初一数学奥林匹克竞赛题(含答案)

合集下载

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题 1 分,共 10 分)1.如果 a,b 都代表有理数,并且a+b=0 ,那么 ( ) A.a,b 都是 0B.a,b 之一是 0C.a,b 互为相反数D. a,b 互为倒数答案: C解析:令 a=2 , b= - 2,满足 2+( - 2)=0 ,由此 a、b 互为相反数。

2.下面的说法中正确的是( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案: D3都是单项式.两个单项式33A。

两个单项式解析: x2, x x , x2之和为 x +x 2是多项式,排除x2, 2x2之和为3x2是单项式,排除 B。

两个多项式x3+x2 与 x3-x2之和为2x3 是个单项式,排除 C,因此选 D。

3.下面说法中不正确的是( )A.有最小的自然数B.没有最小的正有理数Word资料C.没有最大的负整数D.没有最大的非负数答案: C解析:最大的负整数是-1 ,故 C 错误。

4.如果 a,b 代表有理数,并且a+b 的值大于 a- b 的值,那么( ) A.a,b 同号B.a,b 异号C.a>0D. b> 0答案: D5.大于-π并且不是自然数的整数有( )A.2 个B.3 个C.4 个D.无数个答案: C解析:在数轴上容易看出:在-π右边0的左边(包括0 在)的整数只有-3,- 2,-1 ,0 共 4 个.选 C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

Word资料这四种说法中,不正确的说法的个数是( )A.0 个B.1 个C.2 个D. 3 个答案: B解析:负数的平方是正数,所以一定大于它本身,故 C 错误。

7.a 代表有理数,那么, a 和- a 的大小关系是( )A.a 大于- aB.a 小于- aC.a 大于- a 或 a 小于- aD. a 不一定大于- a答案: D解析:令 a=0 ,马上可以排除A、 B、 C,应选 D。

初一数学奥林匹克竞赛题(含答案).

初一数学奥林匹克竞赛题(含答案).

5.第 n 项为
所以
≥0,即
6.设 p=30q+r ,0≤r <30.因为 p 为质数,故 r ≠0,即 0< r <30.假设 r 为合数,由于 r < 30,所以 r 的最小质约数只可能为 2,3,5.再由 p=30q+r 知,当 r 的最小质约数为 2,3,5 时, p 不是质数,矛盾.所以, r 一定不是合 数.
初一数学奥林匹克竞赛题(含答案)
初一奥数题一 100 元,三年后负债 600 元.求每人每年收入多少 ? 是多少?
甲多开支 S 的末四位数字的和
4.一个人以 3 千米 / 小时的速度上坡, 以 6 千米 / 小时的速度下坡, 行程 12 千米 共用了 3 小时 20 分钟,试求上坡与下坡的路程. 5.求和: 6.证明:质数 p 除以 30 所得的余数一定不是合数.
y;若 3|y,同理可得, 3|x.
9.连结 AN,CN,如图 1-103 所示.因为 N是 BD的中点,所以
上述两式相加
另一方面, S△PCD=S△CND+ S△ + CNP S△ . DNP
因此只需证明 S△ = AND S△CNP+ S△ . DNP
由于 M,N 分别为 AC, BD的中点,所以 S =S -S △CNP △CPM △CMN =S△APM-S △AMN =S△ANP.
8.若两个整数 x,y 使 x2+xy+y2能被 9 整除,证明: x 和 y 能被 3 整除. 9.如图 1-95 所示.在四边形 ABCD中,对角线 AC,BD的中点为 M,N,MN的延 长线与 AB边交于 P 点.求证:△ PCD的面积等于四边形 ABCD的面积的一半. 解答:
所以
x=5000( 元) .
解之得

初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。

初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。

初一奥林匹克数学竞赛真题及答案

初一奥林匹克数学竞赛真题及答案

初一奥林匹克数学竞赛真题及答案一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是()A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是()A.有最小的自然数.B.没有最小的正有理数.C.没有的负整数.D.没有的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有()A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是()A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是()A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1.______.2.198919902-198919892=______.3.=________.4.关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的.如果工作4天后,工作效率提高了,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案及解析一、选择题1.C2.D3.C4.D5.C6.B7.D8.D9.C10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).。

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题

初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。

A. - 2B. 2C. 6D. - 6答案:B。

解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。

2. 把多项式x² - 4x+4分解因式,结果正确的是()。

A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。

解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。

3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。

A. - 4B. - 2C. 0D. 2答案:C。

解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。

在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。

(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。

4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。

A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。

解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

初中数学奥林匹克竞赛习题和

初中数学奥林匹克竞赛习题和

初中数学奥林匹克比赛题及答案奥数题一一、选择题〔每题 1 分,共10 分〕1.假如a,b 都代表有理数,而且a+b=0,那么( )A.a,b 都是0B.a,b 之一是0C.a,b 互为相反数D.a,b 互为倒数答案:C分析:令a=2 ,b=-2,知足2+(-2)=0 ,由此a、b 互为相反数。

2.下边的说法中正确的选项是( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D分析:x2,x3 都是单项式.两个单项式x3,x2之和为x3+x2是多项式,清除A。

两个单项式x2,2x2 之和为3x2 是单项式,清除B。

两个多项式x3+x2 与x3-x2 之和为2x3 是个单 项式,清除C,所以选D。

3.下边说法中不正确的选项是( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C分析:最大的负整数是-1,故 C 错误。

4.假如a,b 代表有理数,而且a+b 的值大于a-b 的值,那么( ) A.a,b 同号B.a,b 异号C.a>0D.b>0答案:D5.大于-π而且不是自然数的整数有( )A.2 个B.3 个C.4 个D.无数个答案:C分析:在数轴上简单看出:在-π右侧0 的左侧〔包含0 在内〕的整数只有-3,-2,-1,0 共4 个.选C。

6.有四种说法:甲.正数的平方不必定大于它自己;乙.正数的立方不必定大于它自己;丙.负数的平方不必定大于它自己;丁.负数的立方不必定大于它自己。

这四种说法中,不正确的说法的个数是( )A.0 个B.1 个C.2 个D.3 个答案:B分析:负数的平方是正数,所以必定大于它自己,故C错误。

7.a 代表有理数,那么,a 和-a 的大小关系是( )A.a 大于-aB.a 小于-aC.a 大于-a 或a 小于-aD.a 不必定大于-a答案:D分析:令a=0 ,立刻能够清除A、B、C,应选D。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:互为相反数。

b,由此a、-2,满足2+(-2)=0令a=2,b=2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D33222解析:3是多项式,排除A+x之和为xx,x。

两个单项都是单项式.两个单项式x,x22223之和为2x3x是个单-之和为3xx是单项式,排除B。

两个多项式x3+x2式x2x,与。

,因此选D项式,排除C3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:错误。

C最大的负整数是-1,故4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,13/ 1初中数学奥林匹克竞赛题及答案。

个.选C0共4-1,6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:。

,应选D、B、C,马上可以排除令a=0A8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

初一奥林匹克数学竞赛训练试题集(01)word版含答案

初一奥林匹克数学竞赛训练试题集(01)word版含答案

初一奥林匹克数学竞赛训练试题集(01)word版含答案初一奥林匹克数学竞赛训练试题集(01)一、选择题(共8小题,每小题4分,满分32分)1.设a、b为正整数(a>b),p是a、b的最大公约数,q 是a、b的最小公倍数,则p,q,a,b的大小关系是()A.p≥q≥a>bB.q≥a>b≥pC.q≥p≥a>bD.p≥a>b≥q2.下列四个等式:ab=0,a=0,a+b=0中,可以断定a必等于的式子共有()A.3个B.2个C.1个3.a为有理数,下列说法中,正确的是()A.B.22(a+)是正数a+是正数C.D.22﹣(a﹣)是﹣a+的值不负数4.a,b,c均为有理数.在下列:甲:若a>b,则ac>bc.乙:若ac>bc,则a>b.两个结论中()A.甲、乙都真B.甲真,乙不真C.甲不真,___D.甲、乙都不真5.若a+b=3,ab=﹣1,则a+b的值是()A.24B.36C.27D.36.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定7.两个10次多项式的和是()A.2次多项式B.1次多项式C.100次多项式D.不高于10次的多项式8.在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A.奇数B.偶数C.负整数D.非负整数二、填空题(共8小题,每小题5分,满分40分)9.现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是_________岁.3310.1.2345+0.7655+2.469×0.7655=_________.3.21011.已知方程组abc=_________.1212.若,则=_________.1/413.已知多项式2x﹣3x+ax+7x+b能被x+x﹣2整除,则的值是_________.214.满足的值中,绝对值不超过11的哪些整数之和等于_________.15.若三个连续偶数的和等于1992,则这三个偶数中最大的一个与最小的一个的平方差等于_________.642.(4分)下列四个等式:$a^2+b^2=0$,$ab=0$,$a=0$,$a+b=0$中,可以断定$a$必等于的式子共有()A.3个。

2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)(含答案)

2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)(含答案)

2024年全国中学生数学奥林匹克竞赛一试试卷(预赛)(A卷)一、填空题:本题共8小题,每小题8分,共64分。

1.若实数m>1满足log9(log8m)=2024,则log3(log2m)的值为______.2.设无穷等比数列{a n}的公比q满足0<|q|<1.若{a n}的各项和等于{a n}各项的平方和,则a2的取值范围是______.3.设实数a,b满足:集合A={x∈R|x2−10x+a≤0}与B={x∈R|bx≤b3}的交集为[4,9],则a+b的值为______.4.在三棱锥P−ABC中,若PA⊥底面ABC,且棱AB,BP,BC,CP的长分别为1,2,3,4,则该三棱锥的体积为______.5.一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为a,b.若事件“a+b=7”发生的概率为17,则事件“a=b”发生的概率为______.6.设f(x)是定义域为R、最小正周期为5的函数.若函数g(x)=f(2x)在区间[0,5)上的零点个数为25,则g(x)在区间[1,4)上的零点个数为______.7.设F1,F2为椭圆Ω的焦点,在Ω上取一点P(异于长轴端点),记O为△PF1F2的外心,若PO⋅F1F2=2PF1⋅PF2,则Ω的离心率的最小值为______.8.若三个正整数a,b,c的位数之和为8,且组成a,b,c的8个数码能排列为2,0,2,4,0,9,0,8,则称(a,b,c)为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10<a<b<c的幸运数组(a,b,c)的个数为______.二、解答题:本题共3小题,共56分。

解答应写出文字说明,证明过程或演算步骤。

9.(本小题16分)在△ABC中,已知cosC=sinA+cosA2=sinB+cosB2,求cosC的值.10.(本小题20分)在平面直角坐标系中,双曲线Γ:x2−y2=1的右顶点为A.将圆心在y轴上,且与Γ的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P,圆心距为d,求d|PA|的所有可能的值.11.(本小题20分)设复数z,w满足z+w=2,求S=|z2−2w|+|w2−2z|的最小可能值.参考答案1.40492.[−14,0)∪(0,2)3.74.345.196.117. 648.5919.解:由题意知,sinA +cosA =sinB +cosB ,所以 2sin (A +π4)= 2sin (B +π4),所以A +π4=B +π4或(A +π4)+(B +π4)=π,即A =B 或A +B =π2,当A =B 时,C =π−2A ,且A ∈(0,π2),由cosC =sinA +cosA 2,知cos (π−2A)=sinA +cosA 2,即−2cos2A =sinA +cosA ,所以2(sin 2A−cos 2A)=sinA +cosA ,所以2(sinA +cosA)(sinA−cosA)=sinA +cosA ,因为A ∈(0,π2),所以sinA +cosA ≠0,所以sinA−cosA =12,又sin 2A +cos 2A =1,所以(12+cosA )2+cos 2A =1,解得cosA =7−14或cosA =− 7−14(舍负),所以cosC =−cos2A =1−2cos 2A =1−2×(7−14)2= 74;当A +B =π2时,C =π2,所以cosC =0,此时sinA +cosA = 2sin (A +π4)=0,而A ∈(0,π2),所以A +π4∈(π4,3π4),所以sin (A +π4)>0,与sin (A +π4)=0相矛盾,所以cosC =0不成立,综上,cosC = 74. 10.解:考虑以(0,y 0)为圆心的好圆Ω0:x 2+(y−y 0)2=r 20(r 0>0).由Ω0与Γ的方程联立消去x ,得关于y 的二次方程2y 2−2y 0y +y 20+1−r 20=0.根据条件,该方程的判别式Δ=4y20−8(y20+1−r20)=0,因此y20=2r20−2.对于外切于点P的两个好圆Ω1,Ω2,显然P在y轴上.设P(0,ℎ),Ω1,Ω2的半径分别为r1,r2,不妨设Ω1,Ω2的圆心分别为(0,ℎ+r1),(0,ℎ−r2),则有(ℎ+r1)2=2r21−2,(ℎ−r2)2=2r22−2,两式相减得2ℎ(r1+r2)=r21−r22,而r1+r2>0,故化简得ℎ=r1−r22,进而(r1−r22+r1)2=2r21−2,整理得r21−6r1r2+r22+8=0①,由于d=r1+r2,A(1,0),|PA|2=ℎ2+1=(r1−r2)24+1,而①可等价地写为2(r1−r2)2+8=(r1+r2)2,即8|PA|2=d2,所以d|PA|=22.11.解:根据z+w=2,得w=2−z,可得|z2−2w|=|z2−2(2−z)|=|z2+2z−4|=|z+1+5|⋅|z+1−5|.|w2−2z|=|(2−z)2−2z|=|z2−6z+4|=|z−3+5|⋅|z−3−5|.以上两式的最右边各项分别是z到复平面中实轴上的点(−1−5,0),(−1+5,0),(3−5,0),(3+5,0)的距离,将z=x+yi换成其实部x时,各个距离都不会增大,因此只需考虑函数f(x)=|x2+2x−4|+|x2−6x+4|在R上的最小值.由x2+2x−4=0的根为−1±5,x2−6x+4=0的根为3±5,且−1−5<3−5<−1+5<3+5,分以下几种情况讨论:①若x≤−1−5,则f(x)=2x2−4x,f(x)在(−∞,−1−5]上的最小值为f(−1−5)=16+85;②若x∈(−1−5,3−5],则f(x)=−8x+8,此时f(x)的最小值为f(3−5)=−16+85;③若x∈[3−5,−1+5],则f(x)=−2x2+4x,此时f(x)的最小值为f(3−5)=f(−1+5)=−16+85;④若x∈[−1+5,3+5],则f(x)=8x−8,此时f(x)的最小值为f(−1+5)=−16+85;⑤若x≥3+5,则f(x)=2x2−4x,f(x)在[3+5,+∞)的最小值为f(3+5)=16+85.综上所述,f(x)在R上的最小值为f(3−5)=f(−1+5)=85−16.即S=|z2−2w|+|w2−2z|的最小可能值是85−16.。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是()A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。

两个单项式x2,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是()A.有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有()A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是()A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是()A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

初一奥数比赛试题及答案

初一奥数比赛试题及答案

初一奥数比赛试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是质数?A. 15B. 16C. 17D. 18答案:C2. 一个数列的前三项为1、2、4,每一项都是前一项的两倍,那么这个数列的第五项是多少?A. 8B. 16C. 32D. 64答案:C3. 一个长方体的长、宽、高分别为2、3、4,那么它的体积是多少?A. 24B. 26C. 28D. 30答案:A4. 如果一个数的平方是36,那么这个数是多少?A. 6B. -6C. 6 或 -6D. 都不是答案:C5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B二、填空题(每题4分,共20分)6. 一个数的立方是-64,那么这个数是_________。

答案:-47. 如果一个等差数列的首项是3,公差是2,那么它的第10项是_________。

答案:238. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是_________。

答案:59. 一个分数的分子是7,分母是14,化简后是_________。

答案:1/210. 如果一个数的绝对值是5,那么这个数可能是_________。

答案:5 或 -5三、解答题(每题10分,共50分)11. 一个数列的前三项为2、5、8,每一项都比前一项多3,求这个数列的第20项。

答案:2 + 3 * (20 - 1) = 5912. 一个长方体的长、宽、高分别是a、b、c,求它的体积。

答案:V = a * b * c13. 一个圆的半径是r,求它的周长和面积。

答案:周长 = 2πr,面积= πr²14. 一个等差数列的首项是a1,公差是d,求它的第n项。

答案:an = a1 + (n - 1) * d15. 一个分数的分子是a,分母是b,求它的倒数。

答案:1/(a/b) = b/a以上是初一奥数比赛的试题及答案,供参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以
上述两式相加
另一方面,
S△PCD=S△CND+S△CNP+S△DNP.
因此只需证明
S△AND=S△CNP+S△DNP.
由于M,N分别为AC,BD的中点,所以
S△CNP=S△CPM-S△CMN
=S△APM-S△AMN
=S△ANP.
又S△DNP=S△BNP,所以
7.对k,m的哪些值,方程组至少有一组解?
8.求不定方程3x+4y+13z=57的整数解.
9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?
(1)answer
米.依题意得
由①得16y2=9x2, ③
由②得16y=24+9x,将之代入③得
即(24+9x)2=(12x)2.解之得
于是
所以两站距离为9×8+16×6=168(千米).
8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.
所以
6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.
7.设 由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).
可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.
(1)若m=1时,有 解得p=1,q=1,与已知不符,舍去.
(2)若m=2时,有 因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.
(3)若m=3时,有 解之得 故p+q=8.
8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy+y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.
9.设苹果、梨子、杏子分别买了x,y,z个,则
消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.
代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.
x=20,y=8,z=12.
因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.
解之得
所以三年产量分别是4千台、6千台、8千台.
不等式组:
所以x>2;
无解.
6.设原式为S,则
所以

<0.112-0.001=0.111.
因为
所以=0.105.
7.由|x|≤1,|y|≤1得-1≤x≤1,-1≤y≤1.
所以y+1≥0,x-2y+4≥-1-2×1+4=1>0.
所以z=|x+y|+(y+1)+(x-2y+4)=|x+y|+x-y+5.
所以x=5000(元).
所以S的末四位数字的和为1+9+9+5=24.
3.因为
a-b≥0,即a≥b.即当b≥a>0或b≤a<0时。
4.设上坡路程为x千米,下坡路程为y千米.依题意则

由②有2x+y=20③由①有y=12-x.将之代入③得2x+12-x=20.所以x=8(千米),于是y=4(千米).
5.第n项为
8.百位上数字只是1的数有100,101,…,199共100个数;十位上数字是1或5的(其百位上不为1)有2×3×10=60(个).个位上出现1或5的(其百位和十位上都不是1或5)有2×3×8=48(个).再加上500这个数,所以,满足题意的数共有
100+60+48+1=209(个).
9.从19到98共计80个不同的整数,其中有40个奇数,40个偶数.第一个数可以任选,有80种选法.第一个数如果是偶数,第二个数只能在其他的39个偶数中选取,有39种选法.同理,第一个数如果是奇数,第二个数也有39种选法,但第一个数为a,第二个为b与第一个为b,第二个为a是同一种选法,所以总的选法应该折半,即共有
8.从1到500的自然数中,有多少个数出现1或5?
9.从19,20,21,…,98这80个数中,选取两个不同的数,使它们的和为偶数的选法有多少种?
解答:
1.由对称性,不妨设b≤a,则ac+bd≤ac+ad=a(c+d)<ab.
2.设乙种商品原单价为x元,则甲种商品的原单价为1.5x元.设甲商品降价y%,则乙商品提价2y%.依题意有1.5x(1-y%)+x(1+2y%)=(1.5x+x)(1+2%),
5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].
由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以[0.23x]=0.
又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.
6.如图1-105所示.在△PBC中有BC<PB+PC,①
9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.
初一奥数题二
1.已知3x2-x=1,求6x3+7x2-5x+2000的值.
2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?
3.在锐角三角形ABC中,三个内角都是质数.求三角形的三个内角.
4.某工厂三年计划中,每年产量递增相同,若第三年比原计划多生产1000台,那么每年比上一年增长的百分数就相同,而且第三年的产量恰为原计划三年总产量的一半,求原计划每年各生产多少台?
z=|x+y|+|y+1|+|x-2y+4|,
求z的最大值与最小值.
9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且
求证:n是4的倍数.
解答:
1.化简得6(a-1)x=3-6b+4ab,当a≠1时,
2.将原方程变形为
由此可解得x=a+b+c.
3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.
依题意得
去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,
m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.
当k=1,m≠4时,①无解.
所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.
8.由题设方程得
z=3m-y.x=19-y-4(3m-y)-m=19+3y-13m.原方程的通解为 其中n,m取任意整数值.
化简得1.5-1.5y+1+2y=2.5×1.02.所以y=0.1=10%,
所以甲种商品降价10%,乙种商品提价20%.
3.因为∠A+∠B+∠C=180°,所以∠A,∠B,∠C中必有偶数.唯一的偶质数为2,所以∠C=2°.所以∠A+∠B=178°.由于需∠A,∠B为奇质数,这样的解不唯一,如
4.设每年增产d千台,则这三年的每一年计划的千台数分别为a-d,a,a+d依题意有
初一奥数题一
甲多开支100元,三年后负债600元.求每人每年收入多少?
S的末四位数字的和是多少?
4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.
5.求和:
6.证明:质数p除以30所得的余数一定不是合数.
8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.
y=(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.
所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.
3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以
∠ADC+∠BCD=180°,
(1)当x+y+≤0时,z=-(x+y)+x-y+5=5-2y.
由-1≤y≤1可推得3≤5-2y≤7,所以这时,z的最小值为3、最大值为7.
(2)当x+y>0时,z=(x+y)+(x-y+5)=2x+5.
由-1≤x≤1及可推得3≤2x+5≤7,所以这时z的最小Fra bibliotek为3、最大值为7.
由(1),(2)知,z的最小值为3,最大值为7.
3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.
4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为
求a2+b2+c2的值.
5.求方程|xy|-|2x|+|y|=4的整数解.
6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)
相关文档
最新文档