ω由不等式22y x z +≥及41222≤++≤z y x 所确定.2、计算⎰⎰∑++++2222)(z y x dxdya z axdydz ,其中∑为下半球面222y x a z ---=的下侧,a为大于零的常数.3、设)(x y y =满足方程x e y y y 223=+'-'',且其图形在点)1,0(与曲线12+-=x x y 相切,求函数)(x y .4、对0>p ,讨论级数∑-∞=+11)1(n n n pn 的敛散性.综合测试题(下册)B 卷答案一、填空题1、-5;2、)2,2,1(±± ;3、)1(611--e ;4、()21xx +;5、C y y x =- 二、选择题1、D;2、B;3、A;4、D;5、C 三、计算题1、解:由条件得z zf x y f y x f 2,2,2-=∂∂=∂∂=∂∂ }cos ,cos ,{cos }32,32,31{}2,2,1{0γβα=-=⇒-=AB AB 32cos ,32cos ,31cos -===⇒γβα从而)1,1,2(cos cos cos -⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=∂∂A z f y f x f l f γβα=310 点A 的梯度方向是{2,2,2}{2,4,2}AA grad fy x z ==-=--l所以方向导数的最大值是6224242222==++=∂∂lf2、解:2121,xf f yzyf f xz+-=∂∂+=∂∂ []2221211222211211221212)()()(f xyf f y x f f xf f y xf f f yf y y f yf f y x z y y x z ++-+-=++-++-=+∂∂+∂∂=+∂∂=⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂3、解:2311111()212121/2f x x x x x x x ==+=+---+-+10001(1)(1)1222nn nn n n n n n x x x ∞∞∞+===⎡⎤-⎛⎫=+-=+ ⎪⎢⎥⎝⎭⎣⎦∑∑∑收敛域为)1,1(-. 4、解:dt dt z y x ds t t t 65222='+'+'=220222220arctan 88L ds dt tx y z t ππ===+++⎰ 四、计算题1、解:2222344011cos sin 2sin cos z dv d d r r dr d r dr πππθϕϕϕπϕϕϕΩ==⎰⎰⎰⎰⎰⎰⎰⎰ 24401115sin 22248d r ππϕϕπ⎡⎤=⋅=⎢⎥⎣⎦⎰ 2、解:取xoy ∑为xoy 面上的圆盘222a y x ≤+,方向取上侧,则22222223220021()1()()1(23)122cos sin 33xoy xoy xyD a axdydz z a dxdy a axdydz z a dxdy axdydz z a dxdy a z a dv a dxdy a d d r r d a a a a a πππθϕϕϕϕππ∑∑∑+∑∑Ω=++⎡⎤⎢⎥=++-++⎢⎥⎣⎦⎡⎤⎢⎥=+-⎢⎥⎣⎦⎡⎤=+-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰43443021114cos sin 22a a d r dr a a a a a ππππϕϕϕπππ⎡⎤⎡⎤=+=-+=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰.3、解:由条件知)(x y y =满足1)0(,1)0(-='=y y .由特征方程2,1023212==⇒=+-r r r r ,对应齐次方程的通解x x e C e C Y 221+=, 设特解为x Axe y =*,其中A 为待定常数,代入方程,得x xe y A 22*-=⇒-=, 从而得通解x x x xe e C e C y 2221-+=,代入初始条件得0,121==C C . 最后得x e x x y )21()(-=. 4、解:当1p >时 ,1111(1)1n n n n n np np∞∞++==-=∑∑ ()11211lim lim lim 111n n n n n n nu np n u n p p n p +++→∞→∞→∞===<++,所以原级数绝对收敛.当01p <<时,设11q p =>, ()11111(1)nn n n n n qnp n +∞∞+==--=∑∑,()()()11ln 11lim lim lim01xnxn x n x x q q q q q n x ++→∞→+∞→+∞----==≠, 所以原级数发散.。

东北大学高数下试题2010-2013_年

东北大学高数下试题2010-2013_年

.
f (x, y)在(x0 , y0 )可微 f (x, y)在(x0 , y0 )连续 .
f (x, y)在(x0 , y0 )可微 f x (x0 , y0 ) f y (x0 , y0 )存在 . 2.【解】应选择 B
设切点为(
x(t
0
),
y(t0
),
z(t
0
));
切向量为(
x(t0
2
4
8
4.将 f (x) 1 展开为关于 x 2 的幂级数时,其收敛域为 [
].
1 x
(A) (1, 5); (B) (1, 1); (C) (2, 4); (D) (2, 2).
二. 填空题 (每题 4 分,共 16 分)
1.过点(3, 1, 4)且与 y 轴相交,又与平面 y + 2z = 0 平行的直线方程为_______________.
3.设 f (x, y)是连续函数,D 是由 y = x2, y = 0, x = 1 所围的区域,且 f (x, y)满
足恒等式
则 f (x, y) =[
f ( x, y) xy D
].
f( ,x )y d,x d y
(A) xy + 1; (B) xy 1 ; (C) xy 1 ; (D) xy 1 .
h 部分的外侧. 五 (8 分 ) 在 抛 物 面 : z x2 y2 1 上 求 一 点
M 0 (x0 , y0 , z0 ) (x0 0, y0 0, x02 y02 1) , 使 在 点 M 0 处 的 切 平 面 与 柱 面
y 1 x2 及三个坐标面在第一卦限所围立体的体积最大. 六、(8 分)已知 L 是第一象限中从点(0, 0)沿圆周 x2 + y2 = 2x 到点(2, 0), 再沿

高等数学下期末试题七套附答案

高等数学下期末试题七套附答案

高等数学〔下〕试卷一一、填空题〔每空3分,共15分〕〔1〕函数11z x y x y =++-的定义域为〔2〕函数arctany z x =,那么zx ∂=∂〔3〕交换积分次序,2220(,)y y dy f x y dx⎰⎰=〔4〕L 是连接(0,1),(1,0)两点的直线段,那么()Lx y ds +=⎰〔5〕微分方程230y y y '''+-=,那么其通解为二、选择题〔每空3分,共15分〕 〔1〕设直线L 为321021030x y z x y z +++=⎧⎨--+=⎩,平面π为4220x y z -+-=,那么〔〕 A. L 平行于π B. L 在π上 C. L 垂直于π D. L 与π斜交〔2〕设是由方程2222xyz x y z +++=确定,那么在点(1,0,1)-处的dz =〔〕A.dx dy +B.2dx dy +C.22dx dy +D.2dx dy - 〔3〕Ω是由曲面222425()z x y =+及平面5z =所围成的闭区域,将22()xy dvΩ+⎰⎰⎰在柱面坐标系下化成三次积分为〔〕 A.2253d r dr dzπθ⎰⎰⎰ B.2453d r dr dzπθ⎰⎰⎰ C.2253502rd r dr dzπθ⎰⎰⎰ D.22520d r dr dzπθ⎰⎰⎰〔4〕幂级数,那么其收敛半径〔〕A. 2B. 1C. 12 D.2〔5〕微分方程3232x y y y x e '''-+=-的特解y *的形式为y *=〔〕A.B.()x ax b xe +C.()xax b ce ++D.()xax b cxe ++三、计算题〔每题8分,共48分〕1、 求过直线1L :123101x y z ---==-且平行于直线2L :21211x y z+-==的平面方程 2、 22(,)z f xy x y =,求z x ∂∂,zy ∂∂得分阅卷人3、 设22{(,)4}D x y x y =+≤,利用极坐标求2Dx dxdy ⎰⎰4、 求函数22(,)(2)xf x y e x y y =++的极值5、计算曲线积分2(23sin )()y L xy x dx x e dy ++-⎰,其中L 为摆线sin 1cos x t t y t =-⎧⎨=-⎩从点(0,0)O 到(,2)A π的一段弧6、求微分方程xxy y xe '+=满足11x y ==的特解四.解答题〔共22分〕1、利用高斯公式计算22xzdydz yzdzdx z dxdy∑+-⎰⎰,其中∑由圆锥面22z x y =+与上半球面222z x y =--所围成的立体外表的外侧(10)'2、〔1〕判别级数111(1)3n n n n ∞--=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔6'〕〔2〕在(1,1)x ∈-求幂级数1nn nx∞=∑的和函数〔6'〕高等数学〔下〕试卷二一.填空题〔每空3分,共15分〕〔1〕函数24x y z -=的定义域为; 〔2〕函数xyz e =,那么在(2,1)处的全微分dz =;〔3〕交换积分次序,ln 1(,)e x dx f x y dy⎰⎰=;〔4〕L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,那么L yds =⎰;〔5〕微分方程20y y y '''-+=,那么其通解为.二.选择题〔每空3分,共15分〕〔1〕设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,那么L 与π的夹角为〔〕;A. 0B. 2πC. 3πD. 4π〔2〕设是由方程333z xyz a -=确定,那么z x ∂=∂〔〕;A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D.2xy z xy - 〔3〕微分方程256x y y y xe '''-+=的特解y *的形式为y *=〔〕;A.2()x ax b e +B.2()xax b xe + C.2()x ax b ce ++ D.2()x ax b cxe ++〔4〕Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为〔〕; A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.20ad d rdrππθϕ⎰⎰⎰ D.220sin a d d r drππθϕϕ⎰⎰⎰〔5〕幂级数1212nnn n x ∞=-∑,那么其收敛半径〔〕.A. 2B. 1C. 12 D.2三.计算题〔每题8分,共48分〕5、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .6、(sin cos ,)x yz f x y e +=,求z x ∂∂,zy ∂∂ . 7、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .8、 求函数22(,)56106f x y x y x y =+-++的极值. 9、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程32(1)1y y x x '-=++的通解.四.解答题〔共22分〕1、〔1〕〔6'〕判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,假设收敛,判别是绝对收敛还是条件收敛;〔2〕〔4'〕在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧得分阅卷人得分高等数学〔下〕模拟试卷三一.填空题〔每空3分,共15分〕1、函数arcsin(3)y x =-的定义域为.2、22(2)lim 332n n n n →∞++-=.3、2ln(1)y x =+,在1x =处的微分dy =. 4、定积分1200621(sin )x x x dx -+=⎰.5、求由方程57230y y x x +--=所确定的隐函数的导数dydx =.二.选择题〔每空3分,共15分〕1、2x =是函数22132x y x x -=-+的连续点 〔A 〕可去 〔B 〕跳跃 〔C 〕无穷 〔D 〕振荡2、积分1⎰= .(A) ∞ (B)(C) 0 (D) 13、函数1xy e x =-+在(,0]-∞内的单调性是。

01-11东北大学高等数学(下)期末考试试卷

01-11东北大学高等数学(下)期末考试试卷

东北大学高等数学(下)期末考试试卷一、填空题(20分)1.曲线t t t e z t e y t e x 2,sin ,cos ===相应于点0=t 处的切线与oz 轴夹角的正弦=γsin ( )2.设40,10:≤≤≤≤y x D ,则=⎰⎰Ddxdy x 3( )3.设L 是由2x y =及1=y 所围成的区域D 的正向边界,则=+++⎰Ldy y x x dx y x xy )()(24233( )4.周期为π2的周期函数)(x f ,它在一个周期上的表达式为ππ≤≤-=x x x f ,)(,设它的付立叶级数的和函数为)(x s ,则=)23(πs ( ) 5.微分方程0=+ydy xdx 的通解是( )二、 求解下列各题(32分)1.(8分)设yxe u y x u f z ==),,,(,其中f 具有二阶连续偏导数,求yx z∂∂∂2。

2.(8分)计算⎰⎰⎰Ωzdv ,其中Ω是由曲面222y x z --=及22y x z +=所围成的闭区域。

3.(8分)计算曲线积分⎰Lxds ,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界。

4.(8分)求微分方程0)2(=-+ydx dy x y 的通解。

三.(9分)计算曲面积分⎰⎰∑-dxdy z )3(,其中∑是曲面222y x z +=上介于2=z 及3=z 之间部分的下侧。

四.(7分)判别级数∑∞=1223cos n nn n π的敛散性。

五.(9分)求微分方程x xe y y y 265=+'-''的通解。

六.(9分)将函数x x f 3sin )(=展开成)3(π+x 的幂级数,并指出收七.(9分)经过点(2,3,1)的平面中,求这样的平面,使得该平面与三个坐标面围成的第一卦限中的立体体积最小。

八. (7分)设)(u f 连续,试证:⎰⎰⎰-≤+=+111)()(du u f dxdy y x f y x高等数学试题答案 2001.07.16一、(1 (2)3; (3)0; (4);2π-(5.C =二、1.'';y u x z e f f x ∂=+∂ 22""""'.y y y y u u u yx uxy u z x e f e f x e f f e f x y ∂=++++∂∂ 2.221rzdV d rdr zdz πθΩ=⎰⎰⎰⎰⎰12407(2).12r r r dr ππ=--=⎰ 3.Lxds =⎰1L xds +⎰2L xds =⎰10+=⎰⎰4.112,(2)dydy y y dx x x ee dy C dy y-⎰⎰-==+⎰(2ln ).y y C =+ 三、22(3)(3)2Dx y z dxdy dxdy ∑+-=--⎰⎰⎰⎰220224)232[28r d rdr r r πθππ=-=-=⎰ 四、2cos 3,22n nn n n n n u v π=≤= 且用比值法知道1n n v ∞=∑收敛,再用比较法可知 原级数是收敛的 。

高等数学下册期末考试试题及答案

高等数学下册期末考试试题及答案

高等数学A (下册)期末考试试题【A 卷】考试日期:2009年一、A 填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量a 、b 满足0a b +=,2a =,2b =,则a b ⋅= —4.2、设ln()z x xy =,则32zx y ∂=∂∂ —1/(y *y ) . 3、曲面229x y z ++=在点(1,2,4)处的切平面方程为 2x+4y+z-14=0 . 4、设()f x 是周期为2π的周期函数,它在[,)ππ-上的表达式为()f x x =,则()f x 的傅里叶级数 在3x =处收敛于 ,在x π=处收敛于 . 5、设L 为连接(1,0)与(0,1)两点的直线段,则()Lx y ds +=⎰ 1.414 .※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级. 二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线2222222393x y z z x y⎧++=⎪⎨=+⎪⎩在点0M (1,1,2)-处的切线及法平面方程. 解:两边同时对x 求导并移项。

2、求由曲面2222z x y =+及226z x y =--所围成的立体体积.3、判定级数11(1)lnn n n n∞=+-∑是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 条件收敛4、设(,)sin xz f xy y y=+,其中f 具有二阶连续偏导数,求2,z z x x y ∂∂∂∂∂. 5、计算曲面积分,dS z ∑⎰⎰其中∑是球面2222x y z a ++=被平面(0)z h h a =<<截出的顶部.三、(本题满分9分)抛物面22z x y =+被平面1x y z ++=截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、 (本题满分10分)计算曲线积分(sin )(cos )x x Le y m dx e y mx dy -+-⎰,其中m 为常数,L 为由点(,0)A a 至原点(0,0)O 的上半圆周22(0)x y ax a +=>.五、(本题满分10分)求幂级数13nn n x n∞=⋅∑的收敛域及和函数.六、(本题满分10分)计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰, 其中∑为曲面221(0)z x y z =--≥的上侧.七、(本题满分6分)设()f x 为连续函数,(0)f a =,222()[()]tF t z f xy z dv Ω=+++⎰⎰⎰,其中t Ω是由曲面z=与z =,求 3()lim t F t t +→. ———--——-———-—-—-——————-—-————--——-—-—备注:①考试时间为2小时;②考试结束时,请每位考生按卷面→答题纸→草稿纸由表及里依序对折上交; 不得带走试卷。

第二学期高数(下)期末考试试卷及答案

第二学期高数(下)期末考试试卷及答案

第二学期期末高数(下)考试试卷及答案1 一、 填空题(每空 3 分,共 15 分) 1.设()=⎰22t xFx e dt ,则()F x '=-22x xe.2.曲面sin cos =⋅z x y 在点,,⎛⎫⎪⎝⎭1442ππ处的切平面方程是--+=210x y z .3.交换累次积分的次序:=(),-⎰⎰2302xxdx f x y dy.4.设闭区域D 是由分段光滑的曲线L 围成,则:使得格林公式: ⎛⎫∂∂-=+ ⎪∂∂⎝⎭⎰⎰⎰D LQ P dxdy Pdx Qdy x y 成立的充分条件是:()(),,和在D上具有一阶连续偏导数P x y Q x y .其中L 是D 的取正向曲线;5.级数∞=-∑1nn 的收敛域是(],-33.二、 单项选择题 (每小题3分,共15分)1.当→0x ,→0y 时,函数+2423x yx y 的极限是()DA.等于0;B. 等于13;C. 等于14; D. 不存在.2.函数(),=zf x y 在点(),00x y 处具有偏导数(),'00x f x y ,(),'00y f x y 是函数在该点可微分的()CA.充分必要条件;B.充分但非必要条件;C.必要但非充分条件;D. 既非充分又非必要条件.3.设()cos sin =+x ze y x y ,则==10x y dz()=BA.e ;B. ()+e dx dy ;C.()-+1e dx dy ; D. ()+x e dx dy .4.若级数()∞=-∑11nn n a x 在=-1x 处收敛,则此级数在=2x处()AA.绝对收敛;B.条件收敛;C.发散;D.收敛性不确定. 5.微分方程()'''-+=+3691x y y y x e 的特解*y 应设为()DA. 3x ae ;B. ()+3x ax b e ;C.()+3x x ax b e ; D. ()+23x x ax b e .三.(8分)设一平面通过点(),,-312,而且通过直线-+==43521x y z,求该平面方程. 解:()(),,,,,--312430A B(),,∴=-142AB 平行该平面∴该平面的法向量()()(),,,,,,=⨯-=--5211428922n ∴所求的平面方程为:()()()----+=83912220x y z即:---=8922590xy z四.(8分)设(),=yzf xy e ,其中(),f u v 具有二阶连续偏导数,试求∂∂z x 和∂∂∂2zx y.解:令=uxy ,=y v e五.(8分)计算对弧长的曲线积分⎰L其中L 是圆周+=222xy R 与直线,==00x y在第一象限所围区域的边界.解:=++123L L L L其中: 1L :(),+=≥≥22200x y R x y 2L :()=≤≤00x y R3L : ()=≤≤00y x R而Re ==⎰⎰1202RR L e Rdt ππ故:()Re =+-⎰212R R Le π六、(8分)计算对面积的曲面积分∑⎛⎫++ ⎪⎝⎭⎰⎰423z x y dS ,其中∑为平面++=1234x y z在第一卦限中的部分. 解:xy D :≤≤⎧⎪⎨≤≤-⎪⎩023032x y x=3-==⎰⎰323200x dx 七.(8分)将函数()=++2143f x x x ,展开成x 的幂级数.解:()⎛⎫=-=⋅-⋅ ⎪+++⎝⎭+111111121321613f x x x x x , 而()∞=⋅=-+∑01111212n n n x x , (),-11()∞=-⋅=+∑01116313nn n n x x , (),-33()()∞+=⎛⎫∴=-+ ⎪⎝⎭∑10111123nnn n f x x , (),-11八.(8分)求微分方程:()()+-+-+=42322253330xxy y dx x y xy y dy 的通解.解:∂∂==-∂∂263P Qxy y y x, ∴原方程为:通解为:++-=532231332x y x y y x C 九.幂级数:()()!!!!=++++⋅⋅⋅++⋅⋅⋅246212462nx x x x y x n1.试写出()()'+y x y x 的和函数;(4分)2.利用第1问的结果求幂级数()!∞=∑202nn x n 的和函数.(8分)解:1、()()!!!-'=+++⋅⋅⋅++⋅⋅⋅-35213521n x x x y x x n (),-∞∞ 于是()()!!'+=++++⋅⋅⋅=23123x x x y x y x x e (),-∞∞ 2、令:()()!∞==∑202nn x S x n由1知:()()'+=x S x S x e 且满足:()=01S通解:()()--=+=+⎰12xx xxx Sx eC e e dx Cee 由()=01S ,得:=12C ;故:()()-=+12x x S x e e十.设函数()f t 在(),+∞0上连续,且满足条件其中Ωt 是由曲线⎧=⎨=⎩2z ty x ,绕z 轴旋转一周而成的曲面与平面=zt (参数>0t )所围成的空间区域。

下册--东北大学高数期末考试试题

下册--东北大学高数期末考试试题

2008~2009学年第二学期试题一、单项选择题(本题共4小题,每小题4分,共计16分)1.设函数(,)f x y 在点(0,0)的某邻域内有定义,且(0,0)3x f =,(0,0)1y f =-,则[ ] (A)(0,0)3dzdx dy =-;(B) 曲面(,)z f x y =在点(0,0,(0,0))f 的一个法向量为(3,1,1)-;(C)曲线(,)0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(1,0,3);(D) 曲线(,)0z f x y y =⎧⎨=⎩在点(0,0,(0,0))f 的一个切向量为(3,0,1)2. 设10 (1,2,)n u n n≤<=,则下列级数中必收敛的是[ ](A)1n n u ∞=∑; (B)1(1)nnn u∞=-∑; (C)1n ∞= (D)21(1)nnn u∞=-∑.3. 如果81lim 1=+∞→nn n a a ,则幂级数∑∞=03n n n x a [ ](A) 当8<x 时收敛; (B) 当2<x 时收敛; (C) 当81>x 时发散; (D) 当21>x 时发散.4. 设Ω是由球面2222x y z a ++=所围成的闭区域,则222x y z dv Ω++⎰⎰⎰= [ ] .(A) 545a π; (B) 44a π; (C) 543a π; (D) 525a π.二、填空题(本题共6小题,每小题4分,共计24分)1. 曲面2222321x y z ++=在点(1,2,2)-处的法线方程为 .2. 函数),(y x f 22y xy x +-=在点)1,1(处的全微分为 .3. 已知曲线L 为连接(1,0)和(0,1)两点的直线段,则曲线积分()Lx y ds +⎰= .4. 由曲面2243()z x y =-+与曲面22z x y =+所围立体的体积为 .5. 设∑为平面1234x y z++=在第一卦限中的部分,则曲面积分()234x y z dS ∑++⎰⎰= . 6. 设()f x 是周期为4的周期函数,它在[2,2)-上的表达式为0, 20()3, 022x f x x -≤<⎧⎪=⎨≤<⎪⎩,()f x 的Fourier 级数的和函数为()s x ,则(4)s = .三、计算下列各题 (本题共5小题,每小题6分,共计30分) 1. 求过点1(1,1,1)M 和2(0,1,1)M -且与平面0x y z ++=垂直的平面方程.2. 设z = f (e xsin y , x 2+ y 2), 其中f 具有二阶连续偏导数,求2zx y∂∂∂.3. 设(,,)F x y z 具有连续偏导数,且对任意实数t 有(,,)F tx ty tz (,,)k t F x y z =(k 为自然数),试证:曲面(,,)0F x y z =上任意一点的切平面相交于一定点(设在任意点处2220x y z F F F ++≠).4. 计算二重积分Dxydxdy ⎰⎰,其中D 是由两条抛物线y x =,2y x =所围成的闭区域.5. 将函数()arctan f x x =展开成关于x 的幂级数,并求展开式成立的区间. 四、 (8分) 设曲线积分[]⎰-+BA x dy x f ydx x f e )()(与路径无关,且21)0(=f ,求)(x f ,并求当A ,B 分别为(0,0),(1,1)时的曲线积分值.五、(8分) 计算积分222(I x dydz y dzdx z dxdy ∑=++⎰⎰,其中∑是抛物面22z x y =+被平面4z =截下的有限部分的下侧.六、(8分) 3.(10分)平面通过球面x 2 + y 2 +z 2 = 4(x - 2y - 2z )的中心, 且垂直于直线L : 00x y z =⎧⎨+=⎩, 求平面与球面的交线在xOy 平面上的投影, 并求投影与(1, -4,1)点的最短和最长距离.七、(6分) )判断级数111ln n n n n ∞=+⎛⎫- ⎪⎝⎭∑的敛散性.解答一、1. 【解】应选择C.),(),,(0000y x f y x f y x 存在只是全微分存在的必要条件,故A 是错误的。

东北大学高等数学期末考试试卷(含答案)

东北大学高等数学期末考试试卷(含答案)

东北大学高等数学期末考试试卷(含答案) 一、高等数学选择题
1..
A、正确
B、不正确
【答案】A
2.设函数,则().
A、
B、
C、
D、
【答案】A
3.设函数,则().
A、
B、
C、
D、
【答案】C
4.函数在点处连续.
A、正确
B、不正确
【答案】A
5.不定积分.
A、正确
B、不正确
【答案】B
6.不定积分 ( ).
A、
B、
C、
D、
【答案】C
7.设函数,则().
A、
B、
C、
D、
【答案】A
8.函数的单调减少区间是().A、
B、
C、
D、
【答案】D
9.函数的图形如图示,则是函数的
( ).
A、最大值点
B、极大值点
C、极小值点也是最小值点
D、极小值点但非最小值点
【答案】C
10.设函数,则().
A、
B、
C、
D、
【答案】C
11.微分方程的通解是().
A、
B、
C、
D、
【答案】A
一、一选择题
12.函数的定义域为.
A、正确
B、不正确
【答案】A
13.定积分.
A、正确
B、不正确
【答案】B
14.不定积分.
A、正确
B、不正确
【答案】A
二、二选择题
15.微分方程的通解是().A、
B、
C、
D、
【答案】C。

(完整)东北大学历年期末高等数学试题

(完整)东北大学历年期末高等数学试题

八、高等数学试题 2005/1/10一、填空题(本题20分,每小题4分)1.已知==⎪⎭⎫⎝⎛-+∞→a a x a x xx ,则9lim2.设函数⎪⎩⎪⎨⎧>+≤+=1112)(2x b ax x x x f ,,,当a = ,b = 时,f (x )在x =1处可导。

3.方程017=-+x x 共有 个正根。

4.当=x 时,曲线c bx ax y ++=2的曲率最大。

5.⎰=20sin πxdx x 。

二、选择题(本大题24分,共有6小题,每小题4分) 1.下列结论中,正确的是( )(A )若a x n n =∞→2lim ,a x n n =+∞→12lim ,则a x n n =∞→lim ;(B )发散数列必然无界;(C )若a x n n =-∞→13lim ,a x n n =+∞→13lim ,则a x n n =∞→lim ;(D )有界数列必然收敛。

2.函数)(x f 在0x x =处取得极大值,则必有( )。

(A )0)(0='x f ; (B )0)(0<''x f ;(C )0)(0='x f 或)(0x f '不存在; (D )0)(0='x f 且0)(0<''x f 。

3.函数⎰=xa dt t f x F )()(在][b a ,上可导的充分条件是:)(x f 在][b a ,上( )(A )有界; (B )连续; (C )有定义; (D )仅有有限个间断点。

4.设⎰-+=2242cos 1sin ππxdx x x M ,⎰-+=2243)cos (sin ππdx x x N ,⎰--=22432)cos sin (ππdx x x x P ,则必有关系式( )(A ) M P N <<;(B )P M N <<;(C )N P M <<;(D )N M P <<。

【经典期末卷】大学高数(下)期末测试题及答案

【经典期末卷】大学高数(下)期末测试题及答案

1班级(学生填写): 姓名: 学号: 命题: 审题: 审批:----------------------------------------------- 密 ---------------------------- 封 --------------------------- 线 ------------------------------------------------------- dxdy dxdy23班级(学生填写): 姓名: 学号:----------------------------------------------- 密---------------------------- 封 --------------------------- 线ydx xdy += 22y dxdy -=4三. 计算题(一)(每小题6分,共36分)1.计算:22x y Ded σ+⎰⎰,其中D 是由圆周224x y +=所围成的闭区域。

2.计算三重积分xdxdydz Ω⎰⎰⎰,其中Ω为三个坐标面及平面21x y z ++=所围成的闭区域。

3.计算xyzdxdydz Ω⎰⎰⎰,其中Ω是由曲面2221x y z ++=,0,0,0x y z ≥≥≥所围成.5班级(学生填写): 姓名: 学号: ----------------------------------------------- 密---------------------------- 封 --------------------------- 线 ------------------------------------------------------- (答题不能超出密封线)4.求2d d Dxx y y ⎰⎰,其中D 为1xy =,y x =及2x =所围成的区域。

5.计算22()xy dxdydz Ω+⎰⎰⎰,其中Ω是由曲面222x y z +=,2z =围成。

(完整word版)高数下期末考试及解答(8份)

(完整word版)高数下期末考试及解答(8份)

课程名称 高等数学试卷 (I )一、填空(14分)1.设f(x),0,00,sin 2⎪⎩⎪⎨⎧=≠=x x x x则=→)(lim 0x f x 。

2.曲线y=x 3上切线斜率等于3的点是 。

3.x x y ln 22-=区间 上单调减少。

4.)1(lim 0xctgx x -→= 。

5.⎰+dx x x )1(1= 。

6.过点A (2,-3,4)且与y 轴垂直相交的直线方程为 。

二、完成下列各题(40分) 1.)11ln 1(lim 1--→x x x 2.已知:dxdy x x y e xy求,2cos ln =+ 3.计算:⎰++dx x x 294124.计算:⎰dx x 2)(arcsin5.计算:⎰eedx x x12ln三、求函数f(x)=123+--x x x 在[-1,2]上的最大值与最小值(8分) 四、证明:当x>0时,xarctgxx +>+1)1ln( (8分) 五、设f(x)在[a ,b]上连续,证明:⎰⎰-+=babadx x b a f dx x f )()( (8分)六、求曲线x y ln =当x 在区间(2,6)内的一条切线,使得该切线与x y ln =以及x=2,x=6所围成的图形的面积最小。

(8分)七、求过点(-1,0,4)且平行于平面3x-4y+z-10=0又与直线21311zy x =-=+相交的直线方程。

(8分)八、求抛物线x y 82=与其上点(2,4)处的法线所围成图形的面积。

并求该图形在x 轴上方部分绕y 轴旋转后所得旋转体的体积。

(6分)课程名称 高等数学试卷 (I )九、填空(14分)1.0 2.(1,+1),(-1,-1) 3.(0,)2π4.0 5.2arctg x +C 6.⎩⎨⎧-==32y xz十、完成下列各题(40分) 1.))1(ln ln 1(lim )11ln 1(lim 11---=--→→x x xx x x x x (2')=x x xxx ln )1(111lim1+--→ (2')=211ln 11limln 11lim11=⋅++=+--→→xx x x x x x x x (4') 2.等式两边对x 求导x x y x y y x y e xy 2sin 21ln )(-=⋅+'+'+ (3') xy xyye xyx x xe y ---=+'2sin 2)ln ( (3')xxe ye x yx y xyxy ln 2sin 2+++-=' =xx e x xye y x x xyxyln 2sin 22+++- (2') 3.⎰⎰++=++=++''C x arctg dx x dx x x 525125)2(1294132)5(24.⎰⎰--=dx xxx x x dx x 22211arcsin 2)(arcsin )(arcsin (3')=⎰--+)1(11arcsin )(arcsin 22x d xxx x⎰-+=)12(arcsin )(arcsin 22x xd x x (2')=⎰----+dx xx x x x x 22221112arcsin 12)(arcsin (2')=C x x x x x +--+2arcsin 12)(arcsin 22 (1')5.⎰⎰=+==='''ee e ee e x x xd x x 11)2(13)3(2)3(2323131|3ln ln ln ln三、(8分)令)1)(13(123)(2-+=--='x x x x x f (2') 得:1,3121=-=x x (1')01111)1(,273213191271)31(=+--==++--=-f f (2')31248)2(,01111)1(=+--==++--=-f f (2')最大值为3,最小值为0 四、(8分)证明:令xarctgxx x f +-+=1)1ln()( (1') 22)1(1111)(x arctgx x xx x f +-++-+='=222)1(1)1(x arctgx x x x ++++ (3') Θx>0时,,0)(>'x f ∴ x>0时,f(x)递增 (2') 又f(0)=0, ∴当x>0时,f(x)>0 (1')即xarctgxx +>+1)1ln( (1') 五、(8分)⎰⎰-+-+-=-+babax b a d x b a f dx x b a f )()()( (2')令t=a+b-x ,则x=a+b-t ,代入上式 (3')⎰⎰⎰⎰==-=-+bab ab abadx x f dt t f dt t f dx x b a f )()()()( (3')六、(8分)设该切线的切点对应处,则0x x =该切线为:)(1ln 000x x x x y -=- (2') 则x=2时,切线上)2(1ln 0001x x x y -+= x=6时,切线上)6(1ln 0002x x x y -+= (2') 围成图形面积为:)]2(1ln 2[421000x x x S -+⋅==,416ln 400-+x x 令0164200=-='x x S (2') ,411,400===x k x 该切线为:)4(414ln -=-x y (2') 七、(8分)平面3x-4y+z-10=0的法矢量}1,4,3{-=→n (1') 设交点为),,(000z y x (即两直线交点)则所求直线的方向矢量为}4,,1{000-+z y x (1')则⎪⎩⎪⎨⎧=-=+=-+-+223210)4(4)1(3000000z y x z y x ,解得⎪⎩⎪⎨⎧===321915000z y x (3')所求直线的方向矢量为{16,19,28} (1') 所求直线为:28419161-==+z y x (2')八、(6分)在x y 82=两边对x 求导,xy y y 84,82='='当x=2时,1|2='=x y ,则法线的斜率为-1法线方程为:y=-1(x-2)+4=-x+6 (2')与抛物线的另一个交点为:(18,-12) (1') 所围成圆形如图,它的面积为 ⎰⎰⎰⎰⎰⎰⎰⎰-+-+=+=12241228182168D D y x xdy dx dx dy d d S σσ=⎰⎰-++-+-4121822)86()82(dx x x dy y =18223182********|3222|6|2|24162x x x y ⋅++--⋅-=)316144(12108)1622()3872(32-+---+--+=14496160840++---=32 (2')法线与x 轴交于⎰⎰-=-=624022218)0,6(dy y dx x V V V ππΛ =]|24|3[403623y x -π =)24643872(--π=)383872(--π=π3200(3')一、填空(14分)1、 若)1(x x f +=2x +21x+3,则=)(x f 2、 设=)(x f 12-x e ,则)(x f ''= 3.xxx 3sin 5sin limπ→=4、设点(1,3)为曲线23bx ax y +=的拐点,则=a ,=b5、=+⎰x t dxd sin 021 6、在xoz 面上的曲线13222=+z x 绕z 轴旋转所得曲面方程是二、完成下列各题(35分)1、2)1(lim 1xtgx x π-→2、⎰+dx x x 2473、xdx x ⎰2sin4、dx xx⎰+3122115、dx x x ex⎰-2)(ln 11三、求曲线)1ln(2x y +=的拐点。

高数下试题2001-2013

高数下试题2001-2013

东北大学高等数学(下)期末考试试卷一、填空题(20分)1.曲线t t t e z t e y t e x 2,sin ,cos ===相应于点0=t 处的切线与oz 轴夹角的正弦=γsin ( )2.设40,10:≤≤≤≤y x D ,则=⎰⎰Ddxdy x 3( )3.设L 是由2x y =及1=y 所围成的区域D 的正向边界,则=+++⎰Ldy y x x dx y x xy )()(24233( )4.周期为π2的周期函数)(x f ,它在一个周期上的表达式为ππ≤≤-=x x x f ,)(,设它的付立叶级数的和函数为)(x s ,则=)23(πs ( ) 5.微分方程0=+ydy xdx 的通解是( )二、 求解下列各题(32分)1.(8分)设yxe u y x u f z ==),,,(,其中f 具有二阶连续偏导数,求yx z∂∂∂2。

2.(8分)计算⎰⎰⎰Ωzdv ,其中Ω是由曲面222y x z --=及22y x z +=所围成的闭区域。

3.(8分)计算曲线积分⎰Lxds ,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界。

4.(8分)求微分方程0)2(=-+ydx dy x y 的通解。

三.(9分)计算曲面积分⎰⎰∑-dxdy z )3(,其中∑是曲面222y x z +=上介于2=z 及3=z 之间部分的下侧。

四.(7分)判别级数∑∞=1223cos n nn n π的敛散性。

五.(9分)求微分方程x xe y y y 265=+'-''的通解。

六.(9分)将函数x x f 3sin )(=展开成)3(π+x 的幂级数,并指出收七.(9分)经过点(2,3,1)的平面中,求这样的平面,使得该平面与三个坐标面围成的第一卦限中的立体体积最小。

八. (7分)设)(u f 连续,试证:⎰⎰⎰-≤+=+111)()(du u f dxdy y x f y x高等数学试题答案 2001.07.16一、(1(2)3; (3)0; (4);2π-(5.C =二、1.'';y u x z e f f x ∂=+∂ 22""""'.y y y y u u u yx uxy u z x e f e f x e f f e f x y ∂=++++∂∂ 2.221rzdV d rdr πθΩ=⎰⎰⎰⎰⎰12407(2).12r r r dr ππ=--=⎰ 3.Lxds =⎰1L xds +⎰2L xds =⎰10112+=⎰⎰4.112,(2)dydy y y dx x x ee dy C dy y-⎰⎰-==+⎰(2ln ).y y C =+ 三、22(3)(3)2Dx y z dxdy dxdy ∑+-=--⎰⎰⎰⎰220224)232[28r d rdr r r πθππ=-=-=⎰ 四、2cos 3,22n nn n n n n u v π=≤= 且用比值法知道1n n v ∞=∑收敛,再用比较法可知 原级数是收敛的 。

东北大学2011-2012-1高等代数试卷及答案

东北大学2011-2012-1高等代数试卷及答案

封…………○………线……………………………东 北 大 学 期 末 考 试 试 卷( B 卷)2011 ---2012 学年第 一 学期课程名称:高等代数工(一)B . (2-n n A . 12213443-a a a a ; B . 12233441-a a a a ;C . 12223443-a a a a ;D . 12233444-a a a a .3. 若方程组12120λλ+=⎧⎨+=⎩x x x x 有非零解,则λ为( ).A .任意值;B . 1±;C .1;D . -1. 4. 若线性方程组增广矩阵的秩与系数矩阵的秩相等,下面正确的是( ) .A. 方程组无解;B. 方程组有唯一解;C. 方程组有无穷解;D. 方程组有解.5. A ,B ,C 均为3级方阵,设A 经第3行乘以5后变为B ,B 经过第3行与第1行交换位置变成C ,若设PA =C ,则P 为( ) .A .500001010⎛⎫⎪ ⎪ ⎪⎝⎭;B.500010001⎛⎫⎪ ⎪ ⎪⎝⎭; C.005010100⎛⎫⎪ ⎪ ⎪⎝⎭; D. 005100010⎛⎫⎪ ⎪ ⎪⎝⎭. 6. 设n 级方阵B 与C 满足'=B C C ,其中0=C ,则矩阵B 是( ). A . 正定的; B . 半正定的; C. 负定的; D. 半负定的.2.设行列式41248104811111211-=-D ,ij A 为ij a 的代数余子式,则1222324222-+-=A A A A .3. 设3级方阵A 按列分块为A =),,(γβα,且5=A ,又设()2,3,γαβα=-B ,则=B .4.矩阵101021210⎛⎫⎪= ⎪⎪⎝⎭A , 则矩阵A 的伴随矩阵*A = . 5.二次型12(,,,)'=n f x x x X AX 在线性替换=X CY 下二次型的矩阵为 .6.t 满足 时,二次型222112132233222222-++-+-x tx x tx x x tx x x 是负定的.…………○………线………………………本试卷共 3 页,第2 页……………○………线……………………………2.(7分)设A为方阵,且2=A A,求证:()(21)+=+-k kA E E A.3.(8分)假设向量β可以经向量组12,,,αααn线性表出,证明:表示法是唯一的充分必要条件是12,,,αααn线性无关.3 页高代工一11-12-1学期2012.1-B(答案及评分标准)一、1. C ;2. B ;3. B ;4. D ;5. C ;6. B二、1. 8;2. 72;3. -15;4. 112221412--⎛⎫⎪-- ⎪⎪--⎝⎭;5. 'C AC ;6. 21t -<< 三、1.解:利用行列式性质 45r xr +,34r xr +, ………….. 3分 =543254321x x x x x +++++ ………….. 2分2.解:011121020022200101001111001001101100001-⎛⎫⎛⎫ ⎪ ⎪---⎪ ⎪→ ⎪ ⎪-- ⎪ ⎪-⎝⎭⎝⎭,秩为4 ………….. 3分 1235,,,αααα为一个极大线性无关组 ………….. 3分 (或1345,,,αααα,或2345,,,αααα)4122ααα=- ………….. 3分四、解:由11221233x y y x y y x y =+⎧⎪=-⎨⎪=⎩,得2212132324y y y y y y --+=22213233()(2)3y y y y y ---+, 由113223332z y y z y y z y =-⎧⎪=-⎨⎪=⎩,=2221233z z z -+ ………….. 4分 所用非退化线性替换为1110101113110012111001001001X Z Z --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪=--=-- ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,….. 5分在复数域上,令1113100111001300100/3003iX i W i W⎛⎫-⎛⎫⎛⎫ ⎪⎪⎪=---= ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则规范形=222123w w w++………….. 3分在实数域上,令111131001110011/31001030030X W W⎛⎫⎛⎫⎛⎫ ⎪⎪⎪=--= ⎪⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则规范形=222123w w w+-………….. 3分五、解:12111(2)(1)11λλλλ=---,当21λλ≠≠且时,有唯一解;………….. 5分当=2λ时,1212103/521212011/5021140000⎛⎫⎛⎫⎪ ⎪→⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,有无穷解;通解为230105k-⎛⎫⎛⎫⎪ ⎪+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭….. 5分当=1λ时,121210101111010011140001⎛⎫⎛⎫⎪ ⎪→⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,无解. ………….. 5分六、1.解:1111100112--⎛⎫⎪=⎪⎪-⎝⎭010231121⎛⎫⎪--⎪⎪--⎝⎭,1111022110-⎛⎫⎪=⎪⎪-⎝⎭11/2011/21111-⎛⎫⎪--⎪⎪-⎝⎭,……….. 3分X=1111101100110112011--⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎪ ⎪-⎝⎭⎝⎭1111022110-⎛⎫⎪⎪⎪-⎝⎭=21169/25433--⎛⎫⎪--⎪⎪--⎝⎭……….. 2分2.证明:由A与E可交换,得001110()k k k k kk k kA E C A E C A E C A E-+=+++……….. 5分1()kk kE A C C E+++=(21)kE A+-……….. 2分3.证明:必要性反证法若12,,nααα相关,则存在不全为零的12,,nk k k使1122n n k k k ααα+++=0. 若有1122n n p p p βααα=+++,则有111()()n n n p k p k βαα=++++,这与条件矛盾,故12,,n ααα必无关. ……….. 4分 充分性 反证法 若表法不唯一,设有1122n n l l l βααα=+++及1122n n k k k βααα=+++,则必有111222()()()n n n l k l k l k ααα-+-++-=0,由表法不唯一,说明12,,n ααα相关,矛盾,故表法必唯一. ……….. 4分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 Ω
(B) (D)
∫∫∫ ( x

2
4 5; + y 2 + z 2 )dv = πR 3
0; ∫∫∫ ( x + y + z )dv =

( x ∫∫

2
+ y 2 + z 2 )dS = 4π R 2 。
]
4.微分方程 y ″ + y = sinx 的一个特解的形式为[
4
(A) Ax sin x ;(B) A cos x + B sin x ;(C) Ax cos x + B sin x ;(D) Ax cos x + Bx sin x 。 5 .设 f (u) 连续可微,且 ∫ f (u )du= k ≠ 0 ,其中 L 为圆周 = y
2
4. u = f ( x, xy ) 具有二阶偏导数,求
∂ 2u 。 ∂x∂y
5. 计算二重积分 二、
x 2 + y 2 ≤9
∫∫
( x 2 + y 2 − 7 x + 32 y + 1)dxdy 。
x 2 y′ + xy = 1 1. 求解微分方程的初值问题 y |x = 2 = 1
轴旋转一周所得旋转体的体积最小,试求 D 的面积。 高等数学(下)2014 年 7 月 一、单项选择题 1. 设向量 a = (2, −2, −5) 的起点坐标为 (2,1, 7) ,则[ (A) a 的终点坐标为 (4, −2,1) ; (C) a 与 y 轴的夹角为 arccos
2 2

]

(B) a 的长度为 6;
七、 (8 分)设 f (u)连续可微,L 为由 A 3,

2 到 B (1, 2 ) 的直线段,求 3
x 1 + y 2 f ( xy ) dx + 2 [ y 2 f ( xy ) − 1]dy ∫ y y L
高等数学(下)2015 年 7 月 一、计算下列各题
Page 3 of 4
三、计算下列各题 1. 求平面方程,使得这个平面垂直于平面 x − y + 2 z − 5 = 0 ,平行于向量 s = (1, −2, 2 5) ,并且过点 (5,0,1) 。 2. 求二重积分 限的闭区域。 3. 设 z = x f ( xy, ) ,f 具有二阶连续偏导数,求dxdy ,其中 D 由圆 x
五、修建一座容积为 V,形状为长方体的地下仓库,已知仓顶和墙壁每单位面积的造价分别为地面每单位面积造 价的 3 倍和 2 倍,问如何设计长、宽、高使它的造价最小。 六、计算曲面积分 = I
∫∫ 2 x dydz + 2 y dzdx + 3( z
3 3 ∑
2
1 − x 2 − y 2 ( z ≥ 0 )的上侧。 − 1)dxdy ,其中Σ是曲面 z =


−2 ; (D) a 在 z 轴上的投影为 5。 33
2 2
2.设平面区域 D : x + y ≤ 1 ; D1 : x + y ≤ 1, x ≥ 0, y ≥ 0 则下列等式不成立的是[ (A)
]
∫∫ x ln( x
D D
2
(B) + y 2 ) dσ = 0 (D)
∫∫
D D
1 − x 2 − y 2 d= σ 4∫∫ 1 − x 2 − y 2 dσ
0
2 x − x 2 上从原点到点( 2 , 0 )的部分,则

L
[ ] f ( x 2 + y 2 )( xdx + ydy ) = (B)
(A) 0;
k ; (C) k ; (A) 2k . 2
二、填空题 1.函数 z = f (x, y)由方程 2sin( x + 2 y − 3 z ) = x + 2 y − 3 z 所确定,则 dz = _______________. 2.交换积分次序
1. 求点 P0 (1,1,1) 到直线的距离 =
x−7 1
y −2 z −3 。 = 2 3
x2 + y 2 + z 2 = 6 在点 (1, −2,1) 处的切线与法平面方程。 2. 求曲线 0 x + y + z =
3. 函数 u = xy z 在点 (1, −1,1) 沿什么方向的方向导数最大?并求此方向导数的最大值。
cos α , cos β , cos γ ,并计算曲面积分 ∫∫
2 2 2
Σ
1 4 a2 。 ( x + y 4 + z 4 )dS , Σ 是球面 x 2 + y 2 + z 2 = a
y 0, = y h(h > 0) 所 截 下 部 分 的 外 侧 , 计 算 六 、 已 知 Σ 是 x + y = a ( a > 0) 在 x ≥ 0 的 一 半 中 被=
f ( y − 3 z ) ,则 2
∂z ∂z + 3 = ___________. ∂x ∂y
8.若二阶常系数线性非齐次方程 y"+ py '+ qy = f ( x) 的三个解是:
y1 = x(e − x + e −2 x ) , y 2 = xe − x + e −2 x , y 3 = xe − x + ( x + 1)e −2 x ,则 p 2 − 4q =__________________.
D
y
2
4 及直线 y = 0 , y = x 所围成的在第一象 + y2 = 1, x2 + y 2 =
y x
∂z ∂ 2 z 。 , ∂y ∂x∂y x 2 + y 2 上方的部分。 1 − x 2 上从 A(0,1)到 B(1,0)的圆弧
4. 计算曲面积分 I =
∫∫ z dS ,其中Σ是球面 x
(B) 连续且 f x′ (0, 0), f y′ (0, 0) 不存在; (D) 不连续且 f x′ (0, 0), f y′ (0, 0) 不存在。 ].
3.设Ω是球面 ∑ : x 2 + y 2 + z 2 = R 2 所围成的闭区域,则下列结果正确的是[ (A) (C)
0; ∫∫∫ ( x + y + z ) dv =
∫∫ ( y

2
2
= − xz )dydz + ( z 2 − xy )dzdx + ( x 2 − yz )dxdy ,Σ是锥面 z
2
x 2 + y 2 (0 ≤ z ≤ h) 的下侧。
五、求球面 x + y + z = a 的内接长方体,使长方体的体积最大。
2 2
六、一个体积为 V,外表面积为 S 的雪堆,融化的速度是 的形状保持为 z = h−
D1 2 2
(C) 3.
∫∫ | xy | dσ = 4∫∫ xydσ
D1 2x 2
∫∫ xy dσ = 4∫∫ xy dσ
D1
4.设函数 = z e ( x + y ) 则 (−
1 , 0) 是该函数的[ 2
].
(A)驻点但非极值点; (B)驻点且极小值点; (C)驻点且极大值点; (D)极值点但非驻点. 二、填空题 5.曲线 x = t , y = 2t , z =
∫e
0
1
f ( x)
dx ∫ e − f ( y ) dy ≥ 1 。
0
1
Page 4 of 4
∫∫
Σ
xyzdxdy + xzdydz + z 2 dzdx 。
x
xe ,曲线 y = y ( x) 过原点,且在原点处得切线垂直于直线 九、 ( 1 )设 y ( x) 满足微分方程 y′′ − 2 y′ + 5 y =
x + 2 y −1 = 0 ,求此直线方程.
(2) f ( x) 在[0, 1]上连续,证明
3.计算 区域。 4.求
∫∫∫ ( x

2
+ y 2 )dv ,其中Ω是由 yoz 面上曲线 y 2 = 2 x 绕 z 轴旋转一周而成的曲面与平面 z = 8 所围成的闭
1 在第一卦限 的部分。 ∫∫ (2 x + 3 y + z )dS ,式中Σ是平面 2 + 3 + 4 =

4
x
y
z
四、计算积分 I =
高数试题 2013.07 一、选择题
1.设 a = (ax , a y , az ) , b = (bx , by , bz ) ,则 a / / b 的充要条件是[
(A) = ax b= b= bz ; x , ay y , az
].
(B) ax bx + a y by + az bz = 0;
∫ dy ∫
0
1
1− y
y −1
f ( x, y )dx 为__________________.
L
3.设 L 为圆周 x = acost, y = asint (0 ≤ t ≤ 2π), 则 ∫ ( x + y ) 2 ds = _______________. 4.设平面薄板所占闭区域 D 由直线 x + y = 2,x = 2 和 y = 2 围成 ,它在点(x, y)处的面密度为 y ,则平面薄板 的质量为____________。 5.微分方程 y′′ − 10 y′ + 25 y = 0 的通解是__________。 三、计算下列各题
2. 已知点 O (0, 0) 与 A (1,1) ,且曲线积分 I= 确定 a,b 的值并求出 I。 三、求 y′′ = ( y′) 的通解
相关文档
最新文档