随机变量及分布列ppt
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴从袋子中随机取出一球所得分数X的分布列为:
X1
0
-1
111 P
6 3- 2
例4:一个口袋有5只同样大小的球,编号分别为1,2, 3,4,5,从中同时取出3只,以X表示取出的球最小的 号码,求X的分布列。
解:因为同时取出3个球,故X的取值只能是1,2,3
当X=1时,其他两球可在剩余的4个球中任选
故其概率为
-
例3、袋子中有3个红球,2个白球,1个黑球,这些球 除颜色外完全相同,现要从中摸一个球出来,若摸到 黑球得1分,摸到白球得0分,摸到红球倒扣1分,试写 出从该盒内随机取出一球所得分数X的分布列.
解:因为只取1球,所以X的取值只能是1,0,-1
QP(X
1)
1 ,
P(X
0)
2
1 ,
6
63
P(X 1) 3 1 62
高二数学 选修2-3
2.1.1离散型随机变 量的分布列
-
引例:
(1)抛掷一枚骰子,可能出现的点数有几种情况?
1,2,3,4,5,6 能否把掷硬
(2)姚明罚球2次有可能得到的分数有几币种的情结况果?也
0分,1分,2分 用数字来表
示呢? (3)抛掷一枚硬币,可能出现的结果有几种情况?
正面向上,反面向上
X
x1
x2
…
xi
…
P
P1
P2
…
Pi
…
为离散型随机变量X的概率分布列,简称为X的分布列.
有时为了表达简单,也用等式
P(X=xi)=Pi 来表示X的分布列
i=1,2,…,n
-
离散型随机变量的分布列应注意问题:
X
x1
x2
…
xi
…
P
P1
P2
…
Pi
…
1、分布列的构成: (1)列出了离散型随机变量X的所有取值; (2)求出了X的每一个取值的概率;
解:X的取值范围是{0,1,2,3} ,其中 {X=0}表示的事件是“取出0个白球,3个黑球”; {X=1}表示的事件是“取出1个白球,2个黑球”; {X=2}表示的事件是“取出2个白球,1个黑球”; {X=3}表示的事件是“取出3个白球,0个黑球”;
变题:{X < 3}在这里又表示什么事件呢?
“取出的3个球中,白球不超过2个”
-
写出下列各随机变量可能的取值,并说明它们各自 所表示的随机试验的结果:
(1)从10张已编号的卡片(从1号到10号)中任取1张,
被取出的卡片的号数x ;(x=1、2、3、···、10)
(2)抛掷两个骰子,所得点数之和Y;(Y=2、3、···、12) (3)某城市1天之中发生的火警次数X;(X=0、1、2、3、···)
P(X
1)
C42 C53
3 5
当X=2时,其他两球的编号在3,4,5中选,
故其概率为
P(X
2)
C32 C53
3 10
当X=3时,只可能是3,4,5这种情况,
概率为 P(X 3) 1 - 10
例4:一个口袋有5只同样大小的球,编号分别为1,2, 3,4,5,从中同时取出3只,以X表示取出的球最小的 号码,求X的分布列。
思考:在上述试验开始之前,你能确定结果是哪一
种情况吗?
分析:不行,虽然我们能够事先知道随机试验可能出
现的所有结果,但在一般情况下,试验的结果是随机出
现的。
-
一、随机变量的概念:
在前面的例子中,我们把随机试验的每一个结果 都用一个确定的数字来表示,这样试验结果的变化就 可看成是这些数字的变化。
若把这些数字当做某个变量的取值,则这个变量
就叫做随机变量,常用X、Y、x、h 来表示。
注意:有些随机试验的结果虽然不具有数量性质,但还是 可以用数量来表达,如在掷硬币的试验中,我们可以定义
“X=0,表示正面向上,X =1,表示反面向上”
-
按照我们的定义,所谓的随机变量,就是随机试验 的试验结果与实数之间的一个对应关系。那么,随机变量 与函数有类似的地方吗?
随机变量是试验结果与实数的一种对应关系,而 函数是实数与实数的一种对应关系,它们都是一种映射
在这两种映射之间, 试验结果的范围相当于函数的定义域, 随机变量的取值结果相当于函数的值域。
所以我们也把随机变量的取值范围叫做随机变量的值域。
-
例1、一个袋中装有5个白球和5个黑球,若从中任取3个, 则其中所含白球的个数X就是一个随机变量,求X的取值 范围,并说明X的不同取值所表示的事件。
随机变量叫做连续型随机变量。 (如灯泡的寿命,树木的高度等等) 注意: (1)随机变量不止两种,我们只研究离散型随机变量; (2)变量离散与否,与变量的选取有关; 比如:对灯泡的寿命问题,可定义如下离散型随机变量
0, 寿命1000小时 Y1, 寿命-1000小时
下列试验的结果能否用离散型随源自文库变量表示? (1)已知在从汕头到广州的铁道线上,每隔50米有一个
(4)某品牌的电灯泡的寿命X; [0,+∞)
(5)某林场树木最高达30米,最低是0.5米,则此林场
任意一棵树木的高度x. [0.5,30]
思考:前3个随机变量与最后两个有什么区别?
-
二、随机变量的分类:
1、如果可以按一定次序,把随机变量可能取的值一一
列出,那么这样的随机变量就叫做离散型随机变量。
(如掷骰子的结果,城市每天火警的次数等等) 2、若随机变量可以取某个区间内的一切值,那么这样的
电线铁站,这些电线铁站的编号; (2)任意抽取一瓶某种标有2500ml的饮料,其实际量
与规定量之差; (3)某城市1天之内的温度; (4)某车站1小时内旅客流动的人数; (5)连续不断地投篮,第一次投中需要的投篮次数. (6)在优、良、中、及格、不及格5个等级的测试中,
某同学可能取得的等级。
-
若用X表示抛掷一枚质地均匀的骰子所得的点数, 请把X取不同值的概率填入下表,并求判断下列事件发生 的概率是多少? (1){X是偶数};(2) {X<3};
X
1
2
3
4
5
6
1
P
6
11 66
111 666
解:P(X是偶数)=P(X=2)+P(X=4)+P(X=6) 1 2
1 P(X<3)=P(X=1)+P(X=2)
-3
三、离散型随机变量的分布列:
一般地,若离散型随机变量X 可能取的不同值为: x1,x2,…,xi,…,xn
X取每一个xi (i=1,2,…,n)的概率P(X=xi)=Pi,则称表:
2、分布列的性质:
( 1) pi 0,i1,2,
n
( 2)pi p1p2pn1
i1
-
求离散型随机变量分布列的基本步骤: (1)确定随机变量的所有可能的值xi (2)求出各取值的概率P(X=xi)=pi (3)列出表格
定值 求概率 列表
说明:在写出X的分布列后,要及时检查所有的 概率之和是否为1.
X1
0
-1
111 P
6 3- 2
例4:一个口袋有5只同样大小的球,编号分别为1,2, 3,4,5,从中同时取出3只,以X表示取出的球最小的 号码,求X的分布列。
解:因为同时取出3个球,故X的取值只能是1,2,3
当X=1时,其他两球可在剩余的4个球中任选
故其概率为
-
例3、袋子中有3个红球,2个白球,1个黑球,这些球 除颜色外完全相同,现要从中摸一个球出来,若摸到 黑球得1分,摸到白球得0分,摸到红球倒扣1分,试写 出从该盒内随机取出一球所得分数X的分布列.
解:因为只取1球,所以X的取值只能是1,0,-1
QP(X
1)
1 ,
P(X
0)
2
1 ,
6
63
P(X 1) 3 1 62
高二数学 选修2-3
2.1.1离散型随机变 量的分布列
-
引例:
(1)抛掷一枚骰子,可能出现的点数有几种情况?
1,2,3,4,5,6 能否把掷硬
(2)姚明罚球2次有可能得到的分数有几币种的情结况果?也
0分,1分,2分 用数字来表
示呢? (3)抛掷一枚硬币,可能出现的结果有几种情况?
正面向上,反面向上
X
x1
x2
…
xi
…
P
P1
P2
…
Pi
…
为离散型随机变量X的概率分布列,简称为X的分布列.
有时为了表达简单,也用等式
P(X=xi)=Pi 来表示X的分布列
i=1,2,…,n
-
离散型随机变量的分布列应注意问题:
X
x1
x2
…
xi
…
P
P1
P2
…
Pi
…
1、分布列的构成: (1)列出了离散型随机变量X的所有取值; (2)求出了X的每一个取值的概率;
解:X的取值范围是{0,1,2,3} ,其中 {X=0}表示的事件是“取出0个白球,3个黑球”; {X=1}表示的事件是“取出1个白球,2个黑球”; {X=2}表示的事件是“取出2个白球,1个黑球”; {X=3}表示的事件是“取出3个白球,0个黑球”;
变题:{X < 3}在这里又表示什么事件呢?
“取出的3个球中,白球不超过2个”
-
写出下列各随机变量可能的取值,并说明它们各自 所表示的随机试验的结果:
(1)从10张已编号的卡片(从1号到10号)中任取1张,
被取出的卡片的号数x ;(x=1、2、3、···、10)
(2)抛掷两个骰子,所得点数之和Y;(Y=2、3、···、12) (3)某城市1天之中发生的火警次数X;(X=0、1、2、3、···)
P(X
1)
C42 C53
3 5
当X=2时,其他两球的编号在3,4,5中选,
故其概率为
P(X
2)
C32 C53
3 10
当X=3时,只可能是3,4,5这种情况,
概率为 P(X 3) 1 - 10
例4:一个口袋有5只同样大小的球,编号分别为1,2, 3,4,5,从中同时取出3只,以X表示取出的球最小的 号码,求X的分布列。
思考:在上述试验开始之前,你能确定结果是哪一
种情况吗?
分析:不行,虽然我们能够事先知道随机试验可能出
现的所有结果,但在一般情况下,试验的结果是随机出
现的。
-
一、随机变量的概念:
在前面的例子中,我们把随机试验的每一个结果 都用一个确定的数字来表示,这样试验结果的变化就 可看成是这些数字的变化。
若把这些数字当做某个变量的取值,则这个变量
就叫做随机变量,常用X、Y、x、h 来表示。
注意:有些随机试验的结果虽然不具有数量性质,但还是 可以用数量来表达,如在掷硬币的试验中,我们可以定义
“X=0,表示正面向上,X =1,表示反面向上”
-
按照我们的定义,所谓的随机变量,就是随机试验 的试验结果与实数之间的一个对应关系。那么,随机变量 与函数有类似的地方吗?
随机变量是试验结果与实数的一种对应关系,而 函数是实数与实数的一种对应关系,它们都是一种映射
在这两种映射之间, 试验结果的范围相当于函数的定义域, 随机变量的取值结果相当于函数的值域。
所以我们也把随机变量的取值范围叫做随机变量的值域。
-
例1、一个袋中装有5个白球和5个黑球,若从中任取3个, 则其中所含白球的个数X就是一个随机变量,求X的取值 范围,并说明X的不同取值所表示的事件。
随机变量叫做连续型随机变量。 (如灯泡的寿命,树木的高度等等) 注意: (1)随机变量不止两种,我们只研究离散型随机变量; (2)变量离散与否,与变量的选取有关; 比如:对灯泡的寿命问题,可定义如下离散型随机变量
0, 寿命1000小时 Y1, 寿命-1000小时
下列试验的结果能否用离散型随源自文库变量表示? (1)已知在从汕头到广州的铁道线上,每隔50米有一个
(4)某品牌的电灯泡的寿命X; [0,+∞)
(5)某林场树木最高达30米,最低是0.5米,则此林场
任意一棵树木的高度x. [0.5,30]
思考:前3个随机变量与最后两个有什么区别?
-
二、随机变量的分类:
1、如果可以按一定次序,把随机变量可能取的值一一
列出,那么这样的随机变量就叫做离散型随机变量。
(如掷骰子的结果,城市每天火警的次数等等) 2、若随机变量可以取某个区间内的一切值,那么这样的
电线铁站,这些电线铁站的编号; (2)任意抽取一瓶某种标有2500ml的饮料,其实际量
与规定量之差; (3)某城市1天之内的温度; (4)某车站1小时内旅客流动的人数; (5)连续不断地投篮,第一次投中需要的投篮次数. (6)在优、良、中、及格、不及格5个等级的测试中,
某同学可能取得的等级。
-
若用X表示抛掷一枚质地均匀的骰子所得的点数, 请把X取不同值的概率填入下表,并求判断下列事件发生 的概率是多少? (1){X是偶数};(2) {X<3};
X
1
2
3
4
5
6
1
P
6
11 66
111 666
解:P(X是偶数)=P(X=2)+P(X=4)+P(X=6) 1 2
1 P(X<3)=P(X=1)+P(X=2)
-3
三、离散型随机变量的分布列:
一般地,若离散型随机变量X 可能取的不同值为: x1,x2,…,xi,…,xn
X取每一个xi (i=1,2,…,n)的概率P(X=xi)=Pi,则称表:
2、分布列的性质:
( 1) pi 0,i1,2,
n
( 2)pi p1p2pn1
i1
-
求离散型随机变量分布列的基本步骤: (1)确定随机变量的所有可能的值xi (2)求出各取值的概率P(X=xi)=pi (3)列出表格
定值 求概率 列表
说明:在写出X的分布列后,要及时检查所有的 概率之和是否为1.