微积分论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微积分论文
牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。
有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。
航天飞机、宇宙飞船等现代化交通工具都是在微积分的帮助下制造出来的。
微积分在人类社会从农业文明跨入工业文明的过程中起到了决定性的作用。
微积分是为了解决变量的瞬时变化率而存在的。
从数学的角度讲,是研究变量在函数中的作用。
从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题。
“变”这个字是微积分最大的奥义。
因此,了解微积分在生活中的应用对于我们解决实际问题有很大的帮助
微积分作为一门学科,是在十七世纪产生的。
它的主要内容包括两部分:微分学和积分学。
然而早在古代微分和积分的思想就已经产生了。
公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、旋转双曲体的体积等问题中,就隐含着近代积分学的思想。
作为微分学基础的极限理论来说,早在古代就有了比较清楚的论述。
如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。
这些都是朴素的极限概念。
到了十七世纪,人们因面临着有许多科学问题需要解决,如研究运动的时候直接出现的,也就是求即时速度的问题;求曲线的切线的问题等,这些问题也就成了促使微积分产生的因素。
十七世纪的许多著名的数学家都为解决上述几类问题作了大量的研究工作。
十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作。
在创立微积
分方面,莱布尼茨与牛顿功绩相当。
这两位数学家在微积分学领域中的卓越贡献概括起来就是:他们总结出处理各种有关问题的一般方法,认识到求积问题与切线问题互逆的特征,并揭示出微分学与积分学之间的本质联系。
两人各自建立了微积分学基本定理,并给出微积分的概念、法则、公式及其符号。
有了这些理论知识作为前提为以后的微积分学的进一步发展奠定了坚实而重要的基础。
微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。
可以说微积分学的诞生是数学发展的一个里程碑式的事件。
二、微积分诞生的重要意义
微积分诞生之前,人类基本上还处在农耕文明时期。
微积分学是继解析几何产生后的又一个伟大的数学创造。
微积分为创立许多新的学科提供了源泉。
微积分的建立是人类头脑最伟大的创造之一,是人类理性思维的结晶。
它给出一整套的科学方法,开创了科学的新纪元,并因此加强与加深了数学的作用。
微积分的产生不仅具有伟大的科学意义,而且具有深远的社会影响。
有了微积分,就有了工业革命,有了大工业生产,也就有了现代化的社会。
在微积分的帮助下,万有引力定律发现了。
微积分学强有力地证明了宇宙的数学设计,摧毁了笼罩在天体上的神秘主义、迷信和神学。
这一
切都表明微积分学的产生是人类认识史上的一次空前的飞跃。
三、微积分理论的基本介绍
微积分学是微分学和积分学的总称。
微积分学基本定理指出,求不定积分与求导函数是互为逆运算的过程,而把上下限代入不定积分即得到积分值,微分则是导数值与自变量增量的乘积。
作为一种数学的思想微分就是“无限细分”,而积分就是“无限求和”。
牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,但是理论基础是不牢固的。
因为“无限”的概念是无法用已经拥有的代数公式进行演算,所以,直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。
学习微积分学,首要的一步就是要理解到,“极限”引入的必要性:因为,代数是人们已经熟悉的概念,但是,代数无法处理“无限”的概念。
所以,必须要利用代数处理代表无限的量,这时就精心构造了“极限”的概念。
在“极限”的定义中,我们可以知道,这个概念绕过了用一个数除以0的麻烦,相反引入了一个过程任意小量ε。
就是说,除的数不是零,所以有意义,同时ε可以取任意小,只要满足在δ区间,都小于ε,我们就说他的极限就是这个数。
虽然这个概念给出的比较取巧,但是,它的实用性证明,这样的定义还算比较完善,给出了正确推论的可能性。
因此这个概
念是成功的。
四、微积分的基本内容五、小结
随着社会的进步,科学的发展,微积分学也在不断的发展与完善。
微积分学是与科学应用紧密联系着发展起来的。
最初,牛顿应用微积分学及微分方程对天文观测数据进行了分析运算,得到了万有引力定律,并进一步导出了开普勒行星运动三定律。
微积分学成了推动近代数学发展强大的引擎,同时也极大的推动了天文学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展,并在这些学科中有着越来越广泛的应用。