多元函数的基本概念

合集下载

多元函数的基本概念

多元函数的基本概念

多元函数的基本概念
一、多元函数的基本概念
多元函数是一种把多个变量结合起来的函数。

它的定义由一个有限个变量的有限个自变量组成,而这些变量所表达的函数又是满足某种关系式的。

多元函数由以下三个特征来定义:
1. 自变量个数:多元函数可以由一个自变量,也可以由多个自变量组成,而多元函数的具体形式由自变量个数决定。

2. 函数形式:多元函数可以是一元函数、二元函数、三元函数、四元函数和多元函数。

3. 变量关系:多元函数的定义就是根据一定的关系式,把多个自变量结合起来构成的函数。

二、多元函数的性质
多元函数的性质也就是函数的一些性质,这些性质对于函数的理解和应用都非常重要,在学习多元函数时,一定要掌握这些性质。

性质1:多元函数可以变换形式,但其多项式整体的幂次不变。

性质2:多元函数可以拆开成多个小函数,但总体的变量不变。

性质3:多元函数可以进行拟合,但只能用更加简单的函数拟合更加复杂的函数。

性质4:多元函数的单调性与函数的极值分布有关,函数的极值也是多元函数的最重要的一种性质。

三、多元函数的应用
多元函数在工程和科学中都有着广泛的应用,比如在机器学习、机器人控制学、信号处理、经济学、生物学等领域中都有着广泛的应用,以及在财务和统计学中的应用,例如多元回归分析,协方差分析等。

此外,多元函数也在计算机科学中有实际的应用,比如在计算机图形学中,可以用多元函数来描述三维空间中的形体,在模拟技术中,也可以用多元函数来模拟真实的系统。

多元函数微分学知识点梳理

多元函数微分学知识点梳理

多元函数微分学知识点梳理
第九章多元函数微分学
内容复
一、基本概念
1.多元函数的基本概念包括n维空间、n元函数、二重极限、连续等。

其中,偏导数和全微分也是重要的概念。

2.重要定理:
1)二元函数中,可导、连续、可微三者的关系为偏导数
连续→可微。

同时,偏导数存在和函数连续是可微的必要条件。

2)二元函数的极值必须满足必要条件和充分条件。

二、基本计算
一)偏导数的计算
1.偏导数值的计算有三种方法:先代后求法、先求后代法
和定义法。

2.偏导函数的计算包括简单的多元初等函数和复杂的多元
初等函数。

对于复杂的函数,可以使用链式法则,或者隐函数求导法。

3.高阶导数的计算需要注意记号表示和求导顺序。

二)全微分的计算
1.叠加原理可以用于计算全微分,即dz=∂z/∂x dx+∂z/∂y dy。

2.一阶全微分形式不变性对于自变量和中间变量均成立。

三、偏导数的应用
在优化方面,多元函数的极值和最值是常见的应用。

1.无条件极值可以用必要条件和充分条件来求解。

2.条件极值可以使用Lagrange乘数法来求解。

3.最值可以通过比较区域内部驻点处函数值和区域边界上最值的大小来确定。

多元函数与偏导数

多元函数与偏导数

多元函数与偏导数多元函数是数学中的一个重要概念,它是自变量具有多个分量的函数。

偏导数则是多元函数中的一种导数,用于衡量函数在各个分量上的变化率。

本文将探讨多元函数的基本概念、性质以及偏导数的定义、计算方法和应用。

1. 多元函数的基本概念多元函数是自变量具有多个分量的函数,一般形式为 f(x₁, x₂, ..., xₙ),其中x₁, x₂, ..., xₙ分别代表自变量的各个分量。

多元函数中的每个自变量都存在定义域和值域。

与一元函数类似,多元函数也具有图像和性质,如连续性、可微性等。

2. 偏导数的定义偏导数是多元函数中关于某一个自变量的导数。

在多元函数中,除了变化一个自变量外,其他自变量均视作常数。

对于二元函数 f(x, y)来说,偏导数可记作∂f/∂x 或 f₁,表示对 x 分量的偏导数;∂f/∂y 或 f₂,表示对 y 分量的偏导数。

对于n 元函数类似地,可分别计算各个分量的偏导数。

3. 偏导数的计算方法(1)对于一元函数来说,其导数的计算可以借助于极限的方法,即求取函数值在某一点的极限。

同样,对于多元函数的偏导数,也可以通过极限的方式求得。

(2)对于高阶偏导数,可以先计算一阶偏导数,然后再次应用偏导数定义计算二阶偏导数,以此类推。

(3)对于具有特定形式的多元函数,如幂函数、指数函数、三角函数等,可以根据函数特性直接计算偏导数。

4. 偏导数的性质(1)对称性:对于二阶连续可导的函数,偏导数的求导次序不影响结果,即∂²f/∂x∂y = ∂²f/∂y∂x。

(2)混合偏导数的存在性:如果 f(x, y) 在某一点处的混合偏导数∂²f/∂x∂y 与∂²f/∂y∂x 在该点处连续,那么它们相等,即∂²f/∂x∂y = ∂²f/∂y∂x。

(3)偏导数与连续性的关系:若多元函数在某一点处连续可导,那么其各个分量的偏导数存在且连续。

5. 偏导数的应用(1)极值问题:多元函数中的极值点可以通过求解偏导数为零的点得到。

多元函数基本概念

多元函数基本概念

多元函数基本概念多元函数是数学中常见的概念,它与一元函数相比具有更加复杂的性质和表达方式。

在本文中,将介绍多元函数的基本概念,包括定义域、值域、级数、偏导数以及极值等。

一、定义域和值域在讨论多元函数之前,我们首先需要明确定义域和值域的概念。

对于一个多元函数,其定义域是指所有自变量可以取值的集合,通常用D表示。

而值域则是函数在定义域上所有可能取到的函数值的集合,通常用R表示。

例如,考虑一个二元函数f(x, y),其定义域可以是实数集合R,而值域也可以是实数集合R。

二、偏导数偏导数是多元函数的一种导数形式,用于描述函数在某个给定自变量上的变化率。

对于一个具有多个自变量的函数f(x1, x2, ..., xn),其关于第i个自变量的偏导数表示为∂f/∂xi。

偏导数的计算方法与一元函数的导数类似,只需将其他自变量视为常数,对目标自变量求导即可。

需要注意的是,对于每个自变量,都要分别计算其对应的偏导数。

三、级数多元函数的级数是指将多个单变量函数按照一定方式组合而成的函数序列。

常见的多元函数级数有泰勒级数和傅里叶级数等。

泰勒级数是指将一个多元函数在某个点附近展开成幂级数的形式。

通过选择适当的展开点和级数项,可以将函数在该点附近近似表示。

泰勒级数在数学和物理学中有广泛的应用,特别是用于函数的近似计算和数据拟合等方面。

傅里叶级数是指将一个局部有界的周期函数分解成一组正弦和余弦函数的级数。

通过傅里叶级数的展开,可以将周期函数在全局范围内表示,并进行频谱分析和信号处理等操作。

四、极值多元函数的极值是指函数在定义域上取得的最大值或最小值。

与一元函数不同的是,多元函数的极值可能在某些特定点取得,也可能在边界或无穷远处取得。

求解多元函数的极值通常需要使用极值判定条件。

常见的方法有利用偏导数等于零来确定驻点,然后通过二阶偏导数判定极值类型。

同时,还要考虑定义域的边界条件,以确定是否存在边界极值。

总结在本文中,我们介绍了多元函数的基本概念,包括定义域和值域、偏导数、级数以及极值。

多元函数的基本概念

多元函数的基本概念

sin xy lim ( x , y )( 0 , 2 ) x 2 sin( x y) (2) lim ( x , y ) ( 0 , 0 ) x 2 y 2
(1)
1 (3) lim ( x y ) sin 2 ( x , y ) ( 0 , 0 ) x y2
二 多元函数的极限
(一)有关概念 (二)多元函数极限的定义
二元函数的图形 对于在z=f(x,y)的定义域内任意取定的点P(x,y),对应的
函数值为z=f(x,y). 当(x,y)遍取D上的一切点时,得到的空间点集
z
M
{( x, y, z ) | z f ( x, y ), ( x, y ) D}
称为二元函数的图形. 二元函数的图形通常是一张曲面. 二元函数的定义域
0
x2 y (2) f ( x , y ) 4 x y2
当 ( x , y ) (0,0) 时
多元函数的基本概念
一、多元函数的概念
二、多元函数的极限 三、多元函数的连续性
多元函数的基本概念
一、多元函数的概念
二、多元函数的极限 三、多元函数的连续性
三、 多元函数的连续性
(一)多元函数连续性的概念
空间点集
平面点集的有关概念 二维空间:
二元有序实数组(x,y)的全体, 即: {( x , y ) | x R, y R}
记作: R 2或 R R
注 (1) 二维空间的几何意义—坐标平面
(2) 二维空间的元素— P ( x, y ) 坐标平面内的点 平面点集: 二维空间的任一子集, 记作: E R2 注 平面点集E通常是具有某种性质的点的集合, 记作: E={(x,y)|(x,y)具有性质P}

多元函数的基本概念

多元函数的基本概念

多元函数的基本概念
多元函数的基本概念
多元函数是数学中一种重要的概念,它是在多个变量之间写成的函数,能表示多变量间的关系。

为了便于描述,这里使用z来表示变量的总体,用x, y, u等来索引。

例如,多元函数可以使用表达式
z=f(x,y,u)来表示,这里z是函数的输出,x, y和u是函数的输入。

通过多元函数,可以将多变量之间的关系表示出来,从而更加清楚地理解问题。

在数学中,多元函数的应用比较广泛,可以用来描述物理学中的各种力,比如重力,电力等,也可以用来描述量子力学中的任意力。

此外,还可以用多元函数来描述数学计算机科学中的几何图形,从而研究几何图象的形状及相关的物理量。

总之,多元函数可以为人们提供更丰富的信息,以便更好地理解事物,解决实际问题。

多元函数也可以用来计算极限值,也就是极限的函数值的限制,这可以帮助我们在实际应用中研究函数的极限值。

极限值的计算可以帮助我们找到函数的极值点,从而获得函数的最大值和最小值,从而更好地实现函数的优化。

总之,多元函数是数学中重要的概念,它可以用来描述物理学中的各种力,也可以用来描述数学计算机科学中的几何图形,还可以用来计算函数的极限值,从而更好地解决实际问题。

- 1 -。

10-1多元函数的基本概念

10-1多元函数的基本概念
并记 z = f ( X ), 或 z = f (x1, x2, …, xn).
E-mail: xuxin@
注4. 定义中,当x,y的值取定后,z的取值
就根据f的方程来定。通常情况下,这个值是 唯一的,这时我们称z=f(x,y)为单值函数;
但有时候取值是不唯一的,这时我们称之 为多值函数; 例如 x2 y2 z2 9
(0,0)既是边界点也是聚点;
E-mail: xuxin@
点集E的聚点可以属于E,也可以不属于E. 例如,
{( x, y) | 0 x2 y2 1}
(0,0) 是聚点但不属于集合.
例如 {( x, y) | x2 y2 1}
边界上的点都是聚点也都属于集合.
所谓多元函数, 直观的说, 就是有多个自变量的 函数. 函数 y 随多个自变量的变化而变化.
圆柱体体积 V = r 2 h
体积 V 随 r, h的变化而变化. 或者说, 任给 一对数(r, h), 就有唯一的一个V与之对应.
E-mail: xuxin@
长方体体积 V = xyz V 随 x, y, z 的变化而变化. 或者说, 任给 一组数(x, y, z), 就有唯一的一个V与之对应.
闭区域 开区域与其边界一起称为闭区域.
例如: E1 {(x, y) x2 y2 7}
注6. 两个二元函数相等
即:f(x,y)=g(x,y)充要条件是定义域相等且对应 法则也必须相等。
注7. 二元函数的几何意义
二元函数的图形是一张曲面,其定义域D正是这 个曲面在xoy面上的投影区域。
(其图形见下页)
E-mail: xuxin@
如 z = ax +by + c , 表平面. z a2 x2 y2表上半球面. z a2 x2 y2表下半球面.

9.1 多元函数的基本概念

9.1 多元函数的基本概念
第一节 多元函数的基本概念
1.多元函数:设 D 为 R 2 的一个非空子集,称映射 f : D R 为定义在 D 上的二 元函数,通常记为
z f ( x, y ) ,其中 ( x, y ) D
或者
z f ( P) ,其中 P D
特别地, D 称为二元函数 f ( x, y ) 的定义域, x, y 称为二元函数 f ( x, y ) 的自变量,
( x , y ) (0,0)

lim
f ( x, y ) 0
6.多元函数在某点处的连续性:设二元函数 f ( x, y ) 的定义域为 D , P0 ( x0 , y0 ) 为
D 的一个聚点,且 P0 ( x0 , y0 ) D 。若
( x , y ) ( x0 , y0 )
lim

所表示的图形,即以点 P0 ( x0 , y0 ) 为圆心, 为半径的圆的内部 ,但不包括圆周
( x y0 )2 ( y y0 )2 2 以及圆心 P0 ( x0 , y0 ) 。
注 2: 邻域与去心邻域的区别在于后者不包括圆心, 即不包括点 P0 ( x0 , y0 ) 。 于是, 去心可看作去圆心。 例:设 P0 P0 (0,1) ,以及 2 。点 P0 (0,1) 的 2 邻域 U ( P0 , 2) 正是不等式 0 ( x 0)2 ( y 1)2 2 2 所表示的图形,即以点 P0 (0,1) 为圆心, 2 为半径的圆的内部,但不包括圆周 ( x 0)2 ( y 1)2 2 2 ;而点 P0 (0,1) 的去心 2 邻域 U ( P0 , 2) 正是不等式 0 ( x 0)2 ( y 1)2 2 2 所表示的图形,即以点 P0 (0,1) 为圆心, 2 为半径的圆的内部,但不包括圆周 ( x 0)2 ( y 1)2 2 2 以及圆心 P0 (0,1) 。

8-1 多元函数的基本概念

8-1 多元函数的基本概念

其中:D称为定义域 f ( D)称为值域 ,
w 类似地可定义三元函数. f ( x , y , z )
n元函数 y f ( x ) f ( x1 , x2 ,, xn )
多元函数两点说明:
(1)多元函数uf(x)定义域指自然定义域
arcsin( 3 x 2 y 2 ) f ( x, y) 例1 求定义域 x y2 的. 3 x2 y2 1 解 x y2 0 2 x 2 y 2 4 2 x y
n U n维空间邻域: ( P0 , ) P | PP0 | , P R


内点、边界点、区域、聚点等概念也可定义.
1.4 二元函数的定义
定义:设区域 R 2 D 映射f : D R称为二元函数 记为:z f ( P ) f ( x, y ) P ( x , y ) D
lim
x3 y4
xy 1 x y
2 2
2
闭区域上连续函数的性质
(1)最大值和最小值D
使得:f(P1) max{f(P )|PD }
f(P2) min{f(P )|PD } .
(2)介值定理
有界闭区域D上的多元连续函数,必取得介于最大值 和最小值之间的任何值
2 2
去心邻域:( P , ) { P | 0 | PP0 | } U
不需要考虑邻域半径时 简记为: (P ) U
0

P

1.2 区域
E
P
P
(1)设 E 是平面 点集,点 E P 如果存 在U ( P ) E , 则称 P 为 E 的内点 . ( 2)设 E 是平面点集,点 E P 如果存在U ( P ) E , 则称 P 为 E 的外点 . ( 3)如 果 U ( P ) E 且U ( P ) E E 称P 为 E 的 边 界 点 .

多元函数的基本概念汇总

多元函数的基本概念汇总

邻域 设P0(x0 y0)是xOy平面上的一个点 是某一正数 点P0的 邻域记为U(P0 ) 它是如下点集
U (P0, ) {P | | PP 0 | } 或 U (P0, ) {( x, y) | (x x0 )2 ( y y0 )2 } 点 P0 的去心 邻域 记作 U (P0, ) 即
f (x, y) 0
必须注意 (1)二重极限存在 是指P以任何方式趋于P0时 函数都无 限接近于A
(2) 如果当 P 以两种不同方式趋于 P0 时 函数趋于不同的
值 则函数的极限不存在 •讨论

xy 2 2 x y 0 2 2 函数 f (x, y) x y 在点(0 0)有无极限? 2 2 0 x y 0
一、平面点集 n维空间
1.平面点集 坐标平面上具有某种性质P的点的集合 称为平面点集 记作 E{(x y)| (x y)具有性质P} 例如 平面上以原点为中心、r为半径的圆内所有点的集 合是 C{(x y)| x2y2<r2} 或 C{P| |OP|r} 其中P表示坐标为(x y)的点 |OP|表示点P到原点O的距离
•外点 如果存在点 P 的某个邻域 U(P) 使得U(P)E 则称P为E的外点 •边界点 如果点P的任一邻域内既有属 于E的点 也有不属于E的点 则称P点为 E的边点

外点

边界点

内点
E的边界点的全体 称为E的边界 记作E 提问 E的内点、外点、边界点是否都必属于E?
二元函数的图形 点集{(x y z)|zf(x y) (x y)D}称为 二元函数zf(x y)的图形 二元函数的图形是一张曲面 举例
zaxbyc表示一张平面
方程x2y2z2a2确定两个二元函数

多元函数的基本概念

多元函数的基本概念

x3 + y3 , ( x , y ) ≠ (0,0) 2 2 例5 讨论函数 f ( x , y ) = x + y 0, ( x , y ) = (0,0)
处的连续性. 在(0,0)处的连续性. 处的连续性 解 取 y ) − f ( 0, 0 )
= ρ (sin 3 θ + cos 3 θ ) < 2 ρ
∀ ε > 0, ∃ δ = , 当 0 < 2
ε
x2 + y2 < δ 时
f ( x , y ) − f (0,0) < 2 ρ < ε
(5)二元函数的定义 )
是平面上的一个点集, 设 D 是平面上的一个点集 , 如果对于每个点 P ( x , y ) ∈ D , 变量 z 按照一定的法则总有确定的 值和它对应, 的二元函数, 值和它对应,则称 z 是变量 x, y 的二元函数,记为 z = f ( x , y ) (或记为 z = f (P ) ).
便为数轴、平面、 特殊地当 n = 1, 2, 3 时,便为数轴、平面、 空间两点间的距离. 空间两点间的距离. n维空间中邻域、区域等概念 维空间中邻域、 维空间中邻域 邻域: 邻域: U ( P0 , δ ) = P | PP0 |< δ , P ∈ R n
{
}
内点、边界点、区域、聚点等概念也可定义. 内点、边界点、区域、聚点等概念也可定义.
U ( P0 , δ ) = {P | PP0 |< δ }
= ( x , y ) | ( x − x 0 ) 2 + ( y − y0 ) 2 < δ .
δ

{
}
P0
(2)区域 )

多元函数的基本概念课件

多元函数的基本概念课件
曲线积分的计算公式为:∫L f(x,y,z) ds, 其中L是积分曲线。
曲面积分是计算曲面上的函数值累积的 数学工具,分为第一类曲面积分和第二 类曲面积分。
曲线积分和曲面积分在物理、工程等领 域有广泛应用,如计算力矩、功等物理 量。
06 多元函数的应用
在物理中的应用
热力学
多元函数可以用来描述热力学中的状态方程,如压力、温度和体 积之间的关系。
多元函数的基本概念课件
目录
• 多元函数的定义与表示 • 多元函数的极限与连续性 • 多元函数的导数与微分 • 多元函数的极值与最值 • 多元函数的积分 • 多元函数的应用
01 多元函数的定义与表示
定义与性质
定义
多元函数是指定义在两个或更多 个变量上的数学函数。例如,三 维空间中的函数f(x, y, z)定义了x 、y和z的每一个值对。
多元函数的最值
定义
多元函数的最值是指函数在某个 区域内的最大值和最小值。
求解方法
通过求导数找到可能的极值点, 然后通过比较这些点的函数值来
找到最大值和最小值。
应用
在优化问题中,最值的概念被用 来确定某个目标函数的最大或最
小值。
条件极值与无约束最值问题
定义
条件极值是指在满足某些约束条件下求函数的极值;无约束最值问 题则没有约束条件。
02
二重积分的计算通常通 过直角坐标系或极坐标 系进行。
03
04
二重积分可以应用于面 积、体积、质量等的计 算。
二重积分的计算公式为: ∫∫D f(x,y) dxdy,其中 D是积分区域。
三重积分
01
02
03
04
三重积分是计算三维空间区域 上的函数值累积的数学工具。

大一高数多元函数知识点总结

大一高数多元函数知识点总结

大一高数多元函数知识点总结大一的高等数学是大学学习的一门基础课程,其中多元函数是其中比较重要的一部分。

在学习多元函数时,我们需要了解一些基本的概念、性质和计算方法。

本文将对大一高数多元函数的知识点进行总结,希望对同学们的学习有所帮助。

一、多元函数的概念和性质1.1 多元函数的定义多元函数是指含有两个或两个以上自变量的函数,在平面上表示为f(x,y),在空间中表示为f(x,y,z)。

而自变量的取值范围可以是实数集合或者某个区间,函数的值可以是实数或者向量。

1.2 驻点和极值对于多元函数,我们可以通过求偏导数的方法找到其驻点和极值。

具体来说,对于一个二元函数f(x,y),求偏导数f’x(x,y)和f’’y(x,y),令其等于零,可以得到驻点的坐标。

然后,通过计算二阶偏导数f’’xx(x,y)、f’’xy(x,y)和f’’yy(x,y)的值,可以判断驻点是否是极值点。

1.3 偏导数与全微分对于多元函数,我们可以通过对其中某一个自变量求偏导数的方法来求得偏导数,而偏导数可以理解为函数对于某一自变量的变化率。

而全微分则是对多元函数进行全面的微分,表示其在各个自变量方向上的变化率之和。

1.4 隐函数和参数方程在一些情况下,多元函数的表达式并不明显,而是通过一些隐含的条件进行表示。

这时要借助隐函数的概念,将多元函数用隐函数的形式表示出来。

而参数方程则是将多元函数在某个平面上表示为参数的函数形式。

二、多元函数的计算方法2.1 多元函数的线性逼近对于一个二元函数f(x,y),我们可以通过求得其一阶偏导数和二阶偏导数,来进行函数的线性逼近。

而通过线性逼近,我们可以计算函数在某一点的近似值,以及该点处的切线和法线。

2.2 多元函数的积分多元函数的积分与一元函数的积分类似,只是需要在计算过程中考虑到多个自变量。

可以通过对其中一个自变量进行积分,将多元函数转化为一元函数的形式,然后再进行计算。

2.3 向量场的散度和旋度对于一个二维向量场和三维向量场,我们可以通过计算其散度和旋度来了解向量场的性质。

多元函数基本概念梳理

多元函数基本概念梳理

多元函数基本概念梳理在数学领域中,多元函数是一个重要的概念,它在各个学科领域中都有广泛的应用。

本文将对多元函数的基本概念进行梳理,包括多元函数的定义、定义域和值域、偏导数、全微分以及多元函数的极值等内容。

一、多元函数的定义多元函数是指含有多个自变量的函数。

一元函数只有一个自变量,如f(x),而多元函数可以有多个自变量,如f(x, y)、f(x, y, z)等。

多元函数的定义通常为f:D→R,其中D是定义域,R是函数的值域。

二、定义域和值域多元函数的定义域是指所有自变量的取值范围的集合。

在定义域内,函数有定义和有意义。

值域是指函数的所有可能的取值集合。

定义域和值域的确定对于研究函数的性质和特点非常重要。

三、偏导数偏导数是对多元函数中的某一个自变量求导数时,将其他自变量视为常数而进行的求导运算。

偏导数以∂f/∂x或∂f/∂y表示,其中∂表示偏导符号。

偏导数的求导方法与一元函数中的求导类似,但需要注意将其他自变量视为常数。

四、全微分全微分是将多元函数进行变量分离后对各个变量的微分进行求和的过程。

全微分可表示为df = ∂f/∂x dx +∂f/∂y dy。

全微分可以帮助研究者对多元函数的变化率进行分析和研究。

五、多元函数的极值多元函数的极值是指函数在一定范围内取得的最大值或最小值。

多元函数的极值点可以通过偏导数或二阶导数的方法求解。

通过求取偏导数并使其等于0,我们可以得到多元函数的临界点。

通过对临界点进行判断,即可确定多元函数的极值点。

综上所述,多元函数是含有多个自变量的函数,其定义域和值域的确定对于研究函数的性质和特点非常重要。

偏导数是对多元函数中的某一个自变量求导数时,将其他自变量视为常数。

全微分是将多元函数进行变量分离后对各个变量的微分进行求和。

多元函数的极值可以通过求取偏导数并使其等于0,再通过对临界点进行判断来确定。

对于研究多元函数的性质和特点,掌握这些基本概念是非常重要的。

多元函数单调性知识点总结

多元函数单调性知识点总结

多元函数单调性知识点总结一、多元函数的定义及基本概念1. 多元函数的定义多元函数是指在n维欧式空间中的定义域为n维的实数向量空间,值域为实数的函数。

多元函数的自变量和因变量都是n维向量。

一般地,设D⊂R^n, f: D→R为n个实变量的函数,那么称f为n元函数,记作f(x_1,x_2, …, x_n),其中x_i(i=1,2,…,n)称为自变量,函数值y=f(x_1, x_2, …, x_n)称为因变量。

2. 多元函数的单调性多元函数的单调性是指当自变量变化时,函数值的变化趋势。

当函数值随着自变量的增加而增加,称函数在该区间上是单调递增的;当函数值随着自变量的增加而减小,称函数在该区间上是单调递减的。

二、多元函数的偏导数及一阶导数1. 多元函数的偏导数对于n元函数f(x_1, x_2, …, x_n),如果在(x_1, x_2, …, x_n)处存在偏导数,那么对于每一个自变量x_i,在其它自变量不变的情况下,可以对f关于x_i求导,得到f关于x_i的偏导数,记作∂f/∂x_i。

偏导数的定义如下:●当f在点(x_1, x_2, …, x_n)处存在偏导数∂f/∂x_i时,即该函数在该点沿着第i个自变量的方向有导数。

这个导数叫做偏导数,记作∂f/∂x_i,也可简称为偏导。

其计算公式为:∂f/∂x_i = lim(h→0) (f(x_1, x_2, …, x_i+h, …, x_n) - f(x_1, x_2, …, x_i, …, x_n)) / h●如果在点(x_1, x_2, …, x_n)的邻域内,各个偏导数∂f/∂x_i都存在,则称多元函数f(x_1,x_2, …, x_n)在该点可偏导。

2. 多元函数的一阶导数对于n元函数f(x_1, x_2, …, x_n),当其在点(x_1, x_2, …, x_n)处的各个偏导数∂f/∂x_i都存在时,称f在该点可偏导。

此时,函数f的一阶导数是一个n维向量,称为梯度,记作∇f(x_1, x_2, …, x_n) = (∂f/∂x_1, ∂f/∂x_2, …, ∂f/∂x_n)。

多元函数的基本概念

多元函数的基本概念

在其他领域中的应用
化学反应动力学
在化学反应动力学中, 多元函数可以用来描述 反应速率与反应物浓度 之间的关系。
生物种群动态
在生物种群动态中,多 元函数可以用来描述种 群数量随时间的变化趋 势,如Logistic增长模 型。
图像卷 积操作和滤波器设计。
THANKS
感谢观看
可微性
总结词
可微性是指函数在某一点或某一方向上 的导数存在。
VS
详细描述
在多元函数中,如果一个函数在某一点或 某一方向上的导数存在,则称该函数在该 点或该方向上可微。可微性是多元函数的 重要性质之一,它揭示了函数在某一点或 某一方向上的局部变化率。
偏导数
总结词
详细描述
偏导数是指在多元函数的某个自变量固定时, 该函数对其他自变量的导数。
在经济中的应用
供需模型
多元函数可以用来描述商品价格与供需量之 间的关系,通过求导数来分析价格变动对供 需量的影响。
投资组合优化
多元函数可以用来描述投资组合的预期收益与风险 之间的关系,通过优化算法来找到最优的投资组合 。
生产成本分析
在生产成本分析中,多元函数可以用来描述 不同生产要素之间的成本关系,帮助企业进 行成本控制和优化。
多元函数的基本概念
• 引言 • 多元函数的定义与表示 • 多元函数的性质 • 多元函数的极限 • 多元函数的积分 • 多元函数的应用
01
引言
多元函数的概念
多元函数是数学中的一个概念,它是 一个函数,其自变量和因变量都是多 个。在多元函数中,因变量的值依赖 于多个自变量的取值。
多元函数的定义域是一个点的集合, 这些点在各个自变量的取值范围内。 而函数的值域则是一组因变量的值, 这些值由各个自变量的取值确定。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
都有
| f ( x, y) A |
成立,则称常数A为二元函数f (x, y)当PP0 (或xx0, yy0)时的极限,记作
P P0
lim f ( P) A或 lim f ( x, y ) A
x x0 y y0
首页
上页
下页
注1:二元函数的极限称为二重极限;
二重极限存在是指点P(x, y)以任何方式趋于
首页 上页
下页
3. 多元初等函数 (1) 二元基本初等函数 考虑一个变量x或y的基本初等数,将它们当成 二元函数. 如:C, x , y , sinx, siny,…… 称为二元基本初等函数.
首页
上页
下页
(2) 二元初等函数 将二元基本初等函数经有限次四则运算与复合 所组成的函数,称为二元初等函数.
U(P) E
则称点P为点集E的内点.
o
P
E
x y o
1 x
下页
注: 若点集E的点都是内点, 则称E为开集.
例如: 点集 E1= {(x,y)| x2 + y2 < 1}是开集.
点集 E2= {(x,y)| x2 + y2 1}不是开集.
首页 上页
(2) 边界点: 设E为一平面点集, P1为一点, 不论P1点 是否属于 E, 如果 P1 的任何邻域内 , 既 有属于E的点, 也有不属于E的点, 则称 点P1为点集E的边界点.y P1 注: 点集E的全体边界点
所成的点集, 称为点 集E的边界. 例如: 点集 E= {(x, y)| 1 x2 + y2 < 4} 的边界点是圆 x2 + y2 = 1和 x2 + y2 = 4 .
首页
E o x
y x
o
1 2
上页
下页
(3) 区域 设E为一平面点集, 如果E的每一个点都是E的 内点, 并且对E内任何两个点, 都可以用一包含在E 内的折线连结起来, 则称E为一个开区域, 或区域. 注: 点集E内任何两点, 可用E内的一折线连起来, 又称E是连通的. 2 + y2 <4} 2 2 E = {( x , y )| 1< x 例如: E1 = {(x,y)| x + y > 0} 2 也是区域. 是区域.
y 0
sin xy 1 解: lim sin xy lim x x 0 x 0 y xy y 0 y 0
sin xy lim x lim x0 x0 xy y 0 y 0
0 1
0
首页 上页
下页
四、二元函数的连续性 1. 定义:设z =f (x, y)在P0(x0, y0)的邻域内有定义.
2 2
x 0 y 0
1 2 2 0 | 证: | f ( x, y) 0 || ( x y ) sin 2 x y x y2
2 2
>0, 取
, 则当
0 ( x 0) 2 ( y 0) 2 时,
总有
| ( x 2 y 2 ) sin 1 2 2 0 | x y 成立 2 2 (x y )
z z = f ( x , y) M
o x x
首页
y
P D
上页
y
下页
三、二元函数的极限
1. 定义: 设二元函数y =f (x, y)在点P0(x0, y0)附近 有定义,若对于任意给定的>0, 总存在 >0. 当 0 | PP0 | ( x x 0 ) 2 ( y y 0 ) 2 时
首页 上页
称为该函数的值域.
下页
类似地: 可以定义三元函数, 即三维空间中的点函数 u = f (M ) = f (x, y, z). n元函数是n维空间中的点函数 y = f (M ) = f (x1, x2, …, xn).
注1: 讨论算式表达的函数u = f (x,y)时, 规定其定义域
就是使这个算式有确定值u的全体自变量的集合.
3 3
( x , y ) ( 1, 2 ) ( x , y ) ( 1, 2 )
lim
x3 x2
( x , y ) ( 1, 2 ) ( x , y ) ( 1, 2 )
lim lim
y3 y2
lim
1 8 7 1 4 5
首页 上页
下页
1 例4. 求 lim sin xy . x 0 y
首页
上页
下页
二、多元函数概念
1. 二元函数 (1)定义: 设D是平面上的一个点集. 如果对于每个 点P(x, y)D, 变量 z 按照一定法则总有确定的值和 它对应, 则称z是变量x, y的二元函数(或点P的函数), 记为 z= f (x, y) 或 (z= f (P))
点集D称为该函数的定义域, x, y称为自变量. z称为因变量. 数集: { z| z = f (x, y), (x, y)D}
lim f ( P) f ( P0 ) ) 若 lim f ( x, y ) f ( x0 , y 0 )或( P P
x 0 y 0
0
则称 z =f (x, y)在点P0连续. 若f (x, y)在区域D内每一点连续,则称 f (x, y) 在D内连续.
若f (x, y)在点P0不连续,则点P0称为 f (x, y) 的间断点.
1 1 0 1 1 2
首页 上页
下页
五、小结
多元函数的定义 多元函数极限的概念
(注意趋近方式的任意性)
多元函数连续的概念 闭区域上连续函数的性质
首页
上页
下页
思考题
若点( x , y ) 沿着无数多条平面曲线趋向于 点( x0 , y0 ) 时,函数 f ( x , y ) 都趋向于 A,能否 断定
首页 上页
下页
1 2 2 2 例如: z cos 2 的间断点是圆 x y R . 2 2 x y R
注:二元函数的连续概念可相应地推广到n元函数 上去.
首页
上页
下页
2. 有界闭区域上多元连续函数性质 性质1. (最大值和最小值定理) 在有界闭区域D上的多元连续函数在D上一定 有最大值和最小值.
当k=0时,极限为0.
首页 上页
1 当k=1时,极限为 ; 2
故极限不存在。
下页
注4. 二元函数极限有与一元函数极限类似的四则 运算法则,夹逼定理.
x3 y3 例3. 求 ( x, ylim )( 1, 2 ) x 2 y 2 x y 解: lim ( x , y )( 1, 2 ) x 2 y 2
例如:sin(x2 y), x 2 y 2 都是二元初等函数. 注: 类似地定义多元初等函数
结论:多元初等函数在其定义区域内连续. (定义区域指包含在定义域内的区域或闭区域)
首页 上页
下页
x y 例5. 求 lim x 1 xy y 2
x y 解: f ( x, y ) 是二元初等函数 xy
y P E
o
首页
x
上页
下页
3. n 维空间 n个有次序的实数 (x1, x2,…, xn)的全体所成 的集合称为n维空间. 记成Rn, 将(x1, x2,…, xn )称为 n维空间Rn中的点, 数 xi 称为该点的第 i个坐标.
注1: 一维空间R1就是直线. 二维空间R2就是平面.
三维空间R3就是现实空间.
P0(x0, y0)时, z = f (x, y)都无限接近于A.
y P0
x
o
注2:二元函数的极限概念可相应地推广到n元函数.
首页 上页
下页
1 2 2 , ( x y 0) 例1:设 f ( x, y) ( x y ) sin 2 2 x y 求证:lim f ( x, y ) 0
第八章 多元函数微分法及其应用
第一节 多元函数的基本概念
一、区域 1. 邻域: y 设P0(x0, y0)是xOy面上一点, 是某一正数, 与P0(x0, y0)距离 小于 的点P(x, y)的全体, 称为 o P0的 邻域, 记为U(P0, ).

P0 x
即:

U(P0, ) = {P | |P0P| < }
首页
上页
下页
xy
例2. 设 f (x, y) =
x y
2
2
,
x y 0
2 2
0
x 0 y 0
2 2 x y 0 ,
证明: lim f ( x, y )不存在
证明:令P(x, y)沿直线 y = kx 趋于O(0, 0), 则
x 0 y kx0
lim
xy x2 y2
k x kx lim 2 2 x 0 x ( kx ) 1 k 2
y
P0
D1
o x
定义域 D ={(x, y) | x 0 或 y 0} 因D不连通,故D不是区域. 但
D1={(x, y)| x >0, y >0}是区域, 且D1 D
故D1是 f (x, y)的一个定义区域, 且P0(1, 2) D1

x y 1 2 3 lim x 1 1 2 2 xy y 2
z a2 x2 y2
是多值函数, 它有两个单值支:
z a2 x2 y2 及 z a2 x2 y2
首页
上页
下页
(2) 二元函数的图形.
设函数 z = f (x, y)的定义域为D, 将空间点集
{ (x, y, z)| z = f (x, y), (x, y)D} 称为二元函数 z = f (x, y)的图形.
y P1 o y P1 o
相关文档
最新文档