渐开线与摆线
合集下载
2019版数学人教A版选修4-4课件:2.4 渐开线与摆线

(∈Z).因为
2π
r 是圆的半径,所以 r>0.所以应有 k>0,且 k∈Z,即 k∈N*.所以所求摆
线的参数方程是
=
=
1
2π
1
2π
(-sin),
(为参数),其中 k∈N*.
(1-cos)
-14-
第十四页,编辑于星期日:点 四十七分。
答案:C
第四页,编辑于星期日:点 四十七分。
-4-
四
渐开线与摆线
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
3.圆的渐开线和摆线的参数方程
= (cos + sin),
(1)圆的渐开线的参数方程:
(为参数).
= (sin-cos)
D.对于同一个圆,如果建立的平面直角坐标系的位置不同,那么画出的
渐开线的形状就不同
解析:不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线
和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个
圆不论在什么位置建立平面直角坐标系,画出图形的大小和形状都
是一样的,只是方程的形式及图形在坐标系中的位置可能不同.
-3-
四
渐开线与摆线
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
【做一做1】 关于渐开线和摆线的叙述,正确的是(
HONGNANJUJIAO
D典例透析
IANLITOUXI
)
A.只有圆才有渐开线
B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到
了不同的图形
C.正方形也可以有渐开线
2π
r 是圆的半径,所以 r>0.所以应有 k>0,且 k∈Z,即 k∈N*.所以所求摆
线的参数方程是
=
=
1
2π
1
2π
(-sin),
(为参数),其中 k∈N*.
(1-cos)
-14-
第十四页,编辑于星期日:点 四十七分。
答案:C
第四页,编辑于星期日:点 四十七分。
-4-
四
渐开线与摆线
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
HONGNANJUJIAO
D典例透析
IANLITOUXI
3.圆的渐开线和摆线的参数方程
= (cos + sin),
(1)圆的渐开线的参数方程:
(为参数).
= (sin-cos)
D.对于同一个圆,如果建立的平面直角坐标系的位置不同,那么画出的
渐开线的形状就不同
解析:不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线
和摆线的实质是完全不一样的,因此得出的图形也不相同;对于同一个
圆不论在什么位置建立平面直角坐标系,画出图形的大小和形状都
是一样的,只是方程的形式及图形在坐标系中的位置可能不同.
-3-
四
渐开线与摆线
目标导航
Z 知识梳理 Z重难聚焦
HISHISHULI
【做一做1】 关于渐开线和摆线的叙述,正确的是(
HONGNANJUJIAO
D典例透析
IANLITOUXI
)
A.只有圆才有渐开线
B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到
了不同的图形
C.正方形也可以有渐开线
高中数学人教A版选修4-4全册 第二讲参数方程2.4渐开线与摆线

(4)在求圆的摆线和渐开线参数方程时,如果建立的坐标系的原点 和坐标轴不同,可能会得到不同的参数方程. ( √ )
探究一
探究二
思维辨析
圆的渐开线、摆线的参数方程的理解
【例 1】
已知圆的渐开线的参数方程为
������ = 3cos������ + 3������sin������, ������ = 3sin������-3������cos������
是
������ ������
= =
csions������������-���+���c���o���ss���i���n������,(φ
为参数).分别把
φ=π3和
φ=π2代入,可得
A,B
两点的坐标分别为
3+√3π 6
,
3√3-π 6
,
π 2
,1
.根据两点间的距离公式可
得 A,B 两点间的距离为
|AB|=
为参数).
答案:
������ ������
= =
40(������-sin������), 40(1-cos������) (φ
为参数)
探究一
探究二
思维辨析
反思感悟根据圆的摆线的定义和建立参数方程的过程,可知摆线 的参数方程中的字母r是指定圆的半径,参数φ是指圆上定点相对于 某一定点运动所张开角度的大小.
探究一
探究二
思维辨析
������ = ������-sin������, 变式训练3 设摆线 ������ = 1-cos������ (t为参数,0≤t≤2π)与直线y=1相 交于A,B两点,求A,B两点间的距离.
解:由 y=1 及 y=1-cos t 得 cos t=0,∵0≤t≤2π,
探究一
探究二
思维辨析
圆的渐开线、摆线的参数方程的理解
【例 1】
已知圆的渐开线的参数方程为
������ = 3cos������ + 3������sin������, ������ = 3sin������-3������cos������
是
������ ������
= =
csions������������-���+���c���o���ss���i���n������,(φ
为参数).分别把
φ=π3和
φ=π2代入,可得
A,B
两点的坐标分别为
3+√3π 6
,
3√3-π 6
,
π 2
,1
.根据两点间的距离公式可
得 A,B 两点间的距离为
|AB|=
为参数).
答案:
������ ������
= =
40(������-sin������), 40(1-cos������) (φ
为参数)
探究一
探究二
思维辨析
反思感悟根据圆的摆线的定义和建立参数方程的过程,可知摆线 的参数方程中的字母r是指定圆的半径,参数φ是指圆上定点相对于 某一定点运动所张开角度的大小.
探究一
探究二
思维辨析
������ = ������-sin������, 变式训练3 设摆线 ������ = 1-cos������ (t为参数,0≤t≤2π)与直线y=1相 交于A,B两点,求A,B两点间的距离.
解:由 y=1 及 y=1-cos t 得 cos t=0,∵0≤t≤2π,
高三数学渐开线与摆线

刚上船,船上就有人叫我,我很吃惊,谁认识我?他转过身来我才认清:“哦,这不是向海吗?"足球赛事
“是啊,我是向海。你还认得。”
“认得认得。"我说。他是我同一个连队战友向仕峰的弟弟。1979年我探家时路过巴东,当时下船后就没有汽车回建始了,必须在巴东住一我弟弟向海在招待所上班。就这样认识了向海。没想到三十几年过去了,向海已经是恩施州海事局巴东港务局负责人。向海的老婆田总就是这个景区的老总。
巴东旅游局吴以红介绍我认识了田总,并介绍了我的身份,说我是恩施旅游界的先驱,还说我在神农溪火爆的时候常来这里学习参观。
十几分钟的航程就到了景区,田总给我们介绍了纤夫石,还介绍了电视剧拍摄地,走进长江支流小河,沿途景点也不错,后面的大面山上是满山红叶,巫峡赏红叶就是在这里,这个景区除了夏天做 大手笔,冬天还有赏红叶的文章做,按理说应该炒作得起来。但是“北聂南冯“与田总的想法有蛮大差距,主要是炒作运营投资与分成等问题一时没谈拢。中午在船上吃饭,田总安排得很丰盛,向海给 我们斟上酒,我说:“你哥向仕峰还在工商局吗?他回来后我曾来巴东与他见过一面。”没想到向海十分沉痛地说:“我哥他,去年因患癌症去逝了。"啊,我听闻后非常吃惊,这么年轻,这么好的战友怎么 就过早地离开了人间,我哽咽着说:我要给他敬一杯酒。说罢将酒杯里的酒倒在地上,还从窗口倒进了长江。望着窗外满山满岭的红叶,我想起与战友在应山的日日夜夜,我还想起了新兵跳伞训练时, 我是第一架次,向仕峰是第三架次,我跳下来后正收伞,第三架次的两具伞缠在一起了,两个战友共一具伞落地,倒在地上不动了。刘医生上前去查看,我在一旁看见其中一个就是向仕峰,他苏醒过来 擦干嘴角的血就说“没事"。那天连长让他休息,没想到那天下午吃饭,他在饭厅宣读要求明天继续跳伞的决心书。多么好的战友啊!多么勇敢厚道的土家郎儿。我动情了,田总递给我纸巾,让我揩干脸 上的泪。
2.4 渐开线与摆线 课件(人教A选修4-4)(2)

3.圆的渐开线和摆线的参数方程
x=rcos φ+φsin φ y=rsin φ-φcos φ
(φ 为参数)
(1)圆的渐开线方程:
.
(2)摆线的参数方程:
x=rφ-sin φ y=r1-cos φ
(φ 为参数)
.
[小问题·大思维]
1.渐开线方程中,字母r和参数φ的几何意义是什么? 提示:字母r是指基圆的半径,参数φ是指绳子外端运动时 绳子上的定点M相对于圆心的张角. 2.摆线的参数方程中,字母r和参数φ的几何意义是什么? 提示:字母r是指定圆的半径,参数φ是指圆上定点相对于 某一定点运动所张开的角度大小.
因此 OM = OB + BM
=(2α-2sin α,2-2cos α) =(2(α-sin α),2(1-cos α)).
动点 M 的坐标为(x,y),向量 OM =(x,y).
x=2α-sin 所以 y=21-cos
α, α.
这就是所求摆线的参数方程.
[研一题] [例2] 求半径为2的圆的摆线的
参数方程.(如图所示,开始时定
点M在原点O处,取圆滚动时转过 的角度α,(以弧度为单位)为参数) [精讲详析] 本题考查圆的摆线的参数方程的求法.解答
本题需要搞清圆的摆线的参数方程的一般形式,然后将相关数 据代入即可. 当圆滚过α角时,圆心为点B,圆与x轴的切点为A,定点
x=r[θ-sin φ+θ] 的参数方程为 y=r[1-cos φ+θ]
∴点 M
(θ 为参数)
[研一题] [例3] 设圆的半径为8,沿x轴正向滚动,开始时圆与x轴
相切于原点O,记圆上动点为M,它随圆的滚动而改变位置, 写出圆滚动一周时M点的轨迹方程,画出相应曲线,求此曲线
第2讲-渐开线和摆线 共27页

即得 cos φ=1,所以 φ=2kπ(k∈Z).
课
代入 x=r(φ-sin φ),得 x=r(2kπ-sin 2kπ).又因为 x=2, 当
前
堂
自 主 导 学
所以 r(2kπ-sin 2kπ)=2,即得 r=k1π(k∈Z).
双 基 达 标
又由实际可知 r>0,所以 r=k1π(k∈N+).易知,当 k=1
当 堂 双
主
基
导 学
解参数方程的过程,可知其中的字母 r
达 标
是指基圆的半径,而参数 φ 是指绳子外
端运动时绳子与基圆的切点 B 转过的角
课
堂 互
度,如图,其中的∠AOB 即是角 φ.显然
课
动
时
探 究
点 M 由参数 φ 惟一确定.在我们解决有关问题时可以适当利
作 业
用其几何意义,把点的坐标转化为与三角函数有关的问题,使
φ, φ
(φ 为参数),
堂 双 基 达
学
分别把 φ=π3和 φ=π2代入,
标
课 堂 互
可得
A、B
两点的坐标分别为
3+ A( 6
3π,3
36-π),
课
动 探 究
B(π2,1).
时 作 业
菜单
新课标 ·数学 选修4-4
那么,根据两点之间的距离公式可得 A、B 两点的距离为
课
当
前 自 主 导
|AB|=
3+ 6
课 时 作 业
线)的生成过程;了解摆线在实际应用中的
实例.
菜单
新课标 ·数学 选修4-4
1.渐开线及其参数方程
课
当
前 自
(1)把线绕在圆周上,假设线的粗细可以忽略,拉着线头
人教版高中数学选修四教学课件-渐开线与摆线

探究一
探究二
探究三
12345
1.关于渐开线和摆线的叙述,正确的是( ) A.只有圆才有渐开线 B.渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到了不同的图 形 C.正方形也可以有渐开线 D.对于同一个圆,如果建立的平面直角坐标系的位置不同,画出的渐开线形状就不 同 解析:不仅圆有渐开线,其他图形如椭圆、正方形也有渐开线;渐开线和摆线的实 质是完全不一样的,因此得出的图形也不相同;对于同一个圆不论在什么地方建立 平面直角坐标系,画出的图形的大小和形状都是一样的,只是方程的形式及图形在 坐标系中的位置可能不同. 答案:C
12345
12345
12345
12345
1
2
3
2.摆线 圆的摆线就是一个圆沿着一条定直线无滑动地滚动时,圆周上一个定点的轨迹, 圆的摆线又叫旋轮线.
1
2
3
名师点拨
圆的渐开线和摆线的参数方程均不宜化为普通方程,普通方程既烦琐又没有实 际意义.
1
2
3
1
2
3
探究一
探究二
探究三
探究一
探究二
探究三
探究一
探究二பைடு நூலகம்
探究三
探究一
探究二
探究三
学习目标
思维脉络
1.借助教具或计算机软件,
观察圆在直线上滚动时圆上定
点的轨迹(平摆线)、直线在圆 上滚动时直线上定点的轨迹
(渐开线).知道平摆线和渐开线 的生成过程以及它们的参数方
程. 2.通过阅读材料,知道外摆线、
内摆线的生成过程;学会摆线
在实际应用中的实例.
1
2
3
1.渐开线 把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧, 保持绳子与圆相切而逐渐展开,那么笔尖画出的曲线叫做圆的渐开线,相应的定圆 叫做渐开线的基圆.
渐开线与摆线 课件

[解] 以圆心为原点 O,绳端点的初始位置为 M0,向量
O M 0 的方向为 x 轴正方向,建立坐标系,设渐开线上的任意
点 M(x,y),绳拉直时和圆的切点为 A,故 OA⊥AM,按渐
开线定义,弧A M 0 的长和线段 AM 的长相等,记OA和 x 轴 正向所夹的角为 θ(以弧度为单位),则|AM|=A M 0 =4θ.
1.渐开线的产生过程 把一条没有弹性的细绳绕在一个圆盘上,在绳的外端 系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展 开,那么铅笔画出的曲线就是圆的 渐开线 ,相应的定圆 叫做 基圆 . 2.摆线的概念及产生过程 圆的摆线就是一个圆沿着一条定直线无滑动地滚动时 圆周上一个 定点 的轨迹,圆的摆线又叫旋轮线 .
向量OB=(2α,2), 向量 MB=(2sin α,2cos α),
BM =(-2sin α,-2cos α),
因此OM =OB+BM
=(2α-2sin α,2-2cos α)
=(2(α-sin α),2(1-cos α)).
动点 M 的坐标为(x,y),向量OM =(x,y)
所以xy==221α--csoins
又OM =(x,y),
因此有xy= =44scions
θ+θsin θ-θcos
θ, θ.
这就是所求圆的渐开线的参数方程.
用向量方法建立运动轨迹曲线的参数方程的过程和步 骤:
(1)建立合适的坐标系,设轨迹曲线上的动点为 M(x,y). (2)取定运动中产生的某一角度为参数. (3)用三角、几何知识写出相关向量的坐标表达式. (4)用向量运算得到OM 的坐标表达式,由此得到轨迹曲 线的参数方程.
作 AB 垂直于 x 轴,过 M 点作 AB 的垂线,由三角函数 和向量知识,得
《渐开线与摆线》课件

渐开线的数学表达式和图形表示
数学表达式
r = aθ
图形表示
以极坐标系表示的渐开线图形呈螺旋状,随着角度的 增加,半径呈线性增长。
渐开线的应用领域
机械设计
渐开线广泛用于设计高精度的歯轮副,提供平稳传力和 低噪音的性能。
核反应堆设计
渐开线加速器作为核反应堆中的控制元件,可确保精确 的核燃料供应和快速的停机。
《渐开线与摆线》PPT课 件
探索渐开线和摆线的奇妙之旅。从历史背景到应用领域,深入了解定义、特 点、数学表达和图形表示,以及其在机械设计、钟表制造和数学研究中的重 要性。
什么是渐开线和摆线?
渐开线
一种曲线,其半径在沿着曲线固定方向的移动中逐 渐增大。
摆线
由一个定点绕着一条固定直线作匀速旋转而形成的 曲线。
摆线的定义和特点
1 定义
摆线是由一个定点绕着一条固定直线作匀速旋转,其运动轨迹所形成的曲线。
2 特点
摆线为闭合பைடு நூலகம்线,其对称性和周期性使其特别适于制造精确的时钟和钟表机芯。
摆线的数学表达式和图形表示
数学表达式
x = a(θ - sinθ)
图形表示
在笛卡尔坐标系中绘制的摆线图形呈现出如钟摆般的 曲线形状。
摆线的应用领域
钟表制造
摆线作为钟表机芯的基本曲线形状,使钟表能够精确计 时并保持稳定运行。
机械工程
摆线可用于制造凸轮机构,实现复杂运动轨迹和精确的 控制功能。
渐开线与摆线的区别和联系
1
区别
渐开线是螺旋状的曲线,摆线是钟摆状的闭合曲线。
2
联系
两者都是由圆周运动产生的曲线,具有重要的数学性质和广泛的应用。
渐开线与摆线的三维建模
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x OD OA DA OA MC r r sin ,
y DM AC AB CB r r cos .
3、摆线的参数方程
M O y
B
A
M O D
B C A E x
x r ( sin ), 摆线的参数方程为: (为参数) y r (1 cos ).
y
M O D
B C A
所以,摆线的参数方程为:
E
x x r ( sin ), 设开始时定点M 在原点,圆滚动了角后与x轴相切于点为参数) B。 ( A,圆心在点 从点M 分别做AB,x轴的垂线,垂足分别是C,D。 ). y r (1 cos
设点M的坐标为( x, y), 取为参数,根据点M 满足的几何条件,有
思考:P42
在摆线的参数方程中,参数 的取值范围是什么? 一个拱的宽度与高度各是什么?
M B
设基圆的半径为r,绳子外端M的坐标为(x,y)。 显然,点M由角 唯一确定。
由于向量e1 (cos ,sin )是与OB 同方向的单位向量, 因而向量e2 (sin , cos )是与向量BM同方向的单位向量。 所以 | BM | (r )e2 ,即 | BM | ( x r cos , y r sin ) r (sin , cos )
2、摆线
3、摆线的定义
思考:P41
如果在自行车的轮子上喷一个白色印记,那么自行车在笔直 摆线在它与定直线 的道路上行使时,白色印记会画出什么样的曲线?
的两个相邻交点之间 上述问题抽象成数学问题就是:当一个圆沿着一条定直线无滑动地滚动时,圆周 的部分叫做一个拱。
上一个定点的轨迹是什么? M O
B
当外端展开到点M时,因为绳子对圆心角的一段弧AB, 展开后成为切线,所以切线BM的长就是AB的长, 这是动点(笔尖)满足的几何条件。
M
B
O
A
我们把笔尖画出的曲线叫做圆的渐开线, 相应的定圆叫做渐开线的基圆。
2、渐开线的参数方程
以基圆圆心O为原点,直线OA为x轴,建立平面 直角坐标系。
y
这就是圆的渐开线的参数方程。
2、渐开线的参数方程
x r (cos sin ) (是参数)。 y r (sin cos )
y
M B
O A
x
渐开线的应用:
在机械工业中,广泛地使用齿轮传递动力。 由于渐开线齿行的齿轮磨损少,传动平稳,制造安装较为方便, 因此大多数齿轮采用这种齿形。 设计加工这种齿轮,需要借助圆的渐开线方程。
四 渐开线与摆线
1、渐开线 2、摆线
1、渐开线
1、渐开线的定义
探究:P40
把一条没有弹性的细绳绕在一个圆盘上,在绳的 外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切 而逐渐展开,那么铅笔会画出一条曲线。 这条曲线的形状怎样?能否求出它的轨迹方程?
动点(笔尖)满足什么几何条件?
设开始时绳子外端(笔尖)位于点A,
取为参数,则点B的坐标为(rcos,rsin),从而 BM ( x r cos , y r sin ),| BM | r.
O A x
解得
x r (cos sin ) (是参数)。 y r (sin cos )
A
同样地,我们先分析圆在滚动过程中,圆周上的这个动点满足的几何条件。
的长,即OA r。 线段OA的长等于MA
我们把点M的轨迹叫程
M O
B
A
根据点M满足的几何条件,我们取定直线为X轴,定点M滚动时落在定 直线上的一个位置为原点,建立直角坐标系。 设圆的半径为r。