初中数学基本概念
初中数学中有哪些知识点
初中数学中有哪些知识点
中学数学的知识点包括基本概念、解题方法和具体知识点。
①基本概念:因数分解、约分、最小公倍数和最大公约数、算术、几何、数的基本概念。
②解题方法:按照数学问题和解题步骤,正确分析、理解、解决数学
问题,如提出、识别和分解问题、制定策略及计算等。
③具体知识点:数学运算、因式分解、因式恒等式、数列、立体几何、几何图形、平面几何、统计图形及其应用等。
1、数的基本概念:整数、分数、小数、百分数、分数、立方根、开方、二次乘方等。
2、因式分解:如何分解一个复合因式,利用因式分解法求因式,以
及因式分解的运用。
3、算术:四则运算、乘除法运算、加减法运算、二次方程解法、平
方根等。
4、几何:直角三角形、平行四边形、正多边形、圆、椭圆、抛物线
等图形的定义、参数、性质及求面积等。
5、统计图形:柱状图、饼状图、散点图、线图等数据图形的画法、
理解、求出有关信息。
6、数列:数列基本概念、数列的定义、正项数列、公差数列、首项
数列等,包括其等差数列、等比数列的求法以及相关拓展问题的求解。
7、数学建模:根据实际情况,利用抽象的数学模型,得出结论,解决问题,满足要求。
初中数学知识归纳数与代数的基本概念和运算
初中数学知识归纳数与代数的基本概念和运算初中数学知识归纳:数与代数的基本概念和运算数学是一门抽象而又实用的学科,它是我们实际生活中不可或缺的一部分。
在初中阶段,数与代数是数学学习的基础,它们涉及了数的概念、数的分类以及代数运算等内容。
下面将介绍初中数学中与数与代数相关的基本概念和运算方法。
一、数的概念与分类数是用来计量事物多少的概念,是数学中最基本的要素。
在初中数学中,我们主要接触和学习到的数有自然数、整数、有理数和实数等。
1. 自然数:自然数是从1开始的正整数,用N表示。
自然数从1开始依次递增,是最基本的计数单位。
2. 整数:整数包括自然数和负整数,用Z表示。
整数集合包含了0和自然数,它们在数轴上分布开来,整数之间可以进行加减运算。
3. 有理数:有理数是可以表示为两个整数之比的数,用Q表示。
有理数包括正有理数、负有理数以及0,可以进行加减乘除等运算。
4. 实数:实数包括有理数和无理数,用R表示。
实数集合包含了所有的数,它们在数轴上密集分布,实数之间可以进行各种运算。
二、数的运算数的运算是数学中非常重要的一部分,能够帮助我们实现对数的操作和计算。
常见的数的运算包括加法、减法、乘法和除法。
1. 加法:加法是将两个数相加得到一个新的数。
在运算中,被加数加上加数,得到的结果称为和,符号用"+"表示。
2. 减法:减法是将一个数从另一个数中减去,得到差。
在运算中,被减数减去减数,得到的结果称为差,符号用"-"表示。
3. 乘法:乘法是两个数相乘得到一个新的数。
在运算中,被乘数乘以乘数,得到的结果称为积,符号用"×"表示。
4. 除法:除法是将一个数除以另一个数,得到商。
在运算中,被除数除以除数,得到的结果称为商,符号用"÷"表示。
数的运算是有法则和性质的,在实际运算中需要注意运算规则,特别是在运算的顺序和优先级上。
最全初中数学知识点归纳汇总
最全初中数学知识点归纳汇总一、代数1. 代数基本概念:- 代数字母、代数式、项、系数、次数、同类项- 代数运算:加法、减法、乘法、除法、指数、根式、分式运算等2. 一元一次方程与一元一次不等式:- 一元一次方程的解法:移项、合并同类项、消元、代入法等- 一元一次不等式的解法:移项、合并同类项、乘法倒数法、图像法、试值法等3. 平方根与幂运算- 完全平方公式、方程求根公式、配方法、差平方公式等- 幂与根的运算:幂的乘方、幂的除法、阶乘、平方根、立方根、分式指数等4. 初中数列与问题的应用- 等差数列与等比数列的表达式与性质- 求等差数列与等比数列的通项公式及前n项和公式- 数列的递推关系与递归定义,数列求和的方法与应用5. 几何的初步研究- 平行线与垂线的性质:平行线之间的相交定理、垂线之间的相交定理、平行线与垂线之间的关系等- 三角形的性质:三角形内角和定理、全等三角形的判定、相似三角形的判定等- 圆的基本性质:圆的周长、面积、弧长与扇形等二、几何1. 点、线、面的基本概念:- 平面图形:点、直线、线段、射线、角、面等- 三视图:平面图形的三视图及其特点、画法等2. 三角形与四边形的性质:- 三角形内外角与形状特点:等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形等- 四边形的性质:平行四边形、矩形、正方形和菱形等特殊四边形的性质和关系3. 相似形与全等形:- 相似形的基本性质:比例、比例线段、相似比的计算等- 相似三角形的性质与判定:AAA相似、AA相似、SAS 相似等- 全等三角形的性质与判定:SSS全等、ASA全等、AAS 全等等4. 三角形的周长与面积计算:- 角的三角函数:正弦、余弦和正切等- 三角形面积的计算:海伦公式、高度定理、正弦定理、余弦定理等5. 圆的基本性质与圆周率:- 圆的基本概念:圆心、半径、直径、弧度等- 圆周率π的定义、计算与近似值- 圆的面积与弧长的计算三、概率与统计1. 实验与事件:- 随机事件与样本空间的概念- 实验与事件的关系与计算方法:事件的包含、事件的互斥、事件的和与差等2. 频率与概率:- 频率的计算及思维方法:频率分布表、频率分布直方图等- 概率的基本定义与计算方法:古典概型、频率概率、几何概型等3. 相关系数与统计指标:- 相关系数的计算与数据分析:相关系数的正负、强弱、均匀与线性关系等- 统计指标(平均值、中位数、众数)的计算与分析4. 数据的图表与分析:- 数据的处理与整理:数据的调查、整理、总结、分析及处理- 统计图与数据图表的绘制与分析:条形图、折线图、饼图等四、函数与方程1. 函数与函数关系:- 函数的定义与性质:定义域、值域、函数图象等- 一元一次函数、一元二次函数等常用函数的性质与图像2. 函数图像与函数方程:- 函数图像的绘制方法:平移、伸缩等- 函数方程与函数图像之间的关系及求解方法3. 二元一次方程组与方程组:- 二元一次方程组的解法:代入法、消元法、变量替换法等- 一元二次方程组的解法:代入法、消元法、加减交换法等4. 不等式与不等式组:- 一元一次不等式与一元一次不等式组的解法:图像法、试值法、端点法等- 一元二次不等式与一元二次不等式组的解法:零点法、图像法等总结起来,初中数学的知识点主要涉及代数、几何、概率与统计、函数与方程等内容,涵盖了基本概念、运算规则、定理特性、应用方法等。
初中数学的基本概念
初中数学的基本概念数学SHU XUE第一章有理数一.基本概念1.大于0的数叫做正数;小于0的数叫做负数;0既不是正数也不是负数.注(1)正负数通常用来表示一对具有相反意义的量.(2)不一定是负数.(3)负数<0<正数.(要会比较两个数的大小)2有理数"或有理数注:了解几个概念,"正整数"、"负整数"、"非正整数"、"非负整数".3.数轴的三要素:原点、正方向和单位长度.(判断是不是数轴的依据)4.(1)相反数:只有符号不同的两个数叫做互为相反数.(2)倒数:乘积为1的两个数叫做互为倒数.(3)绝对值:数轴上表示数的点与原点的距离叫做数的绝对值.注:① 互为相反数的两数之和为0;互为倒数的两数之积为1.② 0的相反数是0;0的绝对值是0;0没有倒数.③ 出现"平方"、"绝对值"、"距离"等关键字的题目,一般有两个答案.例如:平方为9的数有±3;绝对值为3的数有±3;距离原点3个单位长度的点表示的数是±3.注:要求能够熟练、快速、准确的求出任意一个数的相反数、倒数(0除外)和绝对值.相反数绝对值倒数正数负数正数正数负数正数正数负数000不存在5.科学记数法:把一个大于10的数表示成的形式,就叫做科学记数法.注:是整数位只有一位的数,是正整数.6(1)近似数:它是相对于精确数来说的.(2)有效数字:从一个数的左边第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字.二.有理数的运算法则1.加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)0加任何数都得任何数.2.减法法则:减去一个数,等于加上这个数的相反数.即注:加上一个数等于减去这个数的相反数.例如.3.乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)0乘任何数都得0.4.除法法则:法则1:除以一个不等于0的数,等于乘以这个数的倒数.即法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.5.乘方法则:(1)负数的奇次幂是负数,负数的偶次幂是正数.(2)正数的任何次幂都是正数.(3)0的任何次幂都是0.☆ 任何一个数都可以看作是它本身的1次方.即6.有理数的混合运算法则:(1)先乘方,在乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.三.有理数的运算律1.加法运算律(1)加法交换律:(2)加法结合律:2.乘法运算律(1)乘法交换律:(2)乘法结合律:(3)乘法分配律:☆负数一定要用括号括起来,如:.第二章一元一次方程一.几个基本概念1.等式:用等号连接的式子叫做等式.2.方程:含有未知数的等式叫做方程.3.一元一次方程:只含有一个未知数,并且未知数的次数是一次的方程叫做一元一次方程.注:方程一定是等式,但等式不一定是方程.☆“方程的解”和“解方程”二.等式的基本性质1.在等式的两边同时加上或减去一个数或式子,结果不变.即2.在等式的两边同时乘以一个数,或者除以一个不为0的数,结果不变.即三.解一元一次方程的步骤1.去括号(把括号和括号前边的符号一同去掉,若括号前边是正号,则不变号;若括号前边是负号的,则变做相反的符号.)2.去分母(在等式的两边同时乘以公分母.注意:是等式两边的每一项都要乘以公分母.)3.移项(通常把未知数移到等式的左边,常数项移到等式的右边.注意:从等式的一边移到另一边要变作相反的符号.)4.合并同类项(化简的作用.)5.化系数为1.四.利润问题、工程问题1.利润=售价-进价=进价利润率(盈利率)售价=进价+利润=原价折扣数利润率=利润进价2.工作总量=工作效律工作时间注意:做题时,往往把工作总量看作1.顺流(风)速度=静水(风)速度+水(风)流速度逆流(风)速度=静水(风)速度-水(风)流速度★ 补充教材★(一)字母表示数如:若、分别表示两个数,则加法的交换律可以表示为,乘法交换律可以表示为等.还有解方程中的、圆面积中的等都表示数字.☆字母与字母相乘,乘号可以省略不写,或简单记作“ ”,数字与字母相乘,一定要把数字写在字母的前面,并把数字叫做该项的系数.(二)代数式像、、、等这样的式子都是代数式.(三)代数式求值1.填写下表1234511264252.人体血液的质量约占人体体重的6%~7.5%,如果某人体重是千克,那么他的血液质量大约在什么范围内?(四)去括号(比较与添括号)去括号的法则:(1)括号前边是"",把括号和它前面的""一同去掉,原括号里各项的符号都不改变.(2)括号前边是"",把括号和它前面的""一同去掉,原括号里各项的符号改变为相反的符号.(即正变负,负变正)第三章图形认识初步注:平面几何要求熟记面积公式和周长公式,立体几何要求会作图,知道它们的顶点、棱、面的个数.2.直线、射线、线段.端点长短粗细表示直线无无无直线AB射线1无无射线AB 线段2有无线段AB(1)两点之间线段最段.两点确定一条直线.(2)点和直线的位置关系:① 点在直线上(直线经过点)② 点在直线外(直线不经过点)(3)点动成线,线动成面,面动成体.即:无数个点构成线,无数条线构成面,无数个面构成体.3.角的两种概念:(1)有公共端点的两条射线构成的图形叫做角.(2)一条射线绕着它的端点旋转后得到的图形叫做角.4.角的度量1度=分=秒.(要求:熟悉单位之间的换算)例如:(1)23度15分=___度.(2)75.5度=____度___分.5.余角和补角.(会求任意角的余角和补角)(1)若两角之和为度,则称这两个角互为余角.(2)若两角之和为度,则称这两个角互为补角.☆ 同(等)角的余角相等;☆ 同(等)角的补角相等.第四章数据的收据与整理☆调查☆调查的方式有:问卷调查、访问调查、查阅文献资料和实验等.1.收据数据(制作调查问卷)2.整理数据(制作表格)3.描述数据(条形统计图、扇形统计图、折线统计图)4.分析数据(得出结论、给出建议)☆本章:要求会作统计图、会看统计图、会分析统计图,最后得出结论.第五章相交线与平行线一.基本概念1.两直线的位置关系(1)相交(有一个交点)(2)平行(无交点)☆垂直是相交中的一种特例.☆ 三条直线相交有1个或3个交点.2.邻补角(互补)3.对顶角(相等)4.垂直(90o)5.垂足(交点)6.点到直线的距离:直线外一点到这条直线的垂线段的长度叫做,叫做点到直线的距离.☆所有的距离都是指垂直距离.7.两条平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.8.命题:判断一件事情的语句叫做命题.包括条件和结论.一般写成"如果……那么……"的形式.可分为真命题和假命题.你能找出左图中的邻补角、对顶角吗?二.基本性质1.过一点有且只有一条直线与已知直线平行.(点可以在直线上,也可以在直线外)2.过直线外一点,有且只有一条直线和已知直线垂直.3.连接直线外一点与直线上各点的所有线段中,垂线段最短.(简单说成:垂线段最短.)4.(平行的传递性)如果两条直线都与第三条直线平行,那么这两条直线也相互平行.即:如果a∥b,b∥c ,那么a∥c.(平行的传递性)☆ 等式的传递性:若A=B,B=C,则A=C.☆ 全等(相似)三角形的传递性6.两直线平行的条件(判定):(1)同位角相等,两直线平行.(2)内错角相等,两直线平行.(3)同旁内角互补,两直线平行.7.平行线的性质:(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.你能找出左图中的同位角、内错角、同旁内角吗?8.(1)平移不改变图形的大小和形状.(2)连接各组对应点的线段平行且相等.第六章平面直角坐标系一.平面直角坐标系(直角坐标系)及其相关概念(坐标原点)纵坐标横坐标☆ 有序数对:有顺序的两个数a与b组成的数对,叫做有序数对.记作(a,b).☆ 一般情况下:(a,b)≠(b,a)☆ 点的坐标就是一个有序数对.☆ 原点O的坐标是(0,0),x轴上的坐标是(x,0),y轴上的坐标为(0,y).二.用坐标表示平移1.左右平移,纵坐标不变,横坐标左减右加.2.上下平移,横坐标不变,纵坐标上加下减.第七章三角形一.基本概念1.三角形2.多边形(凸、凹)3.正多边形(各个角相等,各条边相等)4.内角(简称为角,三角形、多边形的内角)5.外角(三角形、多边形的外角)6.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.7.三角形的高(垂直,即90o)、中线(线段相等)、角平分线(角相等)二.基本性质1.三角形的任意两边之和大于第三边.(判断任意三条线段能否组成三角形的依据)2.三角形具有稳定性.3.n边形的内角和为(n-2)·180o;三角形的内角和为180o,四边形的内角和为360o.4.多边形的外角和为360o.5.(1)三角形的一个外角等于与它不相邻的两个内角和.(2)三角形的一个外角大于与它不相邻的任何一个内角.第八章二元一次方程组一.基本概念1.二元一次方程:含有两个未知数,并且未知数的次数都是一次的方程叫二元一次方程.2.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就叫做二元一次方程组.3.二元一次方程的解:使二元一次方程左右两边相等的未知数的值,叫二元一次方程的解.4.二元一次方程组的解:二元一次方程组的两个方程的公共解叫二元一次方程组的解.二.解二元一次方程组的两种方法1 .代入消元法(代入法):由二元一次方程组中的一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.2.加减消元法(加减法):两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.☆如何消元更简单?如果有一个未知数的系数是1,那么通常情况下采用代入消元法;如果两个二元一次方程中同一未知数的系数相反或相等时,那么通常情况下采用加减消元法.第九章不等式与不等式组学习方法:学习本章要结合前面的等式、方程、方程组进行对比学习,注意知识之间的融会贯通,找出它们之间的联系和区别.一.基本概念1.不等式:用不等号(<、≤、>、≥、≠)连接的式子叫做不等式.2.不等式的解:使不等式成立的未知数的值叫做不等式的解.3.解的集合(解集):不等式的所有解组成的结合叫做解的集合(解集).4.一元一次不等式:含有一个未知数,未知数的次数是一次的不等式叫做一元一次不等式.5.一元一次不等式组:把两个一元一次不等式合起来,组成一个一元一次不等式组.6.不等式组的解集:几个不等式解集的公共部分,叫做它们组成的不等式组的解集.二.不等式的基本性质1.不等式的两边加(或减)同一个数(或式子),不等号的方向不改变.如果a >b,那么a±c >b±c.2.不等式两边乘(或除以)同一个正数,不等号的方向不改变.如果a>b,c>0,那么ac >bc(或)3.不等式两边乘(或除以)同一个负数,不等号的方向要改变.如果a>b,c<0,那么ac <bc(或)三.解不等式的一般步骤去分母→去括号→移项→合并→化系数为1(系数是负数时,不等号的方向要改变).四.用不等式(组)解决实际问题的一般步骤解设→找出不等量关系,列出不等式(组)→求解不等式(组)→考虑问题的实际意义→作答.☆到底是选择方程(组)还是选择不等式(组)解题,主要是看是否有以下关键词:不能完成任务,提前完成任务;超过,不超过.第十章实数一.基本概念1.平方根:若x2=a,则称x是a的平方根,记作:x=± ;其中x=叫做a算术平方根,x=-,叫做a的负的平方根.""读做二次根号a,a叫做被开方数.2.开平方:求一个数a的平方根的运算叫做开平方.平方与开平方互为逆运算.3.立方根:若x3=a,则称x是a的立方根做:x=;""读做三次根号a,a叫做被开方数.3叫做根指数.4.开立方:求一个数立方根的运算叫做开立方.立方与开立方互为逆运算.算术平方根(1个)平方根(2个)立方根(1个)正数正数互为相反数正数0000负数不存在不存在负数5.无理数:无限不循环小数叫做无理数.它包括正无理数和负无理数.6.实数:有理数和无理数统称为实数.(1)实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.(2)有理数关于相反数和绝对值的意义同样适合于实数;在进行实数的运算时,有理数的运算法则及运算性质等同样适用.二.实数的两种分类无限不循环小数有限小数和无限循环小数1.2.第十一章一次函数一.基本概念1.常量:数值不发生变化的量.2.变量:数值发生变化的量.3.自变量(x);函数(y);函数值;函数图象.二.两种重要的函数1.正比例函数y=kx (k≠0)它的图象是一条经过原点的直线.⑴当k>0时,图象过一、三象限;上升;y随x的增大而增大.⑵当k<0时,图象过二、四象限;下降;y随x的增大而减小.2.一次函数y=kx+b (k≠0)⑴当k>0时,;上升;y随x的增大而增大.⑵当k<0时,;下降;y随x的增大而减小.☆ 当b=0时,一次函数就是正比例函数.三.函数图象的平移直线y=kx+b是由直线y=kx平移︱b︱个单位长度得到(当b>0时,向上平移;当b<0时,向下平移).四.用函数观点看方程(组)与不等式即用函数图象解方程(组)与不等式1.解一元一次方程把一元一次方程化为ax+b=0(a≠0)的形式,把左边看成一个一次函数y=kx+b,函数图象与x轴的交点的横坐标就是方程的解.2.解二元一次方程组一个二元一次方程对应一条直线,一个二元一次方程组就对应两条直线.两条直线的交点就是方程组的解(横坐标是x的解,纵坐标是y的解).3.解不等式把不等式化为ax+b>0或ax+b<0的形式,解不等式可以看作:函数值大(小)于0时,求自变量相应的取值范围.关键还是看函数图象与x轴交点的横坐标的值.五.常见题型和做题方法1.常见题型①怎样判断一个点是否在函数图象上?②怎样判断一个图象是不是函数图象?③正比例函数、一次函数的概念?2. 做题方法① 待定系数法求正比例函数、一次函数的解析式.② 题目中说:某个点在函数图象上(函数图象经过某个点),通常情况下需要把这个点的坐标代入函数的解析式.第十二章数据的描述一.基本概念1.频数:(城市)个数.2.频率=频数÷总数.(总数=频率×总数)3.组数.4.组距:前后两个端点的差叫做组距.5.组中值:各个小组两个端点的平均数叫做组中值.二.几种常见的统计图要求:会作图、会看图(分析图).1.条形图特点:能够显示每组中的具体数据.作图和看图时:需注意横轴、纵轴分别表示什么,条形图中应该有几"条".2.扇形图特点:能够显示部分在总体中所占的百分比.作图和看图时:需要有图例,注意扇形图中有几个扇形,能求出各个扇形所对的弧长、圆心角的度数、扇形面积.L弧长=圆周长×百分比S扇形=圆面积×百分比圆心角=360°×百分比3.折线图特点:能够显示数据的变化趋势.作图看图时:需要注意横坐标、纵坐标分别表示什么.坡度越陡,变化趋势就越大.4.直方图特点:能够显示数据的分布情况.作图看图时:需先找出数据中的最大数据和最小数据,确定组距(≥3)、分出组数(5至12组),确定横轴、纵轴分别表示什么.第十三章全等三角形一.基本概念1.全等形:形状、大小完全相同的图形(能够完全重合的图形)叫做全等形.2.全等三角形:形状、大小完全相同三角形(能够完全重合的三角形)叫做全等三角形.① 对应点:重合的点叫做对应点.② 对应边:重合的边叫做对应边.③ 对应角:重合的角叫做对应角.3.公共边、公共角二.性质1.全等三角形的性质:① 全等三角形的对应边相等.② 全等三角形的对应角相等.由此可知:要证明分别属于两个三角形的线段相等或者角相等的问题,通常通过证明这两个三角形全等来解决.2.角平分线的性质:① 角平分线上的点到角两边的距离相等.② 到角两边的距离相等的点在角平分线上.三.三角形全等的条件(如何判断两个三角形全等)1.任意两个三角形全等的条件:① 三边对应相等的两个三角形全等(SSS)② 两边及夹角对应相等的两个三角形全等(SAS)③ 两角及夹边对应相等的两个三角形全等(ASA)④ 两角及其中一个角所对的边对应相等的两个三角形全等(AAS).2.直角三角形(Rt△)全等的条件:斜边和一直角边对应相等的两个三角形全等(HL)第十四章轴对称一.基本概念1.轴对称图形:(1个图形)相关概念,对称点、对称边、对称角.2.成轴对称图形:(2个图形)3.对称轴:其实质是一条直线.注意:(成)轴对称图形一定是全等形,但全等形不一定是轴对称图形.4.垂直平分线(中垂线):垂直、平分.5.轴对称变换:由一个平面图形得到它的轴对称图形的过程(动作)叫轴对称变换.注意:对称轴方向和位置发生变换时,得到图形的方向和位置也会发生变换.6.等腰三角形:相关概念,等腰直角三角形(等腰三角形、直角三角形)、腰、底边、顶点、底角、顶角.等边三角形是一种特殊的等腰三角形.二.几条重要的性质1.垂直平分线的性质(联系角平分线的性质记忆)(1)垂直平分线上的点到线段两端点的距离相等.(2)到线段两端点距离相等的点在垂直平分线上.2.轴对称图形的性质(作某个图形关于某条直线的对称图形、作对称轴的依据).(1)任意一对对称点的连线段的垂直平分线是对称轴.(2)对称轴垂直平分任意一对对称点的连线段.3.等腰三角形的性质(1)等腰三角形的两个底角相等.(简记为"等边对等角")注意:大边对大角,小边对小角.它们的逆定理同样成立,例如:等角对等边.(2)三线合一(三线是指:底边的高、中线、顶角的角平分线)注意区分中线、中位线、中垂线(垂直平分线).4.等边三角形的性质(1)等边三角形的三个内角都等于60。
初中数学基本概念整理
初中数学基本概念整理数学是一门理科,它以数字、符号和公式为基础,研究数量、结构、变化和空间等概念之间的关系。
在初中阶段,学生们开始接触到一些数学的基本概念,这些概念是建立数学知识体系的基础。
下面,我们将整理一些初中数学的基本概念,以帮助学生们更好地理解和应用这些概念。
1. 整数:正整数、负整数和零统称为整数。
在数轴上,整数被表示为点,其中正整数位于零的右侧,负整数位于零的左侧。
整数可以进行加减乘除的运算,如2 + 3 = 5,4 - 6 = -2,5 × (-2) = -10,等等。
2. 分数:分数是表示两个整数之间的部分关系的数字。
它由一个分子和一个分母组成,分子表示分数的一部分,分母表示整体被分成的部分数。
例如,1/2表示一个整体被等分为两个部分中的一部分。
3. 百分数:百分数是将数值表示为百分比的形式。
百分号表示每100个单位中的多少个单位。
例如,75%表示每100个单位中的75个单位。
4. 质数和合数:质数是只能被1和自身整除的正整数,例如2、3、5、7等。
而合数是至少有一个真除数(除了1和它本身)的正整数,例如4、6、8、9等。
5. 小数:小数是表示数值中的小部分的方式,它们由整数部分和小数部分组成,中间用小数点分隔。
例如,3.14是圆周率的一个近似值。
6. 比例和比例关系:比例是指两个或多个数字之间的比较关系。
比例关系是用来描述这种比较关系的数学表达式。
例如,当两个量的比例保持不变时,我们可以说它们之间存在比例关系。
7. 平方数和平方根:平方数是一个数的平方,例如1、4、9、16等。
平方根是一个数的平方等于给定数的正数解,例如√4 = 2。
8. 代数表达式和方程式:代数表达式是由数字、变量和运算符组成的数学表达式,可以用来表示数学关系。
方程式是由等号连接的两个代数表达式,我们可以通过求解方程式来找到使其成立的变量值。
9. 图形:图形是平面上的点、线和面之间的关系和组合。
常见的图形包括点、线段、角、三角形、四边形等。
初中数学基本概念整理
初中数学课本基本概念整理【1】七上有理数:整数和分数的统称。
数轴:用一条直线上的点表示数,这条直线叫做数轴。
原点:在直线上任取一个点表示数0,这个点叫做原点。
相反数:只有符号不同的两个数叫做互为相反数。
绝对值:一般地,数轴上表示午数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是。
倒数:乘积是1的两个数互为倒数。
乘方:求n个相同因数的积的运算。
幂:乘方的结果。
科学计数法:把一个大于10的数表示成a•10n的形式(其中a大于或等于1且小于10,n是正整数)单项式:数或字母的积的式子以及单独的一个字母或一个数。
系数:单项式中的数字因数叫做这个单项式的系数。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的和。
多项式的项:多项式中每个单项式叫做多项式的项。
多项式的次数:多项式里,次数最高项的的次数,叫做这个多项式的次数。
整式:样单项式与多项式的统称。
同类项:所含字母相同,并且相同字幕的指数也相同的项叫做同类项。
合并同类项:把多项式中的同类项合并成一项。
合并同类项后,所得项的系数是合并前个同类项的系数的和,且字母连同它的指数不变。
方程:含有未知数的等式。
一元一次方程:只含有一个未知数,未知数的次数都是一,等号两边都是整式。
等式的性质1:等式两边加(减)同一个数,(或式子结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为的数,结果仍相等。
七下:在同一平面内,过一点有且只有一条直线与已知直线垂直。
垂线段最短直线外一点到这条直线的垂线段长度,叫点到直线的距离。
经过直线外一点,有且只有一条直线与这条直线平行。
如果两条直线都与第三条直线平行,那么这两条直线互相平行。
同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补判断一件事情的语句,叫命题,命题由题设和结论组成如果题设成立那么结论一定成立,叫真命题如果题设成立结论不一定成立,叫假命题正确性得到推理证实的真命题叫定理推理一个命题的正确性叫证明0的算数平方根是0若一个正数a平方等于x,a叫x的算数平方根。
初中数学概念定理公式大全
初中数学概念定理公式大全初中数学涉及的概念、定理和公式非常多,下面是一些常见的数学概念、定理和公式:一、数的性质和运算1.基本运算:加法、减法、乘法、除法2.数的性质:整数、自然数、有理数、无理数、实数、虚数3.质数和合数:质数的定义、判断质数和合数的方法4.互质和最大公约数:互质的定义、最大公约数的概念、求最大公约数的方法5.奇数和偶数:奇数和偶数的性质、相邻奇偶数之和的规律6.分数和比例:分数的概念、比例的概念、比例的性质、比例的延伸应用二、代数运算1.代数式的定义:代数式的定义、代数式的常见形式2.代数式的运算:-合并同类项:合并同类项的概念、合并同类项的方法-因式分解:因式分解的概念、因式分解的方法-展开式:展开式的概念、展开式的方法-化简式:化简式的概念、化简式的方法三、方程与不等式1.一元一次方程:一元一次方程的定义、解一元一次方程的方法2.一元二次方程:一元二次方程的定义、求解一元二次方程的方法3.一元一次不等式:一元一次不等式的概念、解一元一次不等式的方法4.一元二次不等式:一元二次不等式的概念、解一元二次不等式的方法5.消元法:消元法的概念、使用消元法解方程和不等式四、几何1.点、线和面:点、线、面的概念及基本性质2.图形的构造:用尺规作图和量角器作图3.圆的性质:圆的定义、圆的性质、判定两条线段相等的方法4.三角形的性质:三角形的定义、三角形的性质、特殊三角形的性质5.直线和平面的相交关系:相交、平行和垂直的概念及判定方法6.三角形的面积和周长:三角形的面积公式、三角形的周长公式、特殊三角形的面积和周长公式五、统计与概率1.平均数:算术平均数、几何平均数、调和平均数的概念和计算方法2.概率:概率的概念、事件的概念、计算概率的方法3.统计图表:频数、频率、统计表和统计图的基本概念及应用六、计算器使用技巧1.整数运算:整数加减乘除的计算方法2.分数运算:分数加减乘除的计算方法、混合数的运算方法3.平方根和立方根:平方根和立方根的计算方法4.百分数的计算:百分数的计算方法、提高和降低百分数的计算方法。
初中数学的概念界定
初中数学的概念界定初中数学是指在初中阶段所学习的数学知识和技能。
初中数学的主要内容包括数与代数、几何与图形、函数与方程、统计与概率等方面的知识。
它是中学数学的基础,对于学生的数学素养和综合能力的培养起着重要的作用。
首先,初中数学的核心概念是“数”。
数是数学中最基本的概念,它包括整数、分数、小数和实数等。
初中数学要求学生掌握数的读写、比较大小、加减乘除等运算方法,并能够用数解决实际问题。
其次,初中数学的概念界定中涉及到的另一个重要概念是“代数”。
代数是数学的一个重要分支,它是用字母和数字表示数的关系和运算的一种方法。
在初中数学中,学生通过学习代数可以进一步理解数的性质和规律。
代数的内容包括字母表达式、代数方程等。
几何与图形是初中数学中的另一个重要内容。
几何包括平面几何和立体几何。
平面几何主要涉及到线段、角、三角形、四边形、平行线、相似和全等等概念。
立体几何主要涉及到立体图形的认识、计算体积和表面积等知识。
图形部分包括平面图形的认识、运动、相似以及解决问题的能力。
函数与方程是初中数学的核心内容之一。
函数是数学中很重要的一种数学关系,它描述了自变量和因变量之间的关系。
方程是代数中的重要概念,是一种等式,其中包含未知数。
函数与方程的学习可以培养学生的逻辑思维和解决实际问题的能力。
统计与概率是初中数学的另一个重要内容。
统计是收集、整理和分析数据的方法。
学生通过学习统计可以了解数据的特征和规律,并能够用统计做出合理的推断和判断。
概率是研究随机事件发生可能性的一门学科,它与日常生活密切相关。
学生通过学习概率可以深入理解随机事件和概率的分布规律。
初中数学的学习不仅要求学生掌握相关的知识和技能,更重要的是培养学生的数学思维和解决问题的能力。
初中数学教育应当注重培养学生的逻辑思维、抽象思维、推理能力和创新精神。
通过培养学生对数学的兴趣和理解,可以提高他们的数学素养和综合能力,为他们今后更高层次的数学学习打下坚实的基础。
最全初中数学知识点全总结
最全初中数学知识点全总结初中数学是学生数学学习的重要阶段,它为高中及以后的数学学习打下坚实的基础。
本文将对初中数学的主要知识点进行全总结,以帮助学生更好地复习和掌握这些概念。
# 1. 数与代数整数 and Rational Numbers- 整数: 正整数、负整数、零; 偶数、奇数; 整数 operations (加、减、乘、除)。
- 有理数: 有理数的概念; 有理数的四则运算; 绝对值。
Polynomials- 多项式的概念; 单项式与多项式; 多项式的加减运算。
- 多项式的乘法; 多项式的长除法和短除法。
- 因式分解: 提取公因式、公式法、分组分解。
Equations and Inequalities- 一元一次方程、二元一次方程、不等式及其解集。
- 解方程的基本方法: 代入法、消元法、加减法。
- 不等式的解法: 基本性质、画数线法。
Fractions and Decimals- 分数的基本性质; 分数的四则运算。
- 小数的概念; 小数的四则运算。
- 百分数的计算及其应用。
Sequences and Series- 序列的概念; 等差数列、等比数列的定义和性质。
- 等差数列和等比数列的通项公式和求和公式。
- 数列的实际应用问题。
# 2. 几何Plane Geometry- 点、线、面的基本性质。
- 角的概念和分类: 邻角、对角、同位角等。
- 三角形的分类和性质: 等边、等腰、直角三角形。
- 四边形的分类和性质: 平行四边形、矩形、菱形、正方形。
Circle- 圆的基本性质; 圆的方程。
- 圆与直线、圆与圆的位置关系。
- 圆的切线和割线; 圆周角定理。
Solid Geometry- 空间图形的认识: 立方体、长方体、圆柱、圆锥、球。
- 体积和表面积的计算公式。
Coordinate Geometry- 坐标系的建立和应用。
- 点的坐标表示和距离公式。
- 直线和曲线的方程。
Transformations- 平移、旋转、反射和缩放的概念及其在几何中的应用。
数学知识点总结初中基础
数学知识点总结初中基础一、数与代数1. 整数s和有理数- 整数包括正整数、零和负整数,是实数的离散部分。
- 有理数是由整数和分数构成的数集,可以表示为两个整数的比,形式为a/b,其中a和b是整数,b不等于零。
2. 无理数- 无理数是不能表示为简单分数的实数,例如圆周率π和黄金比例φ。
3. 代数表达式- 代数表达式是由数字、字母(代表变量)和运算符(加、减、乘、除)组成的数学表达式。
4. 方程与不等式- 方程是两个表达式通过等号连接的式子,求解方程就是找到使得等式成立的变量值。
- 不等式表示两个表达式之间的大小关系,使用符号“<”或“>”来表示。
5. 函数- 函数是一种特殊的关系,每个输入值(自变量)对应一个输出值(因变量)。
- 函数的图像是坐标平面上的点集,其中每个点的横纵坐标满足函数关系。
二、几何1. 平面几何- 点、线、面是构成平面几何的基本元素。
- 直线、射线和线段是线的基本形式,其中线段是有限长度的直线部分。
2. 三角形- 三角形是三条线段首尾相连形成的图形,根据边长和角度的不同,三角形有多种分类,如等边三角形、等腰三角形和直角三角形。
3. 圆- 圆是由所有与给定点(圆心)距离相等的点组成的平面图形。
- 圆的周长(圆周)和面积的计算公式分别是C=2πr和A=πr²,其中r是圆的半径。
4. 四边形- 四边形是由四条线段首尾相连形成的图形,常见的四边形有正方形、长方形、菱形和梯形。
5. 几何变换- 几何变换包括平移(移动)、旋转(绕一点转动)、轴对称(关于某条直线对称)和缩放(放大或缩小)。
三、统计与概率1. 数据的收集和整理- 数据可以通过观察、实验和调查等方式收集。
- 数据整理通常包括分类、汇总和制表等步骤。
2. 描述性统计- 描述性统计包括计算数据的中心趋势(如平均数、中位数和众数)和离散程度(如方差和标准差)。
3. 概率- 概率是衡量事件发生可能性的数值,通常介于0和1之间。
初中数学知识点总结基础
初中数学知识点总结基础初中数学是学生数学学习的重要阶段,它为高中及以后的数学学习打下坚实的基础。
初中数学的知识点涵盖了算术、代数、几何和概率等多个领域。
以下是初中数学的基础知识点总结:# 算术1. 整数:包括整数的加法、减法、乘法和除法,以及它们的运算规则和性质。
2. 分数:分数的加减乘除运算,分数的化简、通分和约分。
3. 小数:小数的加减乘除运算,小数与整数、分数之间的转换。
4. 百分比:百分比的计算和应用,包括折扣、税率等实际问题的解决。
# 代数1. 代数表达式:单项式和多项式的概念,代数表达式的书写和简化。
2. 方程:一元一次方程、二元一次方程和不等式的解法,包括解方程的基本步骤和常用方法。
3. 函数:函数的概念,线性函数和二次函数的图像及性质。
4. 因式分解:提取公因式法、分组分解法、公式法等因式分解的方法。
5. 多项式运算:多项式的乘法、除法以及因式分解。
# 几何1. 平面几何:- 点、线、面的基本性质。
- 角的概念,包括同位角、内错角、同旁内角等。
- 三角形的性质,包括三角形的分类、内角和定理、外角定理。
- 四边形的性质,包括平行四边形、矩形、菱形、正方形等。
- 圆的性质,包括圆的基本概念、圆周角定理、垂径定理等。
- 面积和体积的计算,包括各种平面图形和立体图形的面积和体积公式。
2. 空间几何(部分学校可能会在初中阶段涉及):- 立体图形的基本概念,如棱柱、棱锥、圆柱、圆锥和球。
- 立体图形的表面积和体积的计算。
# 概率与统计1. 概率:概率的基本概念,包括随机事件、概率的计算和应用。
2. 统计:数据的收集、整理和描述,包括平均数、中位数、众数的计算和意义。
# 数学思维与方法1. 逻辑推理:培养学生的逻辑思考能力,包括归纳推理和演绎推理。
2. 数学证明:介绍数学证明的基本方法,如直接证明、反证法等。
3. 问题解决:培养学生运用数学知识解决实际问题的能力。
# 练习与应用- 通过大量的练习题来巩固和深化对知识点的理解和应用。
初中数学题型方法全归纳书籍
初中数学题型方法全归纳书籍一、初中数学基本概念和公式初中数学是整个数学学习体系中的基础环节,掌握好初中数学的知识点对于以后的学习至关重要。
在本书中,我们将初中数学的知识点进行了归纳和整理,并附上了相应的公式和解题方法。
1.代数基本概念和公式:(1)代数式:用运算符号连接数字或字母的式子。
(2)单项式:数字或字母的乘积,这样的代数式叫做单项式。
(3)多项式:有两个或两个以上项的代数式叫做多项式。
(4)同类项:在多项式中,相同字母的次数相同,这样的项叫做同类项。
(5)方程:含有未知数的等式叫做方程。
(6)一元一次方程:含有一个未知数,并且未知数的次数是一次的方程叫做一元一次方程。
2.几何基本概念和图形:(1)几何图形:由点、线、面、体等基本元素组成,能够用图形的形式表达出来的概念和性质。
(2)直线:没有端点,无限延伸的线。
(3)射线:端点一个,另一端无限延伸的线。
(4)线段:有两个端点,有限且可以度量的线。
(5)平行线:在同一平面内,不相交的两条直线叫做平行线。
(6)三角形:由三条边组成的图形。
(7)四边形:由四条边组成的图形,包括矩形、菱形、梯形等。
二、初中数学典型题型与方法初中数学题型丰富多样,本书将常见的题型进行了归纳整理,并给出了相应的解题方法。
读者可以根据自己的需求进行有针对性的学习。
以下是一些常见的初中数学题型的解题方法。
1.单项选择题:这类题型主要考察学生对基本概念的理解和掌握情况。
解题技巧包括读题理解题意、比较选项异同、判断选择答案等步骤。
2.填空题:填空题主要考察学生的基本运算能力和推理能力。
解题技巧包括仔细审题、利用公式或法则进行运算、注意运算的准确性等。
3.计算题:计算题是初中数学的重要题型,包括有理数运算、代数式运算、方程求解等。
解题技巧包括明确运算顺序、使用简便方法、注意运算结果的准确性等。
4.证明题:证明题主要考察学生的逻辑推理能力和空间想象能力。
解题技巧包括仔细读题、寻找证明线索、逐步推理、反复验证等步骤。
数学中考知识点归纳2023
数学中考知识点归纳2023
数学中考知识点:
(一)初中数学基础知识
1. 数的性质:自然数、整数、有理数、无理数、实数
2. 数的运算:加、减、乘、除、乘方、开方
3. 数的表示法:分数、百分数、比例、数列、代数式
4. 数的变化规律:倍数、百分率、利率、增长率、减少率
(二)初中数学基本概念
1. 数学中的图形:点、线、面、体、多面体
2. 图形的性质:角、边、对称、相似、恒等、平行、垂直
3. 圆的相关概念:圆心、半径、直径、圆周、弧、扇形、面积
(三)初中代数基础知识
1. 代数式的基本概念:变量、常量、系数、项、幂
2. 代数式的拆分、合并与系数分离等基本操作
3. 一元一次方程及其解法:加减消去法、配方法、公式法等
4. 简单的函数的概念和表示:自变量、函数值、函数的图像等
(四)初中几何基础知识
1. 基本几何图形的面积:矩形、平行四边形、三角形、梯形、圆
2. 三角形的相关概念:高、中线、角平分线、外心、内心、垂心
3. 几何证明:数学思想、证明方法、证明过程等
(五)初中统计与概率基础知识
1. 双变量统计:统计图表、相关系数等
2. 概率的基本概念:事件、样本空间、概率、条件概率等
3. 简单的排列组合问题:阶乘、组合数、排列等
以上是数学中考知识点的基本归纳,掌握这些知识点能够提高学生的数学基本素养,有利于顺利应对中考中的数学题目。
初中七年级数学知识点总结
初中七年级数学知识点总结一、数的基本概念与表示方法1. 数的概念2. 自然数、整数、有理数、无理数、实数3. 数轴、坐标系与平面直角坐标系4. 有序数对二、整数的基本运算1. 整数的加法2. 整数的减法3. 整数的乘法4. 整数的除法和正数的倒数5. 括号与整数运算6. 同号数相除、异号数相除7. 乘法运算法则8. 整数的分配律三、分数1. 分数的基本概念2. 分数的相等与约简3. 分数的大小比较4. 基本分数的运算(加、减、乘、除)5. 分数的混合运算6. 分数的倒数与相反数7. 分数的化简四、实数的运算1. 实数的加法2. 实数的减法3. 实数的乘法4. 实数的除法5. 括号与实数运算6. 实数的分配律五、比例与比例运算1. 比例的定义2. 比例中的基本概念(比例的共线性,比例的延长与缩短)3. 比例的性质4. 比例的简化与扩展5. 比例算式6. 各种量的直接比例与反比例关系7. 比例的应用(物品、工作、速度等问题)六、百分数1. 百分数的定义与基本性质2. 百分数的转换与计算3. 百分数的应用(物价、折扣、利息等问题)七、平方根与立方根1. 平方根的概念与性质2. 平方根的计算与性质3. 非负数的算术平方根的求法4. 立方根的概念与运算八、代数式与代数方程1. 代数式的概念与意义2. 代数式的运算(加、减、乘、除)3. 代数式的值4. 代数式的化简5. 代数方程的概念与意义6. 代数方程的解7. 代数方程的应用(问题与方程的建立)九、一次函数1. 函数的概念与表示2. 一次函数的定义3. 一次函数的图像4. 一次函数的性质(单调性、定义域与值域、零点、与坐标轴交点等)5. 一次函数的线性关系6. 一次函数的应用(直线的方程与图像、速度等)十、图形的基本认识1. 点与线段与直线2. 角3. 平行线与垂线4. 三角形的基本性质(边与角的关系、三角形的分类)5. 尺规作图十一、相交线与角的大小1. 锐角、直角和钝角2. 垂直交线与线段间的位置关系3. 同位角与对顶角4. 垂线的性质5. 锐角与钝角的判断十二、平行线与角1. 平行线的性质2. 平行线之间的角3. 平行线的判定与运用十三、相似图形1. 形状相同与全等2. 相似的概念与判定3. 相似图形的性质4. 相似比与相似变换5. 直角三角形的性质十四、单位换算1. 长度的换算2. 面积的换算3. 容积的换算4. 质量的换算5. 时间的换算6. 速度的换算以上为初中七年级数学主要知识点的总结,希望对你有所帮助!。
初中数学知识点之基础知识点总结6篇
初中数学知识点之基础知识点总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,混合运算等。
3. 数的大小比较:数的大小比较规则,数的大小排列等。
4. 数的发展历史:数的发展历程,数的应用场景等。
二、几何与图形1. 几何基本概念:点、线、面、体,角、三角形、四边形、圆等。
2. 几何图形性质:图形的基本性质,如三角形的内角和为180度等。
3. 几何图形变换:图形的平移、旋转、对称等变换。
4. 几何图形计算:图形的周长、面积、体积等计算。
5. 几何图形证明:图形的几何证明,如三角形的相似与全等证明等。
三、函数与方程1. 函数基本概念:函数及其定义域、值域,函数的表示方法等。
2. 函数的性质:函数的单调性、奇偶性、周期性等性质。
3. 方程的解法:解方程的方法,如一元二次方程的求根公式等。
4. 函数与方程的应用:函数与方程在实际问题中的应用,如工程问题、经济问题等。
四、数据与概率1. 数据的基本概念:数据及其分类,数据的表示方法等。
2. 数据的收集与整理:数据的收集方法,数据的整理技巧等。
3. 数据的分析与运用:数据的分析方法,如平均数、中位数、众数等统计量的计算及应用;数据的运用场景,如决策分析、市场分析等。
4. 概率的基本概念:概率及其计算方法,如古典概型、几何概型等。
5. 概率的应用:概率在实际问题中的应用,如彩票中奖概率计算等。
五、模型与思想1. 模型的基本概念:模型及其分类,模型的建立方法等。
2. 模型的运用:模型在实际问题中的应用,如建立函数模型解决实际问题等。
3. 数学思想:数学的基本思想,如数形结合思想、分类讨论思想等。
4. 数学方法的运用:数学方法在实际问题中的应用,如归纳法在数学证明中的应用等。
六、综合与实践1. 综合题的解答技巧:如何解答涉及多个知识点的综合题。
2. 实践活动的组织与实施:如何组织和实施数学实践活动,如数学竞赛的准备和参加等。
初中数学的基本概念知识点整理
初中数学的基本概念知识点整理初中数学作为学生们学习数学的第一步,是数学学科中最基础、最重要的一部分。
掌握好初中数学的基本概念知识点,对于进一步学习高中数学和大学数学都是至关重要的。
下面将对初中数学的基本概念知识点进行整理和概述。
1. 数的分类:(1)自然数:即大于等于1的整数,用N表示。
(2)整数:包括自然数、0和负整数,用Z表示。
(3)有理数:可以表示为两个整数之比的数,包括整数、分数和循环小数,用Q表示。
(4)无理数:不能表示为两个整数之比的数,如根号2和圆周率π,用I表示。
(5)实数:包括有理数和无理数,用R表示。
2. 数的运算:(1)四则运算:加法、减法、乘法、除法。
(2)算术规律:结合律、交换律、分配律。
(3)乘方与开方:乘方是指数a个相同因数相乘,开方是乘方的逆运算。
(4)整数的乘方:正整数的任意次方都是正整数,负整数的偶数次方是正整数,负整数的奇数次方是负整数。
(5)分数的乘方与开方:分数的乘方是分子与分母分别进行乘方运算,分数的开方是分子与分母分别进行开方运算。
3. 数的性质:(1)整除与倍数:若a能被b整除,则a是b的倍数,b是a的约数。
若a 能被b整除,记为b|a。
(2)质数与合数:大于1的整数,除了1和它本身不能被其他自然数整除之外,都称为质数;反之,称为合数。
(3)互质与最大公约数:两个数的最大公约数是能够同时整除它们的最大的正整数,如果最大公约数是1,则称两个数互质。
(4)质因数与分解质因数:每一个合数都可以分解为几个质因数的乘积,这些质因数就是这个合数的所有质因数。
将一个合数写成质因数的乘积的形式,叫做分解质因数。
(5)倍数关系与约数关系:若a能被b整除,则a是b的倍数,b是a的约数。
4. 平面几何的基本概念:(1)点:表示事物的一种简化概念,没有形状、大小和方向。
(2)线段:两个点之间直线最短的路径,用AB表示。
(3)尺规作图:使用尺子和圆规画出的图形。
(4)相交与平行:两条直线如果没有公共点,则称为平行线;反之,则称为相交线。
初中数学知识点大全
初中数学知识点大全一、基本概念与技巧1.数的种类和数的读法2.数的比较与大小关系3.数的相反数和绝对值4.数的四则运算(加法、减法、乘法、除法)5.分数的加减乘除运算6.百分数与小数的相互转换7.整数、分数、小数的大小比较8.数列的概念及等差数列与等比数列的特点9.平均数的概念及求解方法10.点与线的基本概念及相互关系二、代数式与方程式1.多项式的定义和运算2.同类项的合并与拆分3.算式的性质与运算规则4.一元一次方程的概念及基本解法5.二元一次方程的概念及解法6.简单不等式的解法7.方程组的概念及解法8.含绝对值的方程与不等式三、几何与图形1.点、线、面、体的基本概念2.平行线、垂直线、相交线的判定方法3.角和角的种类4.平面内的直角、锐角和钝角5.全等图形与相似图形的判定方法6.三角形的内角和外角7.平面图形的面积计算8.立体图形的体积计算9.圆的性质、圆周、圆周率的计算10.平面镜、凸透镜、凹透镜的形状与特点四、函数与图像1.函数的概念、定义和性质2.一次函数与二次函数的图像特点3.正比例函数与反比例函数的图像特点4.平移、缩放、翻转的图像变化规律5.函数关系的表示方法(表格、图形、公式)6.函数的增减性与极值点的判定7.函数方程的解法及函数的应用问题解答五、立体几何体的计算1.棱柱、棱锥、棱台的体积计算2.正四面体、正六面体、正八面体的体积计算3.圆柱、圆锥、圆台的表面积计算4.球体的体积与表面积计算六、数据的收集、整理和运用1.数据的收集方式与调查方法2.数据的整理与统计3.频数表、频率表、统计图的制作4.平均数、中位数、众数的计算与比较5.数据的分析与解释七、概率与统计1.简单事件与复合事件的概念2.概率的计算公式3.概率的基本性质与计算方法4.事件的互斥与对立关系5.抽样调查与样本容量的确定6.几何概率与随机事件的应用八、实际问题与应用1.实际问题的数学建模2.速度、距离、时间等实际问题的计算3.利息、打折、利润等实际问题的计算4.几何问题的实际应用5.数据处理与统计在实际问题中的应用。
初中数学基本知识点总结(精简版)
初中数学基本知识点总结代数部分:1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0则丨a丨=a;a≤0则丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、近似数:一个数与准确数相近,且比准确数略多或略少些,这一个数称之为近似数。
从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,所以有两个有效数字6,0.4、科学计数法:把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=.⑥a-n=1na,()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(2-3)0=1.7、二次根式(平方根,算术平方根,立方根):①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如(3)2=45.=6.a<0时,=-a.的平方根=4的平方根=±2.8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x =42b a-±,其中△=b 2-4ac 叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x 1和x 2,则二次三项式ax 2+bx +c 可分解为a (x -x 1)(x -x 2).③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0.9、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;③方差:数据1x ,2x ……,n x 的方差为2s ,则2s =((()222121.....n x x x x x x n-+-++-标准差:方差的算术平方根.数据1x ,2x ……,n x 的标准差s ,则s =一组数据的方差越大,这组数据的波动越大,越不稳定。
从零开始学初中数学
初中数学是中学数学的基础,在学习初中数学之前,我们首先要了解一些基本概念和知识。
以下是从零开始学习初中数学的相关内容。
【一、基本概念和运算】 1. 数和数的运算: - 自然数、整数、有理数和无理数的概念; - 加法、减法、乘法和除法的基本运算法则; - 小数与分数的相互转换。
2.代数运算:•代数式的定义和基本性质;•代数式的加减乘除规则;•多项式的定义、加减乘除规则;•初步了解方程与方程式的解法。
【二、几何】 1. 几何图形及其性质: - 直线、线段、射线、角的概念; - 平行线和垂直线的交角特性; - 三角形、四边形、圆的基本性质; - 了解几种特殊几何图形(等腰三角形、等边三角形、直角三角形等)。
2.平面图形的计算:•了解周长和面积的定义;•知道各种图形的计算公式(如矩形、正方形、圆等);•简单的平面图形综合运用。
3.空间几何和立体图形:•了解体积和表面积的概念;•计算简单立体图形的体积和表面积。
【三、比例与函数】 1. 比例与相似: - 理解比例的定义和性质; - 掌握比例的求解; - 理解相似的概念和判定条件; - 掌握相似图形的计算。
2.函数的初步认识:•函数的概念及表示方法;•函数的性质和图像;•函数的特征和变化规律。
【四、统计与概率】 1. 统计: - 数据的搜集和整理; - 统计指标的计算(如平均数、中位数、众数等); - 统计图表的制作和解读。
2.概率:•了解概率的基本概念;•理解事件的概率和概率的计算;•简单事件的概率计算。
【五、解决实际问题】 1. 将数学运用于实际生活中的问题解决过程; 2. 培养分析问题、提取问题关键信息、建立数学模型和解决问题的能力; 3. 熟悉常见生活中的数学应用,如购物打折、几何图形的应用等。
以上是初中数学的一些基本内容,希望能够为初学者提供一些参考,帮助大家系统地学习初中数学。
初中数学是基础,打好基础对中学和高中数学的学习都非常重要。
希望大家能够耐心学习,勤于练习,多做题多思考,相信你一定可以掌握初中数学的知识。
初中数学五大基本概念教案
初中数学五大基本概念教案教学目标:1. 了解和掌握初中数学五大基本概念:有理数、整式、方程、函数、几何。
2. 能够运用这些基本概念解决实际问题。
教学重点:1. 掌握有理数、整式、方程、函数、几何这五大基本概念。
2. 能够运用这些基本概念解决实际问题。
教学难点:1. 对有理数、整式、方程、函数、几何这五大基本概念的理解和运用。
教学准备:1. 教师准备PPT或者黑板,用于展示和讲解。
2. 学生准备笔记本,用于记录和复习。
教学过程:一、导入(5分钟)1. 引导学生回顾小学数学学过的内容,如加减乘除、分数、小数等。
2. 提问:你们觉得初中数学会和小学数学有什么不同呢?二、讲解有理数(10分钟)1. 介绍有理数的定义和分类,如整数、分数、正数、负数等。
2. 通过示例和练习,让学生理解和掌握有理数的加减乘除运算。
三、讲解整式(10分钟)1. 介绍整式的定义和分类,如单项式、多项式等。
2. 通过示例和练习,让学生理解和掌握整式的加减乘除运算。
四、讲解方程(10分钟)1. 介绍方程的定义和分类,如一元一次方程、一元二次方程等。
2. 通过示例和练习,让学生理解和掌握方程的解法。
五、讲解函数(10分钟)1. 介绍函数的定义和分类,如一次函数、二次函数等。
2. 通过示例和练习,让学生理解和掌握函数的性质和图像。
六、讲解几何(10分钟)1. 介绍几何的基本概念,如点、线、面、角等。
2. 通过示例和练习,让学生理解和掌握几何的基本性质和定理。
七、总结和练习(10分钟)1. 对五大基本概念进行总结,让学生加深理解和记忆。
2. 布置练习题,让学生巩固所学内容。
教学反思:通过本节课的教学,学生应该已经掌握了初中数学五大基本概念,并且能够运用这些基本概念解决实际问题。
在讲解过程中,要注意举例清晰、讲解透彻,让学生充分理解和掌握。
在练习环节,要多布置一些实际问题,让学生运用所学知识解决,提高学生的应用能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.基本概念1.大于0的数叫做正数;小于0的数叫做负数;0既不是正数也不是负数.注(1)正负数通常用来表示一对具有相反意义的量.(2)不一定是负数.(3)负数<0<正数.(要会比较两个数的大小)2有理数"或有理数注:了解几个概念,"正整数"、"负整数"、"非正整数"、"非负整数".3.数轴的三要素:原点、正方向和单位长度.(判断是不是数轴的依据)4.(1)相反数:只有符号不同的两个数叫做互为相反数.(2)倒数:乘积为1的两个数叫做互为倒数.(3)绝对值:数轴上表示数的点与原点的距离叫做数的绝对值.注:①互为相反数的两数之和为0;互为倒数的两数之积为1.②0的相反数是0;0的绝对值是0;0没有倒数.③出现"平方"、"绝对值"、"距离"等关键字的题目,一般有两个答案.例如:平方为9的数有±3;绝对值为3的数有±3;距离原点3个单位长度的点表示的数是±3.注:要求能够熟练、快速、准确的求出任意一个数的相反数、倒数(0除外)和绝对值.成的形式,就叫做科学记数法.注:是整数位只有一位的数,是正整数.6(1)近似数:它是相对于精确数来说的.(2)有效数字:从一个数的左边第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字.二.有理数的运算法则1.加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)0加任何数都得任何数.2.减法法则:减去一个数,等于加上这个数的相反数.即注:加上一个数等于减去这个数的相反数.例如.3.乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)0乘任何数都得0.4.除法法则:法则1:除以一个不等于0的数,等于乘以这个数的倒数.即法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.5.乘方法则:(1)负数的奇次幂是负数,负数的偶次幂是正数.(2)正数的任何次幂都是正数.(3)0的任何次幂都是0.☆任何一个数都可以看作是它本身的1次方.即6.有理数的混合运算法则:(1)先乘方,在乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号的运算,按小括号、中括号、大括号依次进行.三.有理数的运算律1.加法运算律(1)加法交换律:(2)加法结合律:2.乘法运算律(1)乘法交换律:(2)乘法结合律:(3)乘法分配律:☆负数一定要用括号括起来,如:.第二章一元一次方程一.几个基本概念1.等式:用等号连接的式子叫做等式.2.方程:含有未知数的等式叫做方程.3.一元一次方程:只含有一个未知数,并且未知数的次数是一次的方程叫做一元一次方程.注:方程一定是等式,但等式不一定是方程.☆“方程的解”和“解方程”二.等式的基本性质1.在等式的两边同时加上或减去一个数或式子,结果不变.即2.在等式的两边同时乘以一个数,或者除以一个不为0的数,结果不变.即三.解一元一次方程的步骤1.去括号(把括号和括号前边的符号一同去掉,若括号前边是正号,则不变号;若括号前边是负号的,则变做相反的符号.)2.去分母(在等式的两边同时乘以公分母.注意:是等式两边的每一项都要乘以公分母.)3.移项(通常把未知数移到等式的左边,常数项移到等式的右边.注意:从等式的一边移到另一边要变作相反的符号.)4.合并同类项(化简的作用.)5.化系数为1.四.利润问题、工程问题1.利润=售价-进价=进价利润率(盈利率)售价=进价+利润=原价折扣数利润率=利润进价2.工作总量=工作效律工作时间注意:做题时,往往把工作总量看作1.顺流(风)速度=静水(风)速度+水(风)流速度逆流(风)速度=静水(风)速度-水(风)流速度★补充教材★(一)字母表示数如:若、分别表示两个数,则加法的交换律可以表示为,乘法交换律可以表示为等.还有解方程中的、圆面积中的等都表示数字.☆字母与字母相乘,乘号可以省略不写,或简单记作“”,数字与字母相乘,一定要把数字写在字母的前面,并把数字叫做该项的系数.(二)代数式像、、、等这样的式子都是代数式.(三)代数式求值1.填写下表6%~7.5%,如果某人体重是千克,那么他的血液质量大约在什么围?(四)去括号(比较与添括号)去括号的法则:(1)括号前边是"",把括号和它前面的""一同去掉,原括号里各项的符号都不改变.(2)括号前边是"",把括号和它前面的""一同去掉,原括号里各项的符号改变为相反的符号.(即正变负,负变正)第三章图形认识初步注:平面几何要求熟记面积公式和周长公式,立体几何要求会作图,知道它们的顶点、棱、面的个数.2.直线、射线、线段.两点确定一条直线.(2)点和直线的位置关系:①点在直线上(直线经过点)②点在直线外(直线不经过点)(3)点动成线,线动成面,面动成体.即:无数个点构成线,无数条线构成面,无数个面构成体.3.角的两种概念:(1)有公共端点的两条射线构成的图形叫做角.(2)一条射线绕着它的端点旋转后得到的图形叫做角.4.角的度量1度=分=秒.(要求:熟悉单位之间的换算)例如:(1)23度15分=___度.(2)75.5度=____度___分.5.余角和补角.(会求任意角的余角和补角)(1)若两角之和为度,则称这两个角互为余角.(2)若两角之和为度,则称这两个角互为补角.☆同(等)角的余角相等;☆同(等)角的补角相等.第四章数据的收据与整理☆调查☆调查的方式有:问卷调查、访问调查、查阅文献资料和实验等.1.收据数据(制作调查问卷)2.整理数据(制作表格)3.描述数据(条形统计图、扇形统计图、折线统计图)4.分析数据(得出结论、给出建议)☆本章:要求会作统计图、会看统计图、会分析统计图,最后得出结论.第五章相交线与平行线一.基本概念1.两直线的位置关系(1)相交(有一个交点)(2)平行(无交点)☆垂直是相交中的一种特例.☆三条直线相交有1个或3个交点.2.邻补角(互补) 3.对顶角(相等)4.垂直(90o) 5.垂足(交点)6.点到直线的距离:直线外一点到这条直线的垂线段的长度叫做,叫做点到直线的距离.☆所有的距离都是指垂直距离.7.两条平行线间的距离:同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.8.命题:判断一件事情的语句叫做命题.包括条件和结论.一般写成"如果……那么……"的形式.可分为真命题和假命题.你能找出左图中的邻补角、对顶角吗?二.基本性质1.过一点有且只有一条直线与已知直线平行.(点可以在直线上,也可以在直线外)2.过直线外一点,有且只有一条直线和已知直线垂直.3.连接直线外一点与直线上各点的所有线段中,垂线段最短.(简单说成:垂线段最短.)4.(平行的传递性)如果两条直线都与第三条直线平行,那么这两条直线也相互平行.即:如果a∥b,b∥c ,那么a∥c.(平行的传递性)☆等式的传递性:若A=B,B=C,则A=C.☆全等(相似)三角形的传递性6.两直线平行的条件(判定):(1)同位角相等,两直线平行.(2)错角相等,两直线平行.(3)同旁角互补,两直线平行.7.平行线的性质:(1)两直线平行,同位角相等.(2)两直线平行,错角相等.(3)两直线平行,同旁角互补.你能找出左图中的同位角、错角、同旁角吗?8.(1)平移不改变图形的大小和形状.(2)连接各组对应点的线段平行且相等.第六章平面直角坐标系一.平面直角坐标系(直角坐标系)及其相关概念(坐标原点)纵坐标横坐标☆有序数对:有顺序的两个数a与b组成的数对,叫做有序数对.记作(a,b).☆一般情况下:(a,b)≠(b,a)☆点的坐标就是一个有序数对.☆原点O的坐标是(0,0),x轴上的坐标是 (x,0),y轴上的坐标为(0,y).二.用坐标表示平移1.左右平移,纵坐标不变,横坐标左减右加.2.上下平移,横坐标不变,纵坐标上加下减.第七章三角形一.基本概念1.三角形2.多边形(凸、凹)3.正多边形(各个角相等,各条边相等)4.角(简称为角,三角形、多边形的角)5.外角(三角形、多边形的外角)6.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.7.三角形的高(垂直,即90o)、中线(线段相等)、角平分线(角相等)二.基本性质1.三角形的任意两边之和大于第三边.(判断任意三条线段能否组成三角形的依据)2.三角形具有稳定性.3.n边形的角和为(n-2)·180o;三角形的角和为180o,四边形的角和为360o.4.多边形的外角和为360o.5.(1)三角形的一个外角等于与它不相邻的两个角和.(2)三角形的一个外角大于与它不相邻的任何一个角.第八章二元一次方程组一.基本概念1.二元一次方程:含有两个未知数,并且未知数的次数都是一次的方程叫二元一次方程.2.二元一次方程组:把具有相同未知数的两个二元一次方程合在一起,就叫做二元一次方程组.3.二元一次方程的解:使二元一次方程左右两边相等的未知数的值,叫二元一次方程的解.4.二元一次方程组的解:二元一次方程组的两个方程的公共解叫二元一次方程组的解.二.解二元一次方程组的两种方法1 .代入消元法(代入法):由二元一次方程组中的一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.2.加减消元法(加减法):两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.☆如何消元更简单?如果有一个未知数的系数是1,那么通常情况下采用代入消元法;如果两个二元一次方程中同一未知数的系数相反或相等时,那么通常情况下采用加减消元法.第九章不等式与不等式组学习方法:学习本章要结合前面的等式、方程、方程组进行对比学习,注意知识之间的融会贯通,找出它们之间的联系和区别.一.基本概念1.不等式:用不等号(<、≤、>、≥、≠)连接的式子叫做不等式.2.不等式的解:使不等式成立的未知数的值叫做不等式的解.3.解的集合(解集):不等式的所有解组成的结合叫做解的集合(解集).4.一元一次不等式:含有一个未知数,未知数的次数是一次的不等式叫做一元一次不等式.5.一元一次不等式组:把两个一元一次不等式合起来,组成一个一元一次不等式组.6.不等式组的解集:几个不等式解集的公共部分,叫做它们组成的不等式组的解集.二.不等式的基本性质1.不等式的两边加(或减)同一个数(或式子),不等号的方向不改变.如果 a > b,那么a±c > b±c.2.不等式两边乘(或除以)同一个正数,不等号的方向不改变.如果a>b,c>0,那么ac > bc(或)3.不等式两边乘(或除以)同一个负数,不等号的方向要改变.如果a>b,c<0,那么ac < bc(或)三.解不等式的一般步骤去分母→去括号→移项→合并→化系数为1(系数是负数时,不等号的方向要改变).四.用不等式(组)解决实际问题的一般步骤解设→找出不等量关系,列出不等式(组)→求解不等式(组)→考虑问题的实际意义→作答.☆到底是选择方程(组)还是选择不等式(组)解题,主要是看是否有以下关键词:不能完成任务,提前完成任务;超过,不超过.第十章实数一.基本概念1.平方根:若x2=a,则称x是a的平方根,记作:x=±;其中x=叫做a算术平方根,x=-,叫做a的负的平方根.""读做二次根号a,a叫做被开方数.2.开平方:求一个数a的平方根的运算叫做开平方.平方与开平方互为逆运算.3.立方根:若x3=a,则称x是a的立方根做:x=;""读做三次根号a,a叫做被开方数.3叫做根指数.4.开立方:求一个数立方根的运算叫做开立方.立方与开立方互为逆运算.数.它包括正无理数和负无理数.6.实数:有理数和无理数统称为实数.(1)实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.(2)有理数关于相反数和绝对值的意义同样适合于实数;在进行实数的运算时,有理数的运算法则及运算性质等同样适用.二.实数的两种分类无限不循环小数有限小数和无限循环小数1.2.第十一章一次函数一.基本概念1.常量:数值不发生变化的量.2.变量:数值发生变化的量.3.自变量(x);函数(y);函数值;函数图象.二.两种重要的函数1.正比例函数y=kx (k≠0)它的图象是一条经过原点的直线.⑴当k>0时,图象过一、三象限;上升;y随x的增大而增大.⑵当k<0时,图象过二、四象限;下降;y随x的增大而减小.2.一次函数 y=kx+b (k≠0)⑴当k>0时,;上升;y随x的增大而增大.⑵当k<0时,;下降;y随x的增大而减小.☆当b=0时,一次函数就是正比例函数.三.函数图象的平移直线y=kx+b是由直线y=kx平移︱b︱个单位长度得到(当b>0时,向上平移;当b<0时,向下平移).四.用函数观点看方程(组)与不等式即用函数图象解方程(组)与不等式1.解一元一次方程把一元一次方程化为ax+b=0(a≠0)的形式,把左边看成一个一次函数y=kx+b,函数图象与x轴的交点的横坐标就是方程的解.2.解二元一次方程组一个二元一次方程对应一条直线,一个二元一次方程组就对应两条直线.两条直线的交点就是方程组的解(横坐标是x的解,纵坐标是y的解).3.解不等式把不等式化为ax+b>0或ax+b<0的形式,解不等式可以看作:函数值大(小)于0时,求自变量相应的取值围.关键还是看函数图象与x轴交点的横坐标的值.五.常见题型和做题方法1.常见题型①怎样判断一个点是否在函数图象上?②怎样判断一个图象是不是函数图象?③正比例函数、一次函数的概念?2. 做题方法①待定系数法求正比例函数、一次函数的解析式.②题目中说:某个点在函数图象上(函数图象经过某个点),通常情况下需要把这个点的坐标代入函数的解析式.第十二章数据的描述一.基本概念1.频数:(城市)个数.2.频率=频数÷总数.(总数=频率×总数)3.组数.4.组距:前后两个端点的差叫做组距.5.组中值:各个小组两个端点的平均数叫做组中值.二.几种常见的统计图要求:会作图、会看图(分析图).1.条形图特点:能够显示每组中的具体数据.作图和看图时:需注意横轴、纵轴分别表示什么,条形图中应该有几"条".2.扇形图特点:能够显示部分在总体中所占的百分比.作图和看图时:需要有图例,注意扇形图中有几个扇形,能求出各个扇形所对的弧长、圆心角的度数、扇形面积.L弧长=圆周长×百分比S扇形=圆面积×百分比圆心角=360°×百分比3.折线图特点:能够显示数据的变化趋势.作图看图时:需要注意横坐标、纵坐标分别表示什么.坡度越陡,变化趋势就越大.4.直方图特点:能够显示数据的分布情况.作图看图时:需先找出数据中的最大数据和最小数据,确定组距(≥3)、分出组数(5至12组),确定横轴、纵轴分别表示什么.第十三章全等三角形一.基本概念1.全等形:形状、大小完全相同的图形(能够完全重合的图形)叫做全等形.2.全等三角形:形状、大小完全相同三角形(能够完全重合的三角形)叫做全等三角形.①对应点:重合的点叫做对应点.②对应边:重合的边叫做对应边.③对应角:重合的角叫做对应角.3.公共边、公共角二.性质1.全等三角形的性质:①全等三角形的对应边相等.②全等三角形的对应角相等.由此可知:要证明分别属于两个三角形的线段相等或者角相等的问题,通常通过证明这两个三角形全等来解决.2.角平分线的性质:①角平分线上的点到角两边的距离相等.②到角两边的距离相等的点在角平分线上.三.三角形全等的条件(如何判断两个三角形全等)1.任意两个三角形全等的条件:①三边对应相等的两个三角形全等(SSS)②两边及夹角对应相等的两个三角形全等(SAS)③两角及夹边对应相等的两个三角形全等(ASA)④两角及其中一个角所对的边对应相等的两个三角形全等(AAS).2.直角三角形(Rt△)全等的条件:斜边和一直角边对应相等的两个三角形全等(HL)第十四章轴对称一.基本概念1.轴对称图形:(1个图形)相关概念,对称点、对称边、对称角.2.成轴对称图形:(2个图形)3.对称轴:其实质是一条直线.注意:(成)轴对称图形一定是全等形,但全等形不一定是轴对称图形.4.垂直平分线(中垂线):垂直、平分.5.轴对称变换:由一个平面图形得到它的轴对称图形的过程(动作)叫轴对称变换.注意:对称轴方向和位置发生变换时,得到图形的方向和位置也会发生变换.6.等腰三角形:相关概念,等腰直角三角形(等腰三角形、直角三角形)、腰、底边、顶点、底角、顶角.等边三角形是一种特殊的等腰三角形.二.几条重要的性质1.垂直平分线的性质(联系角平分线的性质记忆)(1)垂直平分线上的点到线段两端点的距离相等.(2)到线段两端点距离相等的点在垂直平分线上.2.轴对称图形的性质(作某个图形关于某条直线的对称图形、作对称轴的依据).(1)任意一对对称点的连线段的垂直平分线是对称轴.(2)对称轴垂直平分任意一对对称点的连线段.3.等腰三角形的性质(1)等腰三角形的两个底角相等.(简记为"等边对等角")注意:大边对大角,小边对小角.它们的逆定理同样成立,例如:等角对等边.(2)三线合一(三线是指:底边的高、中线、顶角的角平分线)注意区分中线、中位线、中垂线(垂直平分线).4.等边三角形的性质(1)等边三角形的三个角都等于60。