原子发射光谱法

合集下载

原子发射光谱法精讲

原子发射光谱法精讲
图3-15 多道直读光谱仪示意图
3.3.6.3 单道扫描光谱仪
图3-16 单道扫描光谱仪示意图
特点:波长范围宽,但速度慢。
3.3.6.4 全谱直读光谱仪
图3-17 全谱直读等离子体发射光谱仪示意图
特点:克服多道和单道光谱仪缺点,并 且波长稳定。
3.4 干扰及消除方法
光谱干扰(spectral interference) 非光谱干扰(non-spectral interference)
第3章 原子发射光谱法
(Atomic emission spectroscopy,AES)
现代直读ICP-AES仪器
3.1 概论
原子发射光谱法是根据待测元素的激 发态原子所辐射的特征谱线的波长和强度, 对元素进行定性和定量测定的分析方法。
1. 原子发射光谱法过程 光源提供能量使试样蒸发形成气态原子 并激发产生辐射分光形成光谱检测 谱线波长和强度
3.4.2.2 基体效应的抑制 ➢基体效应:由标准样品与试样的基体组成
差别较大引起的测定误差。
➢解决方法: ①尽量采用与试样基体一致的标准样品; ②添加光谱缓冲剂和光谱载体以减小基体效
应。
3.5 光谱分析方法
3..5.1 光谱定性分析 一般多采用摄谱法。
3.5.1.1 元素的分析线与最后线
分析线:进行分析时所使用的谱线。 灵敏线:元素激发能低、强度较大的谱线,
ICP
很高
6000~8000 最好
溶液的定量分析
3.3.2 试样引入激发光源方式 3.3.2.1 溶液试样
气动雾化 形成气溶胶 超声雾化 电热蒸发
图3-9 几种典型的雾化器 a. 同心雾化器;b. 交叉型雾化器; c. 烧结玻璃雾化器;d. Babington雾化器。

原子发射光谱分析法

原子发射光谱分析法
原子发射光谱分析法
2023-11-06
目录
• 原子发射光谱分析法概述 • 原子发射光谱仪 • 分析方法与样品处理 • 原子发射光谱法的应用 • 原子发射光谱法的优缺点 • 研究成果与应用实例
01
原子发射光谱分析法概述
定义与原理
定义
原子发射光谱分析法是一种基于原子发射光谱学的方法,通过对样品中原子 或离子的特征光谱进行分析,实现对其成分和含量的测定。
原理
当样品被加热或受到能量激发时,原子会从基态跃迁到激发态,并释放出特 征光谱。通过对这些光谱进行分析,可以确定样品中元素的种类和含量。
发展历程与重要性
发展历程
原子发射光谱分析法自19世纪末发展至今,经历了从经典光谱分析到现代光谱仪 器分析的演进过程。
重要性
原子发射光谱分析法在科学研究和工业生产中具有广泛的应用价值,为材料科学 、环境科学、生命科学等领域提供了重要的分析手段。
03
该方法广泛应用于地质、环保、生物医学等领域,用于研究复杂样品中元素的 含量、分布和化学形态。
05
原子发射光谱法的优缺点
优点
高灵敏度
原子发射光谱法可以检测到低浓度的元素 ,具有很高的灵敏度。
无需样品处理
原子发射光谱法不需要对样品进行复杂的 处理,可以直接进行分析。
快速分析
该方法可以实现多元素同时分析,大大缩 短了分析时间。
发和激发。
光谱仪的构造
包括入射狭缝、准直镜、光栅 、聚焦镜和ቤተ መጻሕፍቲ ባይዱ射狭缝。
光谱仪工作原理
样品被激发后,原子会产生不 同波长的光谱,通过光栅分光 后形成光谱,再经过聚焦镜聚 焦到出射狭缝,最后由检测器
进行检测。
光谱仪的分类与特点

原子发射光谱法

原子发射光谱法
a
b
弧焰示意图
第二节 仪器装置
原子发射光谱仪
光源
分光仪
检测器

光源具有使试样蒸发、解离、原子化、激发、跃迁产生光辐射的作用。光源对光谱分析的检出限、精密度和准确度都有很大的影响。

类型:直流电弧、交流电弧、电火花、电感耦合高频等离子体(ICP)

要求:灵敏度高、稳定性好、结构简单、操作安全
较好
试样中低含量组分的定量分析
火花

瞬间10000

金属与合金、难激发元素的定量分析
ICP
很高
6000~8000
很好
溶液定量分析
2.2 分光仪
1
分光仪的作用是将样品在激发光源中受激发而发射出来的含各种波长谱线的复合光,经色散后得到按波长顺序排列的光谱。 按色散元件及分光原理分为:棱镜光谱仪(折射原理)、光栅光谱仪(衍射原理)
1.2 原子发射光谱的产生
在正常状态下,元素处于基态,元素在受到热(火焰)或电(电火花)激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱)
特征辐射
基态元素M
激发态M*
热能、电能
E
原子的共振线与离子的电离线
激发电位:从低能级到高能级需 要的能量(eV) 共振线:具有最低激发电位的谱线 电离电位:使原子电离所需要的最低能量 离子线:离子外层电子跃迁时发射的谱线 离子线激发电位的大小与电离电位的高低无关 原子谱线表: I 表示原子发射的谱线; II 表示一次电离离子发射的谱线; III 表示二次电离离子发射的谱线; Mg:I 285.21 nm ;II 280.27 nm; 原子线(I) 离子线(II、III) 相似谱线 Na I、Mg II、Al III

原子发射光谱法

原子发射光谱法

名 词 解 释


基本分析步 骤 : 激发、分光和检测
具 体 步 骤

利用激发源激发试样后使之解离为原子或电 离为离子,原子或离子再一次被激发,发射 出光谱线的过程为第一步;利用光谱仪展开 光源发出的光,从而获得光谱为第二步;用 光谱检测仪器测量光谱线波长、强度或宽度 ,完成对试样的定性、半定量或定量分析为 第三步。


原子发射光谱法可对约 70种元素(金属元素及 磷、硅、砷、碳、硼等 非金属元素)进行分析 。在一般情况下,用于 1%以下含量的组份测定 ,检出限可达ppm,精 密度为±10%左右,线 性范围约2个数量级。这 种方法可有效地用于测 量高、中、低含量的元 素。
发 展 历 史

原子发射光谱法是历史最悠久的一种光学分 析法。1826年泰尔博说明了某些波长的特征 光线是某些元素所特有的;1860年,基尔霍 夫和本生研制了第一台用于光谱分析的分光 镜,实现了光原子发射光谱检验;1930年以 后,建立了光谱定量分析方法;20世纪60年 代以来,原子发射光谱得到迅速发展并成为 现代仪器分析中不可或缺的方法之一。



摄 谱 法
1光谱投影仪 、映谱仪 光谱定性分析时将光谱图放 大,放大20倍。 2测微光度计 黑度计 定量分析时,测定接受到的光 谱线强度。光线越强,感光板 上谱线越黑。 S=lg(1/T)=lg(I0/I)


摄 谱 法

光电光谱法仪器特点: (1) 测定每个元素可同时选用多条谱线 (2) 可在一分钟内完成70个元素的定量 测定 (3) 可在一分钟内完成对未知样品中多 达70多元素的定性 (4) 1mL的样品可检测所有可分析元素 (5) 扣除基体光谱干扰 (6) 全自动操作

原子发射光谱法测定方法

原子发射光谱法测定方法

原子发射光谱法测定方法原子发射光谱法是一种用于元素分析的传统方法,也是目前最常用的表征原子能级结构的方法。

本文将详细介绍原子发射光谱法的原理、测定方法以及应用。

一、原理原子发射光谱法基于原子能级结构的理论,利用激发源将样品原子激发为激发态,然后通过介质,将这些激发态原子的电子跃迁回到较低的能级,从而实现发射光谱。

每种元素的原子发射光谱是独特的,可以根据这些发射光谱来确定样品中各种元素的含量。

二、测定方法1. 原子发射光谱法的装置原子发射光谱法的装置一般包括以下部分:样品供给装置、激发源、光谱仪、信号放大器和信息处理装置。

2. 样品处理样品处理的重要性不言而喻,因为精确的分析结果必须从准确的样品中获得。

可以通过显微观察或分析其外观和颜色来确定样品中的化学成分和杂质。

灰吸收法和氮化方法常用于消除样品的有机和无机杂质。

3. 激发源激发源是原子发射光谱法中最关键的部分,它负责激发样品原子的电子从基态跃迁到激发态,强制性激发分为热力学激发和非热力学激发。

热力学激发是通过样品表面的火焰或电弧等电离条件来完成的,使原子达到雇员,它们可以受激光量输入并产生较高的激发能量。

非热力学激发则是通过化学气氛或单独的电离源激发,也必须使用高能量输入的激发源。

4. 光谱仪当样品中的原子被激发时,它们将发出放射性,从而产生辐射谱线。

重要的是收集这些发光谱线并将其分解成其组成部分。

这可以通过光谱仪完成,光谱仪利用棱镜或光栅将光谱分离成单色光信号并记录光谱。

光谱准确度与光谱仪精度有关,应选择质量好,精度高的光谱仪。

5. 信号放大器和信息处理信号放大器和信息处理是相互关联的,在信号处理程序中可以调整放大器的控制,以及记录和处理光谱图的算法和软件。

在信号放大器和信息处理的整个过程中,确定计算要素浓度的算法和过程是至关重要的。

三、应用原子发射光谱法在我们的日常工作中有着广泛应用的地方,如石化、机械、金属、环保、农业、医药、食品等各个领域。

原子发射光谱法(aes)

原子发射光谱法(aes)
谱线强度法
通过测量待测样品中某一元素的特征谱线强度,与已知浓度的标准样品进行比 较,大致确定待测样品中该元素的含量范围。
定性分析
谱线识别法
通过对比已知元素的标准谱线与待测样品的谱线,确定待测样品中存在的元素种 类。
特征光谱法
利用不同元素具有独特的特征光谱,通过比对特征光谱的差异,确定待测样品中 存在的元素种类。
电热原子化器利用电热丝加热 ,使样品中的元素原子化。
化学原子化器利用化学反应将 样品中的元素转化为气态原子

光源
01 光源用于提供能量,使样品中的元素原子 化并产生光谱信号。
02 光源类型有多种,如电弧灯、火花放电灯 等。
03
电弧灯利用电弧放电产生高温,使样品中 的元素原子化。
04
火花放电灯利用高压电场使气体放电,产 生高温,使样品中的元素原子化。
原子发射光谱法(AES)
目 录
• 原子发射光谱法(AES)概述 • AES的仪器与设备 • AES的样品制备与处理 • AES的分析方法与技术 • AES的优缺点与挑战 • AES的未来发展与展望
01 原子发射光谱法(AES)概 述
定义与原理
定义
原子发射光谱法(AES)是一种通过测量物质原子在受激发态跃迁时发射的特定波长的光来分析物质成分的方法。
02
发射光谱仪通常包括电 子激发源、真空系统、 光学系统、检测器等部 分。
03
电子激发源用于产生高 能电子,激发原子或离 子,使其跃迁至激发态。
04
真空系统用于维持仪器 内部的高真空环境,减 少空气对光谱信号的干 扰。
原子化器
01
02
03
04
原子化器是将样品转化为原子 蒸气的装置。

原子发射光谱法

原子发射光谱法
原子发射光谱法 (Atomic Emission Spectrometry,AES)
概论 基本原理 原子发射光谱仪器 干扰及消除方法 光谱分析方法
教学要求
• 理解原子发射光谱产生的基本原理; • 掌握原子发射光谱强度的影响因素; • 了解原子发射光谱分析激发光源的作用机理 ,掌握ICP形成过程及其特性。 • 掌握原子发射光谱的定性、定量分析方法。
(1)n—主量子数 • 与描述核外电子运动状态的主量子数意义相同 ,决定能量状态的主要参数 n =1, 2 ,3 ,…
(2)L—总角量子数 L=∑li ,l=0,1,2,… L=|l1+l2|,|l1+l2-1|,… |l1-l2| • 由两个角量子数l1和l2之和变到它们之差,间隔为 1的所有数值 • L的取值可为0,1,2,3,…,通常用大写字母S ,P, D, F …表示
S=1 M=3 三重线 L=1 光谱项 为43P
S=0 M=1 单重线 L=1 光谱项 为41P
• L≥S时,2S+1就是内量子数,同一光谱 项中包含的J值不同。把J值不同的光谱项 称为光谱支项; 用 n2S+1LJ • 在磁场作用下,同一光谱支项会分裂成 2J+1个不同的支能级;外磁场消失,分裂能 级亦消失. 此现象称为Zeeman效应。 2J+1为能级的简并度或统计权重g。
三、原子发射光谱法的过程 • 由光源提供能量使试样蒸发,形成气态原子, 并进一步使气态原子激发而产生光辐射; • 将光源发出的复合光经单色器分解成按波长顺 序排列的谱线,形成光谱; • 用检测器检测光谱中谱线的波长和强度。
二、原子发射光谱法的特点
• 广谱性 不论气体、固体和液体都可以直接激发。可对 各种不同类型试样(气体、固体和液体)中70多种元 素(金属元素及P、S、N、F、Cl、Br等非金属元素) 进行分析。 • 多元素检测能力 试样一经激发后,由于试样中不同 元素都同时发射特征光谱,可作定性和定量分析。 • 分析速度快 若用光电直读光谱仪,可在几分钟内同时 对几十种元素进行定量分析。分析试样不经化学处理 ,固体、液体样品都可直接测定。 • 选择性好 每种元素因原子结构不同而发射各自不同特 征光谱,可用于对化学性质极为相似的元素的分析, 例如铌和钽、锆和铪等。

原子发射光谱分析

原子发射光谱分析

ICP的分析特点 的分析特点
1. 对大多数元素有高的灵敏度 检测限达 -9-10-11 检测限达10 g·L-1因为温度高(等离子体核处 因为温度高(等离子体核处10000K,中央 ,中央6000- - 8000K);惰性气氛,有利于难熔物质分解。 );惰性气氛 );惰性气氛,有利于难熔物质分解。 2. 测定线性范围宽 因趋肤效应而无自吸现象。 因趋肤效应而无自吸现象 自吸现象。 高频电流密度在导体截面呈不均匀分布, 趋肤效应 高频电流密度在导体截面呈不均匀分布,集 中在导体表层的现象。 中在导体表层的现象。 3. 碱金属电离不造成干扰,因电流密度大。 碱金属电离不造成干扰,因电流密度大。 4. 无电极污染 因是无极放电。 因是无极放电。 5. 耗样量小 载气流速低,试样在中央通道充分激发 载气流速低, 6. 背景干扰小 因工作气体氩气是惰性气体不产生其 它物质。 它物质。
第一共振线 原子由第一激发态跃迁到基态发射的谱线。 原子由第一激发态跃迁到基态发射的谱线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 最易发生,能量最小,一般是最灵敏线,又叫最后线。 原子获得足够的能量(电离能)产生电离。 原子获得足够的能量(电离能)产生电离。失去一个电 子形成一级离子,再失去一个电子形成二级离子。 子形成一级离子,再失去一个电子形成二级离子。 离子由第一激发态跃迁到基态发射的谱线。 电离线 离子由第一激发态跃迁到基态发射的谱线。与电 离能大小无关,离子的特征共振线。 离能大小无关,离子的特征共振线。 识别元素的特征光谱鉴别元素的存在 定性分析 测定特征谱线的强度测定元素的含量 定量分析
R 镇流电阻 调节 和稳定电流 L 减小电流波动
直流电弧工作原理
电弧点燃后,热电子流高速通过分析间隔冲击阳极, 电弧点燃后,热电子流高速通过分析间隔冲击阳极, 产生高热,试样蒸发并原子化, 产生高热,试样蒸发并原子化,电子与原子碰撞电离出 正离子冲向阴极。电子、原子、离子间的相互碰撞, 正离子冲向阴极。电子、原子、离子间的相互碰撞,使 原子跃迁到激发态,返回基态时发射出该原子的光谱。 原子跃迁到激发态,返回基态时发射出该原子的光谱。 弧焰温度: 多种元素激发 弧焰温度:4000~7000 K,可使 多种元素激发。 ~ ,可使70多种元素激发。 绝对灵敏度高,背景小,适合定性分析。 特 点:绝对灵敏度高,背景小,适合定性分析。

原子发射光谱法

原子发射光谱法
灵敏线 是元素激发电位低、强度较大的谱线,多是 共振线。
最后线 是指当样品中某元素的含量逐渐减少时,最 后仍能观察到的几条谱线。
谱线强度
I = A CB
赛伯-罗马金公式
影响谱线强度的因素:
激发电位 统计权重 原子密度
跃迁几率 光源温度 其他因素
仪器
光源
单色器
熔融、蒸发、 离解、激发
分光
检测器 检测
围要大,对于ICP而言准确性也较高。有些元素原子吸收是无 法测定的,但发射可测,如P、S 等;(3)AAS比较普遍,其
价格相对AES便宜,操作也比较简单。
AES理论基础
❖ 原子结构及原子光谱的产生 ❖ 原子的激发和电离 ❖ 谱线强度
原子结构及原子光谱的产生
❖ 原子结构 ❖ 原子光谱的产生
原子结构及原子光谱的产生
激发光源。 ❖ 在一定频率的外部辐射光能激发下,原子的外层电子在由一个
较低能态跃迁到一个较高能态的过程中产生的光谱就是原子吸
收光谱 (AAS)。 ❖ (1)一般来说AES在多元素测定能力上优于AAS,但是AES在
操作上比AAS来的复杂;还有就是AES由谱线重叠引起的光谱
干扰较严重,而AAS就小的多 ;(2)原子发射比吸收测定范
AES的发展简史
❖ 定量分析阶段 20世纪30年代,罗马金(Lomakin)和赛伯(Scheibe) 通过实验方法建立了谱线强度(I)与分析物浓度(c) 之间的经验式--- I = A CB 从而建立了AES的定量分析法。
❖ 等离子光谱技术时代
20世纪60年代,电感耦合等离子体(ICP)光源的 引入,大大推动了AES的发展。
激发光源
激发光源的作用及理想光源 光源 光源选择

原子发射光谱法和原子吸收光谱法的优缺点

原子发射光谱法和原子吸收光谱法的优缺点

原子发射光谱法和原子吸收光谱法是分析化学中常用的两种技术手段,用于测定样品中的元素含量。

它们在实验原理、仪器设备、分析方法等方面存在一些差异,同时也各自具有一些优点和缺点。

下面将详细介绍这两种光谱法的特点。

一、原子发射光谱法1. 原理:原子发射光谱法是基于原子激发态与基态之间的电子跃迁而进行分析的。

样品先被气体火焰、电弧等高温条件下原子化,然后通过外部能量激发原子使其处于激发态,激发态原子会发射出特定波长的光线。

通过检测和测量这些发射光线的强度和波长,可以确定样品中的元素含量。

2. 优点:- 灵敏度高:原子发射光谱法对于大多数元素都具有较高的灵敏度,可以测定低至微克级别的元素含量。

- 多元素分析:原子发射光谱法可以同时分析多个元素,因为不同元素的激发发射光谱具有独特的特征波长,可以通过同时检测多个波长来分析多种元素。

- 范围广:原子发射光谱法适用于固体、液体和气体样品,可以分析多种不同形态的样品。

3. 缺点:- 精密度较低:原子发射光谱法的精密度相对较低,误差较大。

这是因为在样品原子化和激发过程中,可能会出现非选择性的基态原子和激发态原子共存,导致信号的干扰和背景噪声。

- 不适用于稀释样品:如果样品中元素含量过低,原子发射光谱法的灵敏度可能不足以准确测定元素含量。

- 仪器复杂:原子发射光谱法需要使用高温和高能量的电弧或火焰进行样品原子化和激发,因此仪器设备较为复杂。

二、原子吸收光谱法1. 原理:原子吸收光谱法是基于原子对特定波长的光线的吸收而进行分析的。

样品先被原子化,然后经过光源产生的特定波长的光线通过样品,被原子吸收。

通过测量吸收光线的强度,可以确定样品中的元素含量。

2. 优点:- 精密度高:原子吸收光谱法的精密度相对较高,误差较小。

因为在原子吸收过程中,只有特定波长的光线能够被原子吸收,不会受到其他波长光线的干扰。

- 高选择性:原子吸收光谱法可以通过选择不同的波长来分析不同元素,具有较高的选择性。

原子发射光谱法(10)

原子发射光谱法(10)
2
➢当电子数为偶数时, S 取零或正整数 0,1,…
➢ 当电子数为基数时, S 取正旳半整数1/2,3/2, …
J:内量子数。其值为各个价电子组合得 到旳总角量子数 L与总自旋 S旳矢量和。
J 旳取值范围: L + S, (L + S – 1), (L + S – 2), …, L - S
J 旳取值个数:
III: 二次电离离子发射旳谱线
跃迁旳选择定则
1. 在跃迁时,主量子数n旳变化不受限制。
2. ∆ L = ±1,即跃迁只允许在 S 与P 之间、 或P 与S 或 D 之间,D 与P 或F 之间产生等 等。
3. ∆ S = 0。
4. ∆ J = 0,±1。但当J = 0时,∆ J = 0旳跃迁 是禁戒旳。
2. 激发温度
谱线强度与温度旳关系
3. 试样旳构成和构造
1) 蒸发过程
试样旳构成和构造影响 2) 激发过程
4. 试样中元素旳含量
I uo Ac B
5. 谱线旳自吸和自蚀
自吸:原子在高温发射某一波长旳辐射,被 处于边沿低温状态旳同种原子所吸收旳现象。
§2-3 分析仪器
凹面镜
反射镜 光源
光栅摄谱仪
Na 588.996 nm (32S1/2- 32P3/2 )
Na 589.593nm (32S1/2- 32P1/2 )
共振线
由激发态向基态跃迁发射产生旳谱线
原子线和离子线 Mg I 285.21nm,
Mg II 280.27nm,
I: 原子线
Mg III 455.30nm
IIபைடு நூலகம் 一次电离离子发射旳谱线
因为轨道运动和自旋运动旳相互作用, 这两个光 谱支项代表两个能量有微小差别旳能级状态。

原子发射光谱法

原子发射光谱法
a
b
二、定量分析基础-谱线强度
在i, j两能级间跃迁,谱线强度可表示为:
I ij= Ni Aij hυij (1) (Aij 为跃迁几率)
在高温下,处于热力学平衡状态时, 单 Ni位之体间积遵的守基Bo态ltz原m子an数n分N布0与定激律发态原子数
Ni = N0 gi/g0 e-E/kT (2)
第三节 原子发射光谱仪
原子发射光谱法仪器分为三部分:光源、分光 仪和检测器。
一、光源 光源的作用: 蒸发、解离、原子化、激发、 跃迁。 光源的类型:
直流电弧 交流电弧 电火花 电感耦合等离子体(ICP) (Inductively coupled plasma)
主要部分:
1. 高频发生器 2. 等离子体炬管 3. 试样雾化器 4. 光谱系统
R = I / I0 =Acb 取对数,得
lgR = blgc + lgA
此式为内标法光谱定量分析的基本关系式。
2. 校准曲线法: 在确定的分析条件下,用三个或三个以上
含有不同浓度被测元素的标准样品与试样 在相同的条件下激发光谱,以分线强度I或 内标分析线对强度比R或lgR对浓度c或lgc做 校准曲线。再由校准曲线求得试样被测元 素含量。
为(Bgoi,ltgz0m为an激n常发数态,和T基为态温的度统。计) 权,Ei为激发电位,K
把(2)代入(1)得:
Iij=gi/g0AijhυijN0e-Ei/kT
此式为谱线强度公式。 Iij 正比于基态原子N0 ,也就是说 Iij ∝C,这就 是定量分析依据。
影响谱线强度的因素为:
(1)统计权重(gi/g0)
影响谱线强度的因素为:
(4)激发温度(T)
温度升高,谱线强度增大。但温度升高, 电离的原子数目也会增多,而相应的原子 数减少,致使原子谱线强度减弱,离子的 谱线强度增大。

原子发射光谱方法

原子发射光谱方法

原子发射光谱方法是一种常用的元素分析方法,它利用物质原子在高温、高压或电子轰击等激发条件下发射出特定波长的光来确定物质中元素的含量。

其主要原理是将待分析样品中的原子或离子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。

原子发射光谱方法主要包括以下几种:
1原子吸收光谱法(AAS):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时吸收特定波长的光,通过测量吸收光的强度和波长来确定元素的含量。

2.火焰原子发射光谱法(FAS):将待分析样品在高温火焰中燃烧,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。

3.电感耦合等离子体原子发射光谱法(ICP-AES):将待分析样品通过电感耦合等离子体(ICP)的高温高压条件下进行原子化,使其原子或离子激发到高能级,从而发射出特定波长的光,通过测量发射光的强度和波长来确定元素的含量。

4.原子荧光光谱法(XRF):将待分析样品中的元素原子激发到高能级,使其从高能级跃迁到低能级时发射出特定波长的X射线,通过测量发射光的强度和波长来确定元素的含量。

原子发射光谱方法具有高灵敏度、高分辨率、广泛的分析范围和快速分析速度等优点,因此在材料分析、环境监测、食品安全、生命科学等领域得到了广泛应用。

仪器分析原子发射光谱法

仪器分析原子发射光谱法

△E = E2-E1 = hυ= hc/λ Na (1s)2 (2s)2 (2p)6 (3s)1, 3p1、3d1、4s1、4p1、4d1、4f1、 ……
每一条发射谱线的波长取决于跃迁前后两个能级(E2, E1)的差。由于各种元素的原子具有不同的核外电子结构, 根据光谱选律,特定元素的原子可产生一系列不同波长的特 征光谱(组)。原子的能级是量子化的,原子光谱是线状光 谱。通过光谱的辨认和谱线强度的测量可进行元素的定性、 定量分析,这就是原子发射光谱法(AES)。
原子光谱是原子外层电子在不同能级间跃迁的结果。在量 子力学中,电子的运动状态可用四个量子数, 即主量子数n、 角量子数l、磁量子数ml和自旋量子数ms来描述。
主量子数n表示核外电子离核的远近,n值越大,电子的能 量越高,电子离核越远。n值取为1,2,3,…任意正整数。
角量子数l 表示电子在空间不同角度出现的几率,即电子云 的形状,也代表电子绕核运动的角动量。 l 取小于n的整数, 0,1,2,…,n-1。相对应的符号是什么?
在n、L、S、J四个量子数中,n、L、S 确定后,原子 的能级也就基本确定了,所以根据n、L、S 三个量子数 就可以得出描述原子能级的光谱项:
n2S+1L
式中2S+1叫做谱项的多重性。在L≥S 时,2S+1就是内 量子数J可取值的数目,也就是同一光谱项中包含的J 值相同、能量相近的能量状态数。习惯上将多重性为1、 2、3的光谱项分别称作单重态、双重态和三重态。把J 值不同的光谱项称为光谱支项。用下式表示:
1、光源 将试样中的元素转变为原子(或离子) 的过程称为原子化。原子化、激发和发射是在 光源中进行的。
原子发射光谱分析使用的仪器设备主要包括 激发光源和光谱仪两个部分。

原子发射光谱法讲

原子发射光谱法讲
17
ICP形成原理
感应线圈由高频电源耦合供电,产生垂 直于线圈平面的磁场。如果通过高频装 置使氩气电离,则氩离子和电子在电磁 场作用下又会与其它氩原子碰撞产生更 多的离子和电子,形成涡流。强大的电 流产生高温,瞬间使氩气形成温度可达 10000k的等离子焰炬。
18
ICP形成原理
19
ICP火焰
11
原子发射光谱概述
发射谱线,应选择合适的激发温度; 基态原子数N0,在一定的条件下,谱线
强度与N0成正比,这是发射光谱法定量 分析的依据。 当火焰中原子浓度过高,可产生严重的 自吸现象,使谱线中心强度降得很低, 对分析结果产生严重的影响。故不用原 子吸收法做常量分析。
12
原子发射光谱法包括了三个主要的过程: 由光源提供能量使样品蒸发、形成气态
原子、并进一步使气态原子激发而产生 光辐射; 将光源发出的复合光经单色器分解成按 波长顺序排列的谱线,形成光谱; 用检测器检测光谱中谱线的波长和强度。
13
原子发射光谱激发光源
激发光源的基本功能是提供使试样中被 测元素原子化和原子激发发光所需要的 能量。对激发光源的要求是: 灵敏度高,稳定性好,光谱背景小,结 构简单,操作安全。
14
原子发射光谱激发光源
常用的激发光源: 电弧光源。(交流电弧、直流电弧) 电火花光源。 电感耦合高频等离子体光源(ICP光源)
等。
15
电感耦合高频等离子体(ICP)光源
Inductive Coupled Plasma (ICP) 等离子体是一种由自由电子、离子、中
性原子与分子所组成的在总体上呈中性 的气体,利用电感耦合高频等离子体 (ICP)作为原子发射光谱的激发光源 始于上世纪60年代。
16

原子发射光谱法

原子发射光谱法

3.3.6 光谱仪器类型
光电直读光谱仪分为多道直读光谱仪、 单道扫描光谱仪和全谱直读光谱仪三种。 前两种仪器采用光电倍增管作为检测器, 后一种采用固体检测器。 1.摄谱仪 2.多道直读光谱仪 3.单道扫描光谱仪 4.全谱直读光谱仪
3.3.6.1 摄谱仪
平面光栅摄谱仪
3.3.6.2 多道直读光谱仪
3.2 基本原理
3.2.1原子发射光谱的产生
原子的核外电子一般处在基态运动, 当获取足够的能量后,就会从基态 跃迁到激发态,处于激发态不稳定 (寿命小于10 -8 s),迅速回到基态 时,就要释放出多余的能量,若此 能量以光的形式出显,既得到发射 光谱。
8/6/2013
能量与光谱
ΔE=E2- E1 =h c/λ =hυ =hσc λ= h c/E2-E1 υ= c /λ σ= 1/λ
3.3.2.1 溶液试样
气动雾化器:利用动力学原理将液体试样 变成气溶胶并传输到原子化器的进样方式。
(a) 同心雾化器;
(b) 交叉型雾化器;
(c) 烧结玻璃雾化器; (d) Babington雾化器
3.3.2.1 溶液试样
超声雾化器进样是根据超声波振动的 空化作用把溶液雾化成气溶胶后,由载气 传输到火焰或等离子体的进样方法。

ICP
很高
6000~8000 最好
3.3.4 分光仪
原子发射光谱的分光仪目前采用棱镜和
光栅两种分光系统。请参阅第2章。
3.3.5 检测器
目视法:用眼睛来观测谱线强度的方法称 为目视法。仅适用于可见光波段。 摄谱法:用感光板记录光谱。 光电法:光电转换器件是光电光谱仪接收 系统的核心部分,主要是利用光电效应将 不同波长的辐射能转化成光电流的信号。

原子发射光谱法

原子发射光谱法

(1)主量子数n,(2)L为总角量子数,其数值为外层价电子角量 子数l的矢量和.二个价电子耦合(l1, l2) L=(I1+l2),(l1+l2-1)(l1+ l2 -2), ····, l1 - l2 L取值为0,1,2,3, ···· ,相应符号S,P,D,F···· . 如碳原子1s22s22p2 2个P电子, L取值为 (I1+l2)=1+1=2,(l1+l2-1)=1+1-1=1,(l1+ l2 -2)=1+1-2=0, L=2 (D) L=1 (P) L=0(S) (3)S总自旋量子数 电子自旋量子数S的矢量和 如碳原子有 2个P电子,自旋量子数S的矢量和为 1(1/2+1/2),所以有2×1+1=3个值;氮原子有 3个P电子,自旋 量子数S的矢量和为3/2,所以2×3/2+1=4个值 碳原子 氮原子
直流电弧温度高有利于试样蒸发分析灵敏度高,光谱背 景浅。 对试样损伤大,结果重现性差,谱线容易产 生自吸。 2。低压交流电弧 给电容-电感-放电盘回路充电 (3000V)最后击穿放电盘在上述回路中产生高频震荡, 高频震荡电压经变压器升到10000V使另外一电容-电感 -分析间隙回路中分析间隙击穿,低压电流通过被 击穿分析间隙进行弧光放电,电流在分析间隙增加,电 压明显下降,下降到低于放电电压时,电弧熄灭;然后 在下半周高频引弧作用下,电弧重新点燃。这样过程反 复进行,交流电弧 维持不熄。 交流电弧电极温度比较低,电弧弧温比较高;电弧电 流有脉冲性,每次引弧相当新取样,重现性比直流电弧 好;分析灵敏度接近直流电弧。
S=1 s=-1 s=o
s=3/2 s=-3/2 s=1/2 s=-1/2
(4)总内量子数(J) 其值是总角量子数和总自旋量子数 的矢量和:J=L+S;J=(L+S),(L+S-1), ··· , L-S 当L大于等于S时,J有2S+1个值;当L小于S时, J有2L+1个 值.L=1,S=1/2,J有二个值:3/2和1/2.如果L=1,S=1,J有三 个值:2,1,0. J=3/2 S=1/2 L=1 J=1/2 L=1 S=1/2 S=1 L=1 L=1 J=2 J=1 S=1 L=1 S=1 J=0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子发射光谱法
总则
原子发射是当原子或离子在电磁辐射下被激发发射的过程。

在原子发射光谱仪上的样品受到高温,温度高到足以引起不仅离解成原子,而且还造成显著量化的样品的原子碰撞和电离。

一旦原子和离子被激发时,由基态跃迁到激发态,返回到基态时,发射出特征光谱(线状光谱)。

原子发射光谱法是用于通过测定样品中产生的元素原子蒸汽的发射线中的一个强度来确定样品中的元素浓度的技术。

确定在对应于该发射线的波长下进行。

在这一章中只做火焰中的雾化处理。

电感耦合等离子体原子发射光谱(ICP-AES)的方法,在其他章节描述。

仪器设备
包括:
样品导入和雾化系统;
火焰,以产生目的原子;
单色器
检测器
数据采集单元
氧气,空气和可燃气体如氢气,乙炔,丙烷或丁烷可在火焰中使用。

雾化源是至关重要的,因为它必须提供足够的能量,以激发和雾化原子。

从火焰中发出的原子光谱具有比自其他来源元素释放高强度的优点,主要是火焰没有强大到足以引起许多元素雾化。

酸化水是用于制备测试和参比溶液的选择的溶剂,但应采取预防措施,以确保该溶剂不与火焰的稳定性干扰,也可以使用有机溶剂。

干扰因素
光谱干扰可通过选择用于测量的合适的发射线或通过调节用于频谱频带宽度的狭缝被降低或消除。

物理干扰可通过稀释样品,采取标准加入法或基体匹配来消除干扰。

化学干扰是通过使用化学改进剂或电离缓冲溶液来减少干扰的。

记忆效应
记忆效应是装置内的分析物所引起的,可以通过试验过程中彻底漂洗,或如果可能稀释溶液从而降低了它们的盐的含量进行测定的限制,或尽可能迅速地抽吸溶液来减少。

方法
建议实验室尽可能选择塑料器具。

原子吸收光谱仪的操作应按制造厂商说明书,在规定的波长处进行。

优化用于试验要分析的特定元件和相对于样品特定的实验条件(如火焰温度,燃烧器的调整,使用离子缓冲液,溶液的浓度)。

将空白溶液加入原子化器,并调整仪器读数。

通过用溶剂使装置归零而确定空白值。

导入最大浓度的对照溶液,调整灵敏度以便读取最大吸收值。

它会优先使用属于本校准曲线的线性部分内的浓度。

如果不可能,校准曲线也可以是弯曲的,然后可应用校准软件校正。

采用直接标定法(方法I)或标准加入法(方法II),通过对比对照溶液与已知浓度的待测定元素进行测定。

方法一、直接校正法
对于常规检测,需制备和检测3份对照溶液和空白溶液。

按照标准规定,制备供试品溶液(供试液)。

制备不少于3份的待测元素对照溶液,其浓度值应涵盖供试溶液浓度的预期值。

对于含量测定,最佳校正水平介于待测元素预估含量或标准中所规定限度的0.7和1.3倍。

对于纯度测定,校正水平为检测限和为待测元素的规定限度的1.2倍。

对照溶液和空白溶液中应按统一浓度加入供试液中所添加的任何试剂。

每种溶液导入仪器时,应按照相同份数,以便得到稳定读书。

校正。

通过将平均值作浓度的函数,用对照溶液所得平均数值绘制校正曲线。

从所获得曲线上确定供试液中元素的浓度。

方法二、标准加入法
取至少3只相同容量瓶,加入按规定制备的待测物溶液(供试液)。

除一只容量瓶外,向其余瓶中加入含已知浓度的待测元素的对照溶液,逐瓶增大对照溶液的加入量,以得到一系列浓度稳步增加的已知元素溶液,响应曲线的线性部分,如可能。

用溶剂将每一瓶内容物稀释至刻度。

每种溶液导入仪器时,应按照相同份数,以便得到稳定读数。

计算。

用最小二乘拟合计算出图形的线性方程,从而得到供试品溶液中待测元素的浓度。

方法验证
应按适当的时间间隔,验证标准所规定的方法。

线性
按校正范围,制备并检测不少于4份对照溶液及一份空白溶液。

检测不少于5次。

校正曲线的计算方法是最小二乘回归所有测量数据。

用平均值、测量数据和校正曲线的置信区间绘制出回归曲线。

操作方法仅在如下条件符合时有效:
- 相关系数至少为0.99,
- 每个校正水平的残差是随机分布在校正曲线附近。

计算最低和最高校正水平的相对标准偏差。

当估算的最低和最高校正水平的相对标准偏差小于0.5或大于2.0时,使用加权线性回归,能获得更精确的预期校正曲线。

将线性和二次加权函数应用于数据,可找到最适当的加权函数。

如果从线性显示出平均值偏差校正曲线,可使用二维线性回归。

准确度
验证准确性,最好使用经过认证的对照品(CRM)。

如无可能,测定回收率。

回收率
对于含量测定,回收率为90%-110%。

对于其他测定,例如,用于痕量元素分析,如果回收率落在理论值的80%-120%范围以外,该测试无效。

回收率可通过一个合适的而且加入已知量分析物的(校正范围的中间浓度)的对照溶液(基体液)而测定。

重复性
含量应不大于3%,杂质测定应不大于5%。

定量限
确认(例如,使用10σ方法测定)定量限低于所测定的限度值。

相关文档
最新文档