人教版高中数学必修1第三章第一节方程的根与函数的零点(共18张PPT)最新课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题8:满足上述两个条件,能否确定零点 个数呢?
y
y
0a
bx
0a
bx
结 论 有零点,至少有一个,但不确定个数,即存在零点。
结 论
如果函 y数 f(x)在区[a间 ,b]上的图像是
不断的一条曲线,
并且 f(a)• 有 f(b)0,那么, yf(函 x)在 数 区 间 (a,b)内有零点,
即存 c 在 (a,b)使 , f得 (c)0,这c个 也就是方 f(x)0的根。
y
y
y
x1
x2 x
x x1=x2
x
有两个不等的 实数根x1,x2
有两个相等实 没有实数根 数根x1=x2
(x1,0), (x2,0)
(x1,0)
没有交点
问题 4:将上述结论推 般广 方至 f程 (x)一 0 与相应的y函 f数 (x)又会有什么结论
结 论
方程的实数根就是对应函数图像与x轴交点的横坐标。
x2-2x-3=0 x2-2x+1=0 x2-2x+3=0 y= x2-2x-3 y= x2-2x+1 y= x2-2x+3
y
.
.
2
.1 .
-1 0 1 2 3 x -1
-2 -3
. -4
y
.2
.
1. .
. -1 0 1 2
x
y
.5 4
.
3.
2
.
.
1
-1 0 1 2 3 x
方程的实数根 x1=-1,x2=3 x1=x2=1
问题 1:方x程 10的根与y函 x数 1与x轴 的交点坐标有? 什么关系
y
yx1
2 1
-1 0 1 2 3
x
-1
-2
-3
-4
问题2:求出表中的一元方 二程 次的根,并 画出相应的二次函Βιβλιοθήκη Baidu 数的 图草图。并判断 函数图像x与轴是否有交点。若请 有写 ,出 交点坐标。
方程
函数 函 数 的 图 像
像,说一y说f (x)有几个零点?
y
0
x
问题6:如果将定义域改为区间[a,b]观察图像 说一说零点个数的情况,有什么发现?
y
a ab b a 0b
x
结 论 f(a)•f(b)0
问7题 :如果[a 闭 ,b]上 区函 间 y数 f(x)端点函 f(a)•f(b)0是否一定有零点?
y
a
b
0a
bx
结 论 函数 y f(x)的图像在闭区间[a,b]上连续不断。
无实数根
(-1,0)、(3,0) (1,0)
无交点
思考:二者之间有何联 系?
问题3:上述结论推广至的一一般元二次方 程ax2 bxc0(a0)与相应的二次函数 y ax2 bxc会有什么结论?
一般地,一元二次方程ax2+bx+c=0(a≠0)的根与二 次函数 y= ax2+bx+c (a≠0)的图像有如下关系:
作业:
1、必做题:P88 练习第二题
2、选做题:(1) f(x)a2x2x3在
区间(0,3)范围内恰有一个零点,则a 的取值范围是多少? (2)已知aR,讨论关x的 于方程 x2 6x8 a的实数解的个数
1、函数零点的定义
对于函数 y f(x) ,我们把使 f (x) 0的实 数x 叫做函数 y f(x) 的零点。
2、结论
方程f(x)=0有实数根
函数y=f(x)的图像与x轴有交点
函数y=f(x)有零点
问题5:方程的实数根的 即零 函点 数,如何根
图像寻找零点呢函 ?数 观 y 察f (x)xR的图
问9题 :求f函 (x)数 lnx2x6的零点
解:用计算器或计算机作出 x、f (x)的对应值表(表3--1)和图像。
表3--1
x1 2
3
4
5
6
7
8
9
f(x) -4 -1.3069 1.0986 3.3863 5.6094 7.7918 9.9459 12.0794 14.1972
y
14 12 10
8 6 4 2
0 1 2 3 4 5 6 7 8 9 10 x
-2 -4 -6
问题10:为什么上个问题中只有一个零点呢? 说一说理由?
函数f (x)在( 0,)是增函数,请。 证明它
练习:88页第一题
问题11:请同学们思考、交流一下,这节课 学习到了什么?
1、知识小结:一个定义,四个结论。 2、思想方法:数形结合、转化思想。