矩阵的对角化

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要

矩阵的对角化指的是矩阵与对角矩阵相似,而形式最简单的对角矩阵在矩阵理论中占有重要地位,因此研究矩阵的对角化问题是很有实用价值的.矩阵是否可以对角化,是矩阵的一条很重要的性质。对相似可对角化的充分必要条件的理解,一直是线性代数学习中的一个困难问题。目前对于矩阵可对角化的条件,矩阵对角化的方法和矩阵对角化的运用都有了较为全面和深入的研究。在归纳总结前人的基础之上,先给出了与对角化相关的概念,其次讨论了矩阵对角化的几个等价条件,最后总结了一些有关矩阵对角化的应用。

关键词:方阵;特征值;特征向量;对角化

Abstract

Matrix diagonalization refers similarity matrix and a diagonal matrix, The simplest form of a diagonal matrix plays an important role in matrix theory, Therefore Matrix diagonalization problem is very practical value.

Whether matrix diagonalization matrix is a very important property. To be similar to the necessary and sufficient condition for understanding keratosis, has been one of linear algebra learning difficulties. At present more comprehensive and in-depth study of the matrix can be diagonalized conditions, matrix methods and the use of matrix diagonalization diagonalization of everything. In summarizing the basis of their predecessors, with the first given diagonalization related concepts, followed by discussion of the matrix diagonalization of several equivalent conditions and, finally, the application of some of the matrix diagonalization.

Keywords: square; characteristic value; eigenvectors; diagonalization

目录

引言 (1)

一矩阵可对角化的概念 (2)

1.1 特征值、特征向量的概念 (2)

1.2 矩阵可对角化的概念 (2)

二矩阵可对角化的几个等价条件 (4)

2.1 矩阵可对角化的充分必要条件及其证明 (4)

2.2 可对角化矩阵的相似对角阵的求法及步骤 (8)

三矩阵可对角化的应用 (9)

3.1具体矩阵对角化的求解过程 (9)

3.2矩阵对角化的应用 (13)

3.2.1在反求矩阵方面的应用. (13)

3.2.2 求方阵的高次幂 (14)

3.2.3 求行列式的值 (15)

3.2.4求一些具有线性递推关系组的数列的通项和极限 (16)

3.2.5 在二次曲面上的一些应用 (17)

结论 (19)

致谢............................................... 错误!未定义书签。参考文献.. (20)

引言

矩阵是高等代数中的重要组成部分,是许多数学分支研究的重要工具。而对角矩阵作为矩阵中比较特殊的一类,其形式简单,研究起来也非常方便。研究矩阵的对角化及其理论意义也很明显,矩阵相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。相似的矩阵拥有很多相同的性质,比如特征多项式、特征根、行列式……如果只关心这类性质,那么相似的矩阵可以看作是没有区别的,这时研究一个一般的可对角化矩阵,只要研究它的标准形式——一个对角形矩阵就可以了。而对角矩阵是最简单的一类矩阵,研究起来非常方便。

线性代数中矩阵是否可以对角化,是矩阵的一条很重要的性质。矩阵对角化也是《高等代数》和《线性代数》中矩阵理论这一部分的主要内容。人们对此研究得出了很多有用的结论。诸如一些充要条件:n阶方阵A可以对角化的充要条件是它有n个线性无关的特征向量;方阵A可以对角化的充要条件是它的最小多项式没有重根;还有复方阵A可以酉相似于对角形矩阵的充要条件是它为正规矩阵,此外,还有一些充分条件。然而,所有这些结论都相对比较抽象,特别是对于大学一年级的新生,抽象化的结论不便于学生的理解和记忆,因此,一些学生在学完《高等数学》和《线性代数》的相关知识后不久,便相继忘掉了一些重要的结论。但是,一个普遍的现象是这些学生对高中、初中的数学知识比较熟悉,且记忆深刻,因此,若能将一些大学数学知识和高中、初中的一些知识进行类比,则这些新的数学知识与理论便会易于理解和记忆。

在本课题中通过阅读参考文献、查阅相关资料,初步总结出了矩阵可对角化的若干充分必要条件,并给予了相应的证明过程。

一 矩阵可对角化的概念

1.1 特征值、特征向量的概念

定义1 设A 是数域P 上线性空间V 的一个线性变换, 如果对于数域P 中的一个数0

λ存在一个非零向量ε使得ελε0=A ,那么0λ称为A 的一个特征值,而ε 称为A 的属于特征值0λ的一个特征向量。

求方阵A 的特征值与特征向量的步骤:

(1)由特征方程A E -λ=0求得A 的n 个特征值,设t λλλ,,,21 是A 的互异特征值,其重数分别为t n n n ,,,21 则n n n n t =+++ 21。

(2)求解齐次线性方程组()0=-X A E i λ()t i ,,2,1 =,其基础解系

s i i i p p p ,,,21 (t i n s i i ,,2,11 =≤≤,)就是A 所对应特征值i λ的线性无关的特征向量。

1.2 矩阵可对角化的概念

定义2 设A 是数域F 上一个n 阶方阵,如果存在数域F 上的一个可逆矩阵P ,使得

AP P 1-为对角形矩阵,那么就说矩阵A 可以对角化。

任意方阵A 的每一个特征值i λ都有一个与之相对应的特征向量i P 满足

i i i P AP λ=()n ,1,2,i =,则这个方程可以写成

()()n n P P P P P P A ,,,,,,2121 =⎪⎪

⎪⎪⎪

⎪⎭

⎛n λλλ

2

1

, (1) 我们定义矩阵()n P P P P ,,,21 =,()n diag B λλλ,,,21 =则(1)式可写成PB AP =,若矩阵P 是

可逆阵,则有()n diag B AP P λλλ,,,211 ==-

引理1 设A 、B 都是n 阶矩阵,则有秩()AB ≥秩()A +秩()n B - ① 证:

000

00

n n n n

n n E E B E B E A E E A

AB -⎛⎫⎛⎫⎛⎫⎛⎫

= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭

⎝⎭⎝⎭0=00=+n

n E B E A AB E AB n AB

⎛⎫⎛⎫ ⎪ ⎪-⎝⎭⎝⎭ +- =秩秩秩秩()

相关文档
最新文档