2017年初三数学一模卷各区18题汇总

合集下载

2017中考数学一模模拟试卷(备考)_题型归纳

2017中考数学一模模拟试卷(备考)_题型归纳

2017中考数学一模模拟试卷(备考)_题型归纳初中的学习至关重要,广大中学生朋友们一定要掌握科学的学习方法,提高学习效率。

以下是查字典数学网为大家提供的中考数学一模模拟试卷,供大家复习时使用!A级基础题1.要使分式1x-1有意义,则x的取值范围应满足()A.x=1B.x≠0C.x≠1D.x=02.分式x2-1x+1的值为零,则x的值为()A.-1B.0C.±1D.13.化简a3a,正确结果为()A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.已知a-ba+b=15,则ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.化简:1x-4+1x+4÷2x2-16.8.先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2.B级中等题10.化简:2mm+2-mm-2÷mm2-4=________.11.若x+y=1,且x≠0,则x+2xy+y2x÷x+yx的值为________.12.已知实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷a+1a+2a2-2a+1的值.C级拔尖题13.已知三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,则xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.分式1.C2.D3.B4.7z36x2y x+3x+15.326.-17.解:原式=x+4+x-4x+4x-4•x+4x-42=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=m-22m+1m-1•m-1m-2+2m-1=m-2m+1+2m-1=m-2m-1+2m+1m+1m-1=m2-m+4m+1m-1,当m=2时,原式=4-2+43=2.10.m-611.112.解:原式=1a+1-a+2a+1a-1•a-12a+1a+2=1a+1-a-1a+12=2a+12,∵a2+2a-15=0,∵(a+1)2=16.∵原式=216=18.13.-4解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x=-14,所以xyzxy+yz+zx=-4.14.解:原式=a b+1b+1b-1+b-1b-12=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∵b=2,6a=b,即a=13,b=2.∵原式=13+12-1=43.。

北京市各区2017年中考数学一模试题汇编尺规作图无答案

北京市各区2017年中考数学一模试题汇编尺规作图无答案

尺规作图【17西城一模】16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.请回答:该作图的依据是.【17房山一模】16.在数学课上,老师提出如下问题:小云的作法如下:小云作图的依据是.【17平谷一模】16.小米是一个爱动脑筋的孩子,他用如下方法作∠AOB 的角平分线:作法:如图,(1)在射线OA 上任取一点C ,过点C 作CD ∥OB ;(2)以点C 为圆心,CO 的长为半径作弧,交CD 于点E ; (3)作射线OE .所以射线OE 就是∠AOB 的角平分线.请回答:小米的作图依据是_________________________.【17通州一模】16.工人师傅常用角尺(两个互相垂直的直尺构成)平分一个任意角.做法如下: 如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同..的刻度分别与 点M ,N 重合.过角尺顶点C 的射线OC 便是∠AOB 的平分线.这样做的依据是:______________________.【17丰台一模】16.在数学课上,老师提出如下问题:小姗的作法如下:老师说:“小姗的作法正确”.请回答:得到△ABC 是等腰三角形的依据是:____________________________.O E DC BAa bMNAB CD 如图,(1)作线段BC =a ;(2)作线段BC 的垂直平分线MN 交线段BC 于点D ; (3)在MN 上截取线段DA =b ,连接AB ,AC .所以,△ABC 就是所求作的等腰三角形.已知:线段a ,b . 求作:等腰△ABC ,使AB =AC ,BC =a ,BC 边上的高为b .CAK F NMCBA P16-1 FK【17门头沟一模】16.在数学课上,老师布置了一项作图任务,如下:已知:如图16-1,在△ABC 中,AC AB =,请在图中的△ABC 内(含边),画出使 45APB ∠=︒的一个点P (保留作图痕迹),小红经过思考后,利用如下的步骤找到了点P : (1)以AB 为直径,做⊙M ,如图16-2; (2)过点M 作AB 的垂线,交⊙M 于点N ;(3)以点N 为圆心,NA 为半径作⊙N ,分别交CA 、CB 边于F 、K ,在劣弧上任取 一点P 即为所求点,如图16-3.说出此种做法的依据__________.【17东城一模】16.下面是“以已知线段为直径作圆”的尺规作图过程.MC B A 16-2 16-3已知:线段AB.求作:以AB 为直径的⊙O .BA作法:如图,(1) 分别以A ,B 为圆心,大于21AB 的长为半径 作弧,两弧相交于点C ,D ;(2)作直线CD 交AB 于点O ;(3)以O 为圆心,OA 长为半径作圆. 则⊙O 即为所求作的.请回答:该作图的依据是 .【17海淀一模】16.下面是“作三角形一边中线”的尺规作图过程.已知:△ABC .求作:BC 边上的中线AD .作法:如图,(1)分别以点B ,C 为圆心,AC ,AB 长为半径作弧,两弧相交于P点;(2)作直线AP ,AP 与BC 交于D 点. 所以线段AD 就是所求作的中线.请回答:该作图的依据是_____________________________________________________.【17顺义一模】 16.阅读下面材料:在数学课上,老师提出如下问题:小凯的作法如下:PAB D CPA B B CA老师说:“小凯的作法正确.”请回答:在小凯的作法中,判定四边形AECF 是菱形的依据是______________________. 【17朝阳一模】 16.阅读下面材料:在数学课上,老师提出如下问题:小红的作法如下:老师说:“小红的作法正确.”请回答:小红的作图依据是_________________________.尺规作图:作一条线段的垂直平分线.已知:线段AB .求作:线段AB 的垂直平分线.如图,①分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于点C ;②再分别以点A 和点B 为圆心,大于12AB 的长为半径(不同于①中的半径)作弧,两弧相交于点D ,使点D 与点C 在直线 AB 的同侧; ③作直线CD .所以直线CD 就是所求作的垂直平分线.【17怀柔一模】16.数学活动课上,老师让同学们围绕一道尺规作图题展开讨论,尽可能想出不同的作法:老师说:“小强的作法正确.” 请回答:小强这样作图的依据是: .【17石景山一模】9.用尺规作图法作已知角AOB ∠的平分线的步骤如下:①以点O 为圆心,任意长为半径作弧,交OB 于点D ,交OA 于点E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在AOB ∠的内部相交于点C ; ③作射线OC .则射线OC 为AOB ∠的平分线.由上述作法可得OCD △≌OCE △的依据是 A .SAS C .AAS B .ASA D .SSS【17大兴一模】 16.阅读下面材料:在数学课上,老师提出如下问题: 已知:△ABC ,尺规作图:求作∠APC =∠ABC. 甲、乙两位同学的主要作法如下:老师说:“两位同学的作法都是正确的.”请你选择一位同学的作法,并说明这位同学作图的依据. 我选择的是 的作法,这样作图的依据是.。

2017年上海各区初三数学一模卷

2017年上海各区初三数学一模卷

2016学年上海市杨浦区初三一模数学试卷一。

选择题(本大题共6题,每题4分,共24分) 1。

如果延长线段AB 到C ,使得12BC AB =,那么:AC AB 等于( ) A. 2:1 B. 2:3 C 。

3:1 D 。

3:22。

在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是( ) A 。

100tan α B 。

100cot α C. 100sin α D. 100cos α 3。

将抛物线22(1)3y x =-+向右平移2个单位后所得抛物线的表达式为( ) A. 22(1)5y x =-+ B 。

22(1)1y x =-+ C. 22(1)3y x =++ D 。

22(3)3y x =-+4。

在二次函数2y ax bx c =++中,如果0a >,0b <,0c >,那么它的图像一定不经过( )A 。

第一象限B 。

第二象限 C. 第三象限 D 。

第四象限 5. 下列命题不一定成立的是( )A 。

斜边与一条直角边对应成比例的两个直角三角形相似 B. 两个等腰直角三角形相似C. 两边对应成比例且有一个角相等的两个三角形相似D. 各有一个角等于100°的两个等腰三角形相似6. 在△ABC 和△DEF 中,40A ︒∠=,60D ︒∠=,80E ︒∠=,AB FDAC FE=,那么B ∠的度数是( )A. 40︒B. 60︒ C 。

80︒ D. 100︒二。

填空题(本大题共12题,每题4分,共48分) 7. 线段3cm 和4cm 的比例中项是 cm 8. 抛物线22(4)y x =+的顶点坐标是9. 函数2y ax =(0)a >中,当0x <时,y 随x 的增大而10. 如果抛物线2y ax bx c =++(0)a ≠过点(1,2)-和(4,2),那么它的对称轴是 11. 如图,△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且DE ∥BC ,EF ∥AB ,:1:3DE BC =,那么:EF AB 的值为12. 如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 相交于点O ,如果2BC AD =,那么:ADC ABC S S ∆∆的值为13. 如果两个相似三角形的面积之比是9:25,其中小三角形一边上的中线长是12cm ,那么大三角形中与之相对应的中线长是 cm 14。

北京市各区2017年中考一模数学试卷分类汇编新概念专题

北京市各区2017年中考一模数学试卷分类汇编新概念专题

【2017东城一模】29.设平面内一点到等边三角形中心的距离为d ,等边三角形的内切圆半径为r ,外接圆半径为R ,关于一个点与等边三角形,给出如下概念:知足r ≤d ≤R 的点叫做等边三角形的中心关联点。

在平面直角坐标系xOy 中, 等边△ABC.(1),在D ,E ,F 中,是等边△ABC 的中心关联点的是 ; (2)如图1①过点A 作直线交x 轴正半轴于点M ,使∠AMO =30°。

假设线段AM 上存在等边△ABC 的中心关联点P (m ,n ),求m 的取值范围; ②将直线AM 向下平移取得直线y =kx +b ,当b 知足什么条件时,直线y =kx +b 上 总存在...等边△ABC 的中心关联点;(直接写出答案,不必进程) (3)如图2,点Q 为直线y =-1上一动点,圆Q 的半径为. 当点Q 从点(-4,-1)动身,以每秒1个单位的速度向右移动,运动时刻为t 秒,是不是存在某一时刻,使得圆Q 上所有点都是等边△ABC 的中心关联点若是存在,请直接写出所有符合题意的t 的值;若是不存在,请说明理由.12图1 图2【2017西城一模】29.在平面直角坐标系xOy中,假设点P和点P1关于y轴对称,点P1和点P2关于直线l 对称,那么称点P2是点P关于y轴,直线l的二次对称点.(1)如图1,点A(-1 , 0).①假设点B是点A关于y轴,直线l1: x=2的二次对称点,那么点B的坐标为;②假设点C(-5 , 0)是点A关于y轴,直线l2: x = a的二次对称点,那么a的值为;③假设点D(2 , 1)是点A关于y轴,直线l3的二次对称点,那么直线l3的表达式为;(2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点M '是点M 关于y 轴,直线l 4: x = b 的二次对称点,且点M '在射线(3)E (t ,0)是x 轴上的动点,⊙E 的半径为2,假设⊙E 上存在点N ,使得点N '是点N 关于y 轴,直线l 5:的二次对称点,且点N '在y 轴上,求t 的取值范围.【2017海淀一模】29.在平面直角坐标系xOy 中,假设P ,Q 为某个菱形相邻的...两个极点,且该菱形的两条对角线别离与x 轴,y 轴平行,那么称该菱形为点P ,Q 的“相关菱形”.图1为点P,(3y x x =≥1y =+图1图2Q的“相关菱形”的一个示用意.图1已知点A的坐标为(1,4),点B的坐标为(b,0),(1)若b=3,那么R(1 ,0),S(5,4),T(6,4)中能够成为点A,B的“相关菱形”极点的是;(2)若点A,B的“相关菱形”为正方形,求b的值;(3)BC的坐标为(2,4).若B上存在点M,在线段AC上存在点N,使点M,N的“相关菱形”为正方形,请直接写出b的取值范围.【2017朝阳一模】29.在平面直角坐标系xOy 中,点A 的坐标为(0,m ),且m ≠0,点B 的坐标为(n ,0),将线段AB 绕点B 旋转90°,别离取得线段BP 1,BP 2,称点P 1,P 2为点A 关于点B 的“伴随点”,图1为点A 关于点B 的“伴随点”的示用意.(1)已知点A (0,4),①当点B 的坐标别离为(1,0),(-2,0)时,点A 关于点B 的“伴随点”的坐标别离为 ;②点(x ,y )是点A 关于点B 的“伴随点”,直接写出y 与x 之间的关系式; (2)如图2,点C 的坐标为(-3,0),以C为半径作圆,假设在⊙C 上存在点A 关于点B 的“伴随点”,直接写出点A 的纵坐标m 的取值范围.图1【2017丰台一模】29.在平面直角坐标系xOy 中,关于任意三点A ,B ,C ,给出如下概念:若是矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,那么称该矩形为点A ,B ,C 的覆盖矩形.点A ,B ,C 的所有覆盖矩形中,面积最小的矩形称为点A ,B ,C 的最优覆盖矩形.例如,下图中的矩形A 1B 1C 1D 1,A 2B 2C 2D 2,AB 3C 3D 3都是点A ,B ,C 的覆盖矩形,其中矩形AB 3C 3D 3是点A ,B ,C的最优覆盖矩形.(1)已知A (-2,3),B (5,0),C (t ,-2).备用图图2①当2=t 时,点A ,B ,C 的最优覆盖矩形的面积为_____________; ②假设点A ,B ,C 的最优覆盖矩形的面积为40,求直线AC 的表达式; (2)已知点D (1,1).E (m ,n )是函数)0(4>=x xy 的图象上一点,⊙P 是点O ,D ,E 的一个面积最小的最优覆盖矩形的外接圆,求出⊙P 的半径r 的取值范围.【2017石景山一模】29.在平面直角坐标系xOy 中,对“隔离直线”给出如下概念:点(,)P x m 是图形1G 上的任意一点,点(,)Q x n 是图形2G 上的任意一点,假设存在直线:(0)l y kx b k =+≠知足m kx b +≤且n kx b +≥是图形1G 与2G 的“隔离直线”. 如图1,直线:4l y x =--是函数6(0)y x x=<的图象-4与正方形OABC 的一条“隔离直线”.(1)在直线12y x =-,231y x =+,33y x =-+中, 是图1函数6(0)y x x=<的图象与正方形OABC的“隔离直线”的为 ;请你再写出一条符合题意的不同的“隔离直线” 的表达式: ;(2)如图2,第一象限的等腰直角三角形EDF 的两腰别离与坐标轴平行,直角顶点D的坐标是,⊙O 的半径为2.是不是存在EDF △与⊙O 的“隔离直线”假设存在,求出此“隔离直线”的表达式;假设不存在,请说明理由;(3)正方形1111A B C D 的一边在y 轴上,其它三边都在y 轴的右边,点(1,)M t 是此正方形的中心.假设存在直线2y x b =+是函数22304y x x x =--(≤≤)的图象与正方形1111A B C D 的“隔离直线”,请直接写出t 的取值范围.【2017房山一模】29.在平面直角坐标系xOy 中,关于点P (x ,y ),若是点Q (x ,'y )的纵坐标知足图1xy备用图y=2x 2O()()⎩⎨⎧<-≥-=时当时当y x xy y x y x y ',那么称点Q 为点P 的“关联点”. (1)请直接写出点(3,5)的“关联点”的坐标 ;(2)若是点P 在函数2-=x y 的图象上,其“关联点”Q 与点P 重合,求点P 的坐标; (3)若是点M (m ,n )的“关联点”N 在函数y=2x 2的图象上,当0 ≤m ≤2 时,求线段MN 的最大值.【2017平谷一模】29.在平面直角坐标系中,点Q 为坐标系上任意一点,某图形上的所有点在∠Q 的内部(含角的边),这时咱们把∠Q 的最小角叫做该图形的视角.如图1,矩形ABCD ,作射线OA ,OB ,那么称∠AOB 为矩形ABCD 的视角.(1)如图1,矩形ABCD ,A (﹣3,1),B (3,1),C (3,3),D (﹣3,3),直接写出视角∠AOB 的度数;图1图2 备用图(2)在(1)的条件下,在射线CB上有一点Q,使得矩形ABCD的视角∠AQB=60°,求点Q的坐标;(3)如图2,⊙P的半径为1,点P(1,3),点Q在x轴上,且⊙P的视角∠EQF的度数大于60°,假设Q(a,0),求a的取值范围.【2017通州一模】29.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2),若x1x2+ y1y2=0,且A,B均不为原点,那么称A和B互为正交点.比如:A(1,1),B(2,-2),其中1×2+1×(-2)=0,那么A和B互为正交点.(1)点P和Q互为正交点,P的坐标为(-2,3),①若是Q的坐标为(6,m),那么m的值为____________;②若是Q的坐标为(x,y),求y与x之间的关系式;(2)点M和N互为正交点,直接写出∠MON的度数;(3)点C,D是以(0,2)为圆心,半径为2的圆上的正交点,以线段CD为边,构造正方形CDEF,原点O在正方形CDEF的外部,求线段OE长度的取值范围.【2017门头沟一模】29.咱们给出如下概念:两个图形G1和G2,在G1上的任意一点P引出两条垂直的射线与G2相交于点M、N,若是PM=PN,咱们就称M、N为点P的垂等点,PM、PN为点P 的垂等线段,点P为垂等射点.(1)如图29-1,在平面直角坐标系xOy中,点P(1,0)为x轴上的垂等射点,过A(0,3)作x轴的平行线l,那么直线l上的B(-2,3), C(-1,3),D(3,3),E(4,3)为点P的垂等点的是________________________;(2)若是一次函数图象过M(0,3),点M为垂等射点P(1,0)的一个垂等点且另一个垂等点N也在此一次函数图象上,在图29-2中画出示用意并写出一次函数表达式;(3)如图29-3,以点O为圆心,1为半径作⊙O,垂等射点P在⊙O上,垂等点在通过(3,0),(0,3)的直线上,若是关于点P的垂等线段始终存在,求垂等线段PM长的取值范围(画出图形直接写出答案即可).【2017顺义一模】29.在平面直角坐标系xOy 中,关于双曲线(0)m y m x =>和双曲线(0)ny n x=>,若是2m n =,那么称双曲线(0)m y m x =>和双曲线(0)ny n x=>为“倍半双曲线”,双曲线(0)m y m x =>是双曲线(0)n y n x =>的“倍双曲线”,双曲线(0)n y n x =>是双曲线(0)my m x=>的“半双曲线”.(1)请你写出双曲线3y x =的“倍双曲线”是 ;双曲线8y x=的“半双曲线”是 ;(2)如图1,在平面直角坐标系xOy 中,已知点A 是双曲线4y x=在第一象限内任意一点,过点A 与y 轴平行的直线交双曲线4y x=的“半双曲线”于点B ,求△AOB 的面积;(3)如图2,已知点M 是双曲线2(0)ky k x=>在第一象限内任意一点,过点M 与y 轴平行的直线交双曲线2ky x=的“半双曲线”于点N ,过点M 与x 轴平行的直线交双曲线2ky x=的“半双曲线”于点P ,假设△MNP 的面积记为MNP S ∆,且12MNP S ∆≤≤,求k 的取值范围.【2017怀柔一模】29. 在平面直角坐标系xOy中,点P的坐标为(x,y),若过点p的直线与x轴夹角为60°时,那么称该直线为点P的“相关直线”,(1)已知点A的坐标为(0,2),求点A的“相关直线”的表达式;(2)假设点B的坐标为(0,3),点B的“相关直线”与直线y=32交于点C,求点C的坐标;(3)⊙O的半径为3,假设⊙O上存在一点N,点N的“相关直线”与双曲线y=x 33(x>0)相交于点M,请直接写出点M的横坐标的取值范围.【2017燕山一模】29. 在平面直角坐标系中,咱们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(2,2 ),…,都是梦之点,显然梦之点有无数个. (1)假设点 P (2,b )是反比例函数xny = (n 为常数,n ≠ 0) 的图象上的梦之点,求那个反比例函数解析式; (2) ⊙ O 的半径是2 ,①求出⊙ O 上的所有梦之点的坐标;②已知点 M (m ,3),点 Q 是(1)中反比例函数xny =图象上异于点 P 的梦之点,过点Q 的直线 l 与 y 轴交于点 A ,tan ∠OAQ = 1.假设在⊙ O 上存在一点 N ,使得直线 MN ∥ l 或 MN ⊥ l ,求出 m 的取值范围.。

2017年中考数学一模试卷及答案

2017年中考数学一模试卷及答案

2017年中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD •DB=AE •ECB .AD •AE=BD •EC C .AD •CE=AE •BD D .AD •BC=AB •DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sinα B .i=cosα C .i=tanα D .i=cotα4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图形图①图②图③图④图⑤绝对高度1.52.01.22.4?0 0 0 绝对宽度2.001.502.503.60?A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A.B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度2.01.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM ∥CD 交AD 、EF 于M 、N 两点,将问题转化到△ABM 中,利用相似三角形的判定与性质求EN ,由EF=EN+NF=EN+AD 进行求解;(2)由=、=得BC=AD ,EB=AB ,根据=可得答案.【解答】解:(1)作BM ∥CD 交AD 、EF 于M 、N 两点,又AD ∥BC ,EF ∥AD ,∴四边形BCFN 与MNFD 均为平行四边形.∴BC=NF=MD=2,∴AM=AD ﹣MD=1.又=2,∴=,∵EF ∥AD ,∴△BEN ∽△BAM ,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD ,EB=AB ,∴==, ==,则==+. 【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC 中,∠ACB=90°,AB=5,tanA=,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin ∠CBE 的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A 的正切用BC 表示出AC ,再利用勾股定理列方程求出BC ,再求出AC ,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x ,表示出AE ,再根据翻折变换的性质可得BE=AE ,然后列方程求出x ,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC ,在Rt △ABC 中,BC 2+AC 2=AB 2,即BC 2+4BC 2=25,解得BC=,所以,AC=2,△ABC 的面积=AC •BC=××2=5;(2)设CE=x ,则AE=AC ﹣CE=2﹣x ,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。

2017中考数学一模检测试卷(有答案)_题型归纳

2017中考数学一模检测试卷(有答案)_题型归纳

2017中考数学一模检测试卷(有答案)_题型归纳中考作为考生迈入重点高中的重要考试,备受家长和考生的关注,多做题,多练习,为中考奋战,小编为大家整理了中考数学一模检测试卷,希望对大家有帮助。

A级基础题1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出1个小球,其标号大于2的概率为()A.15B.25C.35D.452.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取1张,那么取到字母e的概率为____________.3.2012~2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出1个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上5.有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是________.6.在一个不透明的盒子中,共有“一白三黑”四个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出一子,则提出白子的概率是多少?(2)随机地从盒中提出一子,不放回再提第二子.请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.B级中等题7从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.8.襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是________.9.在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由. 10.如图7­2­3,大小、质地相同,仅颜色不同的两双拖鞋(分左、右脚)共四只,放置在地板上[可表示为(A1,A2),(B1,B2)].(1)若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,求恰好匹配成相同颜色的一双拖鞋的概率;(2)若从这四只拖鞋中随机地取出两11.(2013年江西)甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件.(1)下列事件是必然事件的是()A.乙抽到一件礼物B.乙恰好抽到自己带来的礼物C.乙没有抽到自己带来的礼物D.只有乙抽到自己带来的礼物参考答案:1.C2.273.A4.D5.236.解:(1)∵共有“一白三黑”四个围棋子,∵P(白子)=14.(2)画树状图如图73.∵共有12种等可能的结果,恰好提出“一黑一白”子的有6种情况,∵P(一黑一白)=612=12.图737.25 8.199.解:(1)画树状图如图74.∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∵小明获胜的概率为:12.(2)画树状图如图75.图75∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∵P(小明获胜)=38,P(小强获胜)=58,∵P(小明获胜)≠P(小强获胜),∵他们制定的游戏规则不公平.10.解:(1)∵若先将两只左脚拖鞋中取出一只,再从两只右脚拖鞋中随机取出一只,有A1A2,A1B2,B1B2,B1A2四种情况,恰好匹配的有A1A2,B1B2两种情况,∵P(恰好匹配)=24=12.(2)方法一,画树状图如图76.图76∵所有可能的结果为A1A2,A1B1,A1B2,A2A1,A2B1,A2B2,B1A1,B1A2,B1B2,B2A1,B2A2,B2B1,∵从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∵P(恰好匹配)=412=13.方法二,列表格如下:A1B2 A2B2 B1B2 -A1B1 A2B1 - B2B1A1A2 - B1A2 B2A2- A2A1 B1A1 B2A1可见,从这四只拖鞋中随机的取出两只,共有12种不同的情况,其中恰好匹配的有4种,分别是A1A2,A2A1,B1B2,B2B1.∵P(恰好匹配)=412=13.11.解:(1)A(2)设甲、乙、丙三人的礼物分别记为a,b,c,根据题意画出树状图如图77.一共有6种等可能的情况,三人抽到的礼物分别为abc,acb,bac,bca,cab,cba,3人抽到的都不是自己带来的礼物的情况有bca,cab有2种,所以,P(A)=26=13.希望这篇中考数学一模检测试卷,可以帮助更好的迎接即将到来的考试!。

2017年上海市各区初三数学一模18题集锦(含答案)

2017年上海市各区初三数学一模18题集锦(含答案)

九年级一模18题1、(2017年杨浦区一模第18题)△ABC 中,5AB AC ==,6BC =,BD AC ⊥于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与CBA ∠相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么EFD ∠的正切值是________.【答案】12tan cot cot EFD DFB CEB ∠=∠=∠,问题的本质是在△EBC 中,已知两边EB=BC=6,∠ABC 的余弦为3,求边EC 长.可由余弦定理,或过E 点向BC 添高,得EC=1255,cos CEB ∠=1tan 2EFD ∠=.2、(2017年徐汇区一模第18题)如图,在□ABCD 中,3:2:=BC AB ,点F E 、分别在边BC CD 、上,点E 是边CD 的中点,BF CF 2=,︒=∠120A ,过点A 分别作DF AQ BE AP ⊥⊥、,垂足分别为Q P 、,那么AQAP 的值是________.【答案】13392AP DF AQ BE ===请注意本题中面积法的作用.3、(2017年长宁区一模第18题)如图,在ABC ∆中,90C ∠=︒,8AC =,6BC =,D 是AB 的中点,点E 在边AC 上,将ADE ∆沿DE 翻折,使得点A 落在点'A 处,当'A E AC ⊥时,'A B =___________.【答案】722或以A 为原点,射线AC 为横轴正半轴,建立直角坐标系.①设AE=a ,则'DA DA =,得22(4)(3)25a a -++=,解得a =1,从而'(1,1)(8,6)A B -,,'2A B =;②22(4)(3)25a a -+-=,解得a =7,从而'(7,7)(8,6)A B ,,'2A B =.4、(2017年崇明区一模第18题)如图,已知ABC ∆中,45ABC ∠= ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将BHD 绕点H 旋转,得到EHF ∆(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为.【答案】3105△AEH 相似于△CFH ,且相似比为3:1,过H 向AC 做垂线段HM ,则11022cos 2110FC CM CH C ==⋅⋅∠=⋅⋅31035AE CH ==.5、(2017年宝山区一模第18题)如图,D为直角△ABC的斜边AB上一点,DE⊥AB交AC于E,如果△AED沿DE翻折,A恰好与B重合,联结CD交BE于F,如果AC═8,tanA═12,那么CF:DF═________.【答案】65∵DE⊥AB,tanA═12,∴DE=12AD,∵Rt△ABC中,AC═8,tanA═12,∴BC=4,AB=4,又∵△AED沿DE翻折,A恰好与B重合,∴AD=BD=2,DE=,∴Rt△ADE中,AE=5,∴CE=8﹣5=3,∴Rt△BCE中,BE=5,如图,过点C作CG⊥BE于G,作DH⊥BE于H,则Rt△BDE中,DH==2,Rt△BCE中,CG==,∵CG∥DH,∴△CFG∽△DFH,∴===.6、(2017年奉贤区一模第18题)如图,在矩形ABCD中,AB=6,AD=3,点P是边AD上的一点,联结BP,将△ABP沿着BP 所在直线翻折得到△EBP,点A落在点E处,边BE与边CD相交于点G,如果CG=2DG,那么DP的长是________.【答案】1∵CG=2DG,CD=6,∴CG=4,DG=2,由勾股定理得,BG=5,∴EG=1,由折叠的性质可知,∠E=∠A=90°,又∠EGD=∠CGB,∴△HEG∽△BCG,∴==,∴HG=,∴DH=DG﹣HG=,同理,DP=1.一张直角三角形纸片ABC,∠C=90°,AB=24,tanB=23(如图),将它折叠使直角顶点C与斜边AB的中点重合,那么折痕的长为________.【答案】13PQ垂直平分CD,故CM=6,∠PMC=∠QMC=90°,注意到∠PCM=∠A,∠QCM=∠B,于是32tan tan661323PQ PM QM CM PCM CM QCM=+=⋅∠+⋅∠=⨯+⨯=.8、(2017年闵行区一模第18题)如图,已知△ABC是边长为2的等边三角形,点D在边BC上,将△ABD沿着直线AD翻折,点B落在点B1处,如果B1D⊥AC,那么BD=________.【答案】32-作DE⊥AB于E,由折叠的性质可知,∠B′=∠B=60°,∵B1D⊥AC,∴∠B′AC=30°,∴∠B′AC=90°,由折叠的性质可知,∠B′AD=∠BAD=45°,在Rt△DEB中,DE=BD×sin∠B=BD,BE=BD,∵∠BAD=45°,DE⊥AB,∴AE=DE=BD,则BD+BD=2,解得BD=2﹣2.如图,在Rt △ABC 中,∠C=90°,∠B=60°,将△ABC 绕点A 逆时针旋转60°,点B 、C 分别落在点B'、C'处,联结BC'与AC 边交于点D ,那么'BD DC=________.【答案】2过C ’作C’H ⊥AC 于点H,则33'''22BC a CA C A C H C A a =====,,,于是23''32BD BC a DC C H a ===.10、(2017年普陀区一模第18题)如图,DE ∥BC ,且过△ABC 的重心,分别与AB 、AC 交于点D 、E ,点P 是线段DE 上一点,CP 的延长线交AB 于点Q ,如果14DP DE =,那么S △DPQ :S △CPE 的值是________.【答案】115由重心定理及条件,易知DP :PE :BC=1:3:6,于是△DPQ 与△EPC 的高之比为1:5,从而S △DPQ :S △CPE 1115315=⨯=.如图,已知△ABC ,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,连接BD ,如果∠DAC=∠DBA ,那么BD AB的值是________.【答案】512-如图,由旋转的性质得到AB=AD ,∠CAB=∠DAB ,∴∠ABD=∠ADB ,∵∠CAD=∠ABD ,∴∠ABD=∠ADB=2∠BAD ,∵∠ABD+∠ADB+∠BAD=180°,∴∠ABD=∠ADB=72°,∠BAD=36°,过D 作∠ADB 的平分线DF ,∴∠ADF=∠BDF=∠FAD=36°,∴∠BFD=72°,∴AF=DF=BD ,∴△ABD ∽△DBF ,∴,即,解得=.12、(2017年松江区一模第18题)如图,在△ABC 中,∠ACB=90°,AB=9,cosB=23,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E ,则点A 、E 之间的距离为________.【答案】过C 作CH ⊥AB 于H ,△ACE 相似于△BCE ,相似比为2,所以2222cos cos 93AE BD BH BC B AB B ⎛⎫===⋅∠=⋅∠=⨯= ⎪⎝⎭.如图,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=1,BC=3,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ∠ADP 为________.【答案】23CP 垂直平分线段BD ,CD=CB=3,从而得到,设AP=x ,则-x ,在△APD中,由勾股定理得2221)x x +=,解得255x =,BP=355,于是sin ∠ADP=23..14、(2017年黄浦区一模第18题)如图,菱形ABCD 形内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A =.D NMC BA 【答案】23。

2017年九年级中考一模考试数学试题参考答案及评分建议

2017年九年级中考一模考试数学试题参考答案及评分建议

2017年九年级中考一模考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.41.410⨯ 10.2x ≠ 11.88 12.(2)a a +或22a a + 13.1k > 14.2 15.35 16.9π+ 17.50 18.17三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1) 解:原式=13++ (4)分=4+(结果错误扣1分) (4)分(2) 解: 3)1()3(22+---x x x 24x 2x =-+. …………………3分∵ 0142=--x x ,∴ 241x x -=,∴ 原式=1+2=3. …………………4分 20.(1)解:()522=+x …………………………………………2分∴1222x x =-+=-- (4)分(2)解:由①得: 2.x -≤…………1分 由②得: 0.x < …………3分∴ 2.x ≤- (4)分21.解:(1)1500,(图略); ……………………4分(2)108° …………………………………………6分(3)万人1000%502000=⨯ (8)分22. 解:画树状图如下:2 4 52 4 52 5 5554甲乙 4 5 52. (4)分∴57,1212P P ==(甲胜)(乙胜). (6)分∴甲、乙获胜的机会不相同. …………………………… 8分23.(1)证明:∵∠BAD =∠CAE ∴∠EAB =∠DAC ,在△ABE 和△ACD 中∵AB =AC ,∠EAB =∠DAC ,AE =AD ,∴△ABE ≌△ACD (SAS ) ……………………5分(2)∵△ABE ≌△ACD ∴BE =CD ,又DE =BC ,∴四边形BCDE 为平行四边形.…7分∵AB =AC ,∴∠ABC =∠ACB ,∵△ABE ≌△ACD ∴∠ABE =∠ACD ∴∠EBC =∠DCB ∵四边形BCDE 为平行四边形 ∴ EB ∥DC∴∠EBC +∠DCB =180°∴∠EBC =∠DCB =90° ……………………9分∴四边形BCDE 是矩形. ……………………10分(此题也可连接EC ,DB ,通过全等,利用对角线相等的平行四边形是矩形进行证明) 24.解:设小张骑公共自行车上班平均每小时行驶x 千米, (1)分根据题意列方程得:1010445xx =⨯+……………………5分解得:15x = ………………………8分 经检验15x =是原方程的解且符合实际意义. ………………………9分 答:小张用骑公共自行车方式上班平均每小时行驶15千米. ………10分 25.(1)证明:如图,联结BD∵ AD ⊥AB ,∴ DB 是⊙O 的直径,︒=∠+∠+∠9021D ∵∠D =∠C ,∠ABF =∠C ,∴∠D=∠ABF ∴︒=∠+∠+∠9021ABF 即OB ⊥BF∴ BF 是⊙O 的切线…………………………5分 (2)联结OA 交BC 于点G ,∵AC =AB ,∴弧AC =弧AB ∴∠D =∠2=∠ABF ,OA ⊥BC,BG =CG …………7分 ∴54cos 2cos cos=∠=∠=∠ABF D在△ABD 中,∠DAB=90°∴5c o s A DB D D==∴3A B == …8分在△ABG 中,∠AGB=90°∴12c o s 25B G A B =∠=g∴5242==BG BC ………………………10分26.解:(1)当0k >时,(1)(21)4k k +--+=,解得43k =.当0k <时,(21)(1)4k k -+-+=,解得43k =-. ………………5分(2)当2x =-时,4y =;当20m -<<,函数的界高为244m -<,不符合题意; …………6分当02m ≤≤,函数的最大值为4,最小值为0,界高4,符合题意. …9分 当2m >时,函数的界高为24m >,不符合题意. …………10分 综上所述,实数m 的取值范围为02m ≤≤.27.(1 ………………………………………3分 (2)过B 作BE ⊥l 1于点E ,反向延长BE 交l 4于点F .则BE =1,BF =3,∵四边形ABCD 是矩形, ∴∠ABC =90°,∴∠ABE +∠FBC =90°,l 1 l 2 l 3 l 4又∵直角△ABE中,∠ABE+∠EAB=90°,∴∠FBC=∠EAB,∴△AEB∽△BFC,当AB是较短的边时,如图(a),AB=BC,则AE=BF=,在直角△ABE中,AB==;………………………6分当AB是长边时,如图(b),同理可得:BC=;故BC=或………………………………………9分(3)过点E作ON垂直于l1分别交l1,l3于点O,N,由题意得∠OAE=30°,则∠ED′N=60°,由图1知,△AED≌△DGC ∴AE=DG=1,故EO=,EN=,ED′=,由勾股定理可知菱形的边长为:==. (12)分28.解:(1)y=.………………………………………3分(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w=﹣x2+7x+48;当x≥8时,w=﹣x+48.∴w关于x的函数关系式为:w=.…………7分②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.…………9分(3)设用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;………11分②当x>8时,w=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.………12分综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.。

2017北京市西城区初三数学一模试题及答案

2017北京市西城区初三数学一模试题及答案

北京市西城区2017年九年级统一测试数学试卷一、选择题(本题共30分,每小题3分)1.春节假期,北京市推出了庙会休闲娱乐、传统文化展演、游园赏景赏花、冰雪项目体验等精品文化活动,共接待旅游总人数9608000人次,将9608000用科学记数法表示为().A .3960810´B .4960.810´C .596.0810´D .69.60810´2.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是().b1aA .0a b +=B .0a b -=C .||||a b <D .0ab >3.如图,AB CD ∥,DA CE ^于点A .若55EAB Ð=°,则D Ð的度数为().A .25°B .35°C .45°D .55°4.右图是某几何体的三视图,该几何体是().A .三棱柱B .长方体C .圆锥D .圆柱5.若正多边形的一个外角是40°,则这个正多边形是().A .正七边形B .正八边形C .正九边形D .正十边形6.用配方法解一元二次方程2650x x --=,此方程可化为().A .2(3)4x -=B .2(3)14x -=C .2(9)4x -=D .2(9)14x -=7.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2m ,旗杆底部与平面镜的水平距离为16m .若小明的眼睛与地面的距离为1.5m ,则旗杆的高度为(单位:m )().A .163B .9C .12D .6438.某商店举行促销活动,其促销的方式是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x 元(100x >),则购买该商品实际付款式的金额(单位:元)是().A .80%20x -B .80%(20)x --C .20%20x -D .20%(20)x -9.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:年龄(单位:岁)13141516频数(单位:名)515x10x-对于不同的x ,下列关于年龄的统计量不会发生改变的是().A .平均数、中位数B .平均数、方差C .众数、中位数D .众数、方差DBC AE10.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(下的燃油效率情况,下列说法中,正确的是( )).A .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B .以低于80km/h 的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C .以高于80km/h 的速度行驶时,行驶相同路程,丙车比乙车省油D .以80km/h 的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升 二.填空题(本题共18分,每小题3分)11.分解因式:22ax ax a -+=__________.12.若函数的图象经过点(1,2)A ,点(2,1)B ,写出一个符合条件的函数表达式__________. 13.下表记录了一名球员在罚球线上罚篮的结果:.下表记录了一名球员在罚球线上罚篮的结果:投篮次数n100 150 300 500 800 1000 投中次数m 5896174302484601投中频率m n0.580 0.640 0.580 0.604 0605 0.601 这名球员投篮一次,投中的概率约是__________.14.如图,四边形ABCD 是⊙O 内接四边形,若30BAC Ð=°,80CBD Ð=°,则BCD Ð的度数为_______°.ODACB15.在平面直角坐标系xOy 中,以原点O 为旋转中心,将AOB △顺时针旋转90°得到A OB ¢¢△,其中点A ¢与点A 对应,点B ¢与点B 对应.若点(3,0)A -,(1,2)B -,则点A ¢的坐标为__________,点B ¢的坐标为__________.1510504080燃油效率(km/L )速度(km/h )甲车乙车丙车4321-1-2-3-4xAB O1234y16.下面是“经过已知直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l 和直线l 外一点P .PlmC DA OBlP求作:直线l 的平行直线,使它经过点P . 作法:如图2.(1)过点P 作直线m 与直线l 交于点O ;(2)在直线m 上取一点()A OA OP <,以点O 为圆心,OA 长为半径画弧,与直线l 交于点B ;(3)以点P 为圆心,OA 长为半径画弧,交直线m 于点C ,以点C 为圆心,AB 长为半径画弧,两弧交于点D ; (4)作直线PD .所以直线PD 就是所求作的平行线.请回答:该作图的依据是______________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分) 解答应写出文字说明,演算步骤或证明过程.17.计算:()101232sin 60322-æö---°+-ç÷èø.18.解不等式组:5234722x x x x <≥-+ìïí+ïî.19.已知2x y =,求代数式222112x xy y y x x y æö-+-¸ç÷èø的值.20.如图,在ABC △中,BC 的垂直平分线交BC 于点D ,交AB 延长线于点E ,连接CE .求证:BCE A ACB Ð=Ð+Ð.AB EDC21.某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率.为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1甲种种植技术种出的西瓜质量统计表编号 12345678910编号西瓜质量(单位:kg) 3.5 4.8 5.4 4.9 4.2 5.0 4.9 4.8 5.8 4.8编号11121314151617181920西瓜质量(单位:kg) 5.0 4.8 5.2 4.9 5.1 5.0 4.8 6.0 5.7 5.0表2乙种种植技术种出的西瓜质量统计表编号12345678910西瓜质量(单位:kg) 4.4 4.9 4.8 4.1 5.2 5.1 5.0 4.5 4.7 4.9编号11121314151617181920西瓜质量(单位:kg) 5.4 5.5 4.0 5.3 4.8 5.6 5.2 5.7 5.0 5.3回答下列问题:回答下列问题:(1)若将质量为4.5 5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.980.27乙种种植技术种出的西瓜质量 15 4.970.21乙种种植技术种出的西瓜质量(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.22.在平面直角坐标系xOy 中,直线1y x =-与y 轴交于A ,与双曲线ky x-交于点(),2B m . (1)求点B 的坐标及k 的值;的值;(2)将直线AB 平移,使它与x 轴交于点C ,与y 轴交于点D ,若ABC 的面积为6,求直线CD 的表达式.的表达式.23.如图,在平行四边形ABCD 中,对角线BD 平分ABC Ð,过点A 作AE BD ∥,交CD 的延长线于点E ,过点E 作EF BC ^,交BC 延长线于点F . (1)求证:四边形ABCD 是菱形; (2)若45ABC Ð=°,2BC =,求EF 的长.x-5-4-3-2-154321O-1-2-3-4-512345y B C FD EA24.汽车保有量是指一个地区拥有车辆的数量,一般是指在当地登记的车辆.进入21世纪以来,我国汽车保有量逐年增长.下图是根据中国产业信息网上的有关数据整理的统计图.长.下图是根据中国产业信息网上的有关数据整理的统计图.20072015年全国汽车保有量及增速统计图根据以上信息,回答下列问题:根据以上信息,回答下列问题:(1)2016年汽车保有量净增2200万辆,为历史最高水平,2016年汽车的保有量为_______________万辆,与2015年相比,2016年的增长率约为______________%; (2)从2008年到2015年,_______________年全国汽车保有量增速最快;(3)预估2020年我国汽车保有量将达到_____________万辆,预估理由是_________________.25.如图,AB 是⊙O 的直径,C 是⊙O 上一点,过点C 作⊙O 的切线,交BA 的延长线交于点D ,过点B 作BE BA ^,交DC 延长线于点E ,连接OE ,交⊙O 于点F ,交BC 于点H ,连接AC . (1)求证:ECB EBC Ð=Ð;(2)连接BF ,CF ,若6CF =,3sin 5FCB Ð=,求AC 的长.O HE FC D AB26.阅读下列材料:某种型号的温控水箱的工作过程是:接通电源后,在初始温度20℃下加热水箱中的水;当水温达到设定温度80℃时,加热停止;此后水箱中的水温开始逐渐下降,当下降到20℃时,再次自动加热水箱中的水至80℃时,加热停止;当水箱中的水温下降到20℃时,再次自动加热,……,按照以上方式不断循环.小明根据学习函数的经验,对该型号温控水箱中的水温随时间变化的规律进行了探究,发现水温y 是时间x 的函数,其中y (单位:℃)表示水箱中水的温度,x (单位:min )表示接通电源后的时间. 下面是小明的探究过程,请补充完整:(1)下表记录了32min 内14个时间点的温控水箱中水有温度y 随时间x 的变化情况接通电源事的时间x (单位:min )0 1 23 4 58 10 16 18 20 21 24 32 ×××水箱中水的温度y (单位:℃)20 35 50 65 80 64 40 32 20 m 80 64 40 20 ××× m 的值为_____________;(2)①当04x ≤≤时,写出一个符合表中数据的函数解析式______________;当416x <≤时,写出一个符合表中数据的函数解析式_________________;②如图,在平面直角坐标系xOy 中,描出了上表中部分数据对应的点,根据描出的点,画出当032x ≤≤时,温度y 随时间x 变化的函数图象;20406080100Oxy 343230282624222018161412108642(3)如果水温y 随时间x 的变化规律不变,预测水温第8次达到40℃时,距离接通电源___________min .27.在平面直角坐标系xOy 中,二次函数2(21)5y mx m x m =-++-的图象与x 轴有两个公共点. (1)求m 的取值范围;(2)若m 取满足条件的最小的整数,①写出这个二次函数的解析式;②当1n x ≤≤时,函数值y 的取值范围是64y n --≤≤,求n 的值;③将此二次函数图象平移,使平移后的图象经过原点O .设平移后的图象对应的函数表达式为2()y a x h k =-+,当2x <时,y 随x 的增大而减小,求k 的取值范围.28.在ABC △中,AB BC =,BD AC ^于点D .(1)如图1,当90ABC Ð=°时,若CE 平分ACB Ð,交AB 于点E ,交BD 于点F .①求证:BEF △是等腰三角形; ②求证:1()2BD BC BF =+;(2)点E 在AB 边上,连接CE .若1()2BD BC BE =+,在图2中补全图形,判断ACE Ð与ABC Ð之间的数量关系,写出你的结论,并写出求解ACE Ð与ABC Ð关系的思路.图1图2D CABFEAD CB29.在平面直角坐标系xOy 中,若点P 和点1P 关于y 轴对称,点1P 和点2P 关于直线l 对称,则称点2P 是点P 关于y 轴,直线l 的二次对称点. (1)如图1,点(1,0)A -.①若点B 是点A 关于y 轴,直线1:2l x =的二次对称点,则点B 的坐标为___________________; ②若点(5,0)C -是点A 关于y 轴,直线2:l x a =的二次对称点,则a 的值为___________________; ③若点(2,1)D 是点A 关于y 轴,直线3l 的二次对称点,则直线3l 的表达式为__________________;(2)如图2,⊙O 的半径为1.若⊙O 上存在点M ,使得点'M 是点M 关于y 轴,直线4:l x b =的二次对称点,且点'M在射线3(0)3y x x =≥上,b 的取值范围是_____________________;(3)(,0)E t 是x 轴上的动点,⊙E 的半径为2,若⊙E 上存在点N ,使得点'N 是点N 关于y 轴,直线5:31l y x =+的二次对称点,且点'N 在y 轴上,求t 的取值范围.图2图1yx O4321-1-2-343215-3-2-1-4-5-5-4-1-2-351234-3-2-11234O x y北京市西城区2017年九年级统一测试数学试卷答案及评分参考数学试卷答案及评分参考2017.4 一、选择题(本题共30分,每小题3分)分)题号题号 1 2 3 4 5 6 7 8 9 10 答案答案D A B B C B C A C D 二、填空题(本题共18分,每小题3分)分) 11.2(1)a x -12.答案不唯一,如:2y x= 13.0.60114.7015.(0,3)A ¢,(2,1)B ¢16.三边分别相等的两个三角形全等;全等三角形的对应角相等;同位角相等两直线平行;两点确定一条直线. 三.解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)分)17.解:101(23)2sin60322-æö---°+-ç÷èø3212232=--´+-323=-18.解:解不等式组为5234722x x x x -+ìïí+ïî①②<≥ 解不等式①,得3x <.解不等式②,得73x ≥.∴原不等式组的解集为733x ≤<.19.解:原式22()x y x y xy x y -=×-x x y =-当2x y =时,原式222y y y==-20.证明:∵DE 垂直平分BC 于点D . ∴BE CE =.∴BCE CBE Ð=.∵CBE ACB A Ð=Ð+Ð. ∴BCE ACB A Ð=Ð+Ð.CDEB A21.解:(1)优等品西瓜个数优等品西瓜个数平均数平均数方差方差 甲种种植技术种出的西瓜质量甲种种植技术种出的西瓜质量 15 乙种种植技术种出的西瓜质量乙种种植技术种出的西瓜质量(2)在试验田中,两种种植技术种出的西瓜的优等品率均为75%,平均产量相差不大,乙种种植技术种出的西瓜,质量更稳定,大小更均匀,科研小组应选择乙种种植技术.量更稳定,大小更均匀,科研小组应选择乙种种植技术. 22.解:(1)∵点(,2)B m 在直线1y x =-上,上, ∴12m -=. 解得3m =. ∴点(3,2)B .又∵点(3,2)B 在双曲线ky x=上.上. ∴6k =.(2)设平移后的直线的表达式为y x b =+. 则它与y 轴交于点(0,)D b . ∵AB CD ∥. ∴ABD ABC S S =△△ ∴162ABD B S AD x =×=△. ∴4AD =.∴14b +=或14b --=. ∴3b =或5b =-.∴平移后的直线的表达式为3y x =+或5y x =-.23.(1)证明:在平行四边形ABCD 中,AB CD ∥. ∴ABD BDC Ð=Ð. ∵BD 平分ABC Ð, ∴ABD DBC Ð=Ð. ∴BDC DBC Ð=Ð. ∴BC CD =.∴四边形ABCD 是菱形.是菱形.(2)解:由(1)可得,AB CD ∥,2CD BC AB ===. ∴45ECF ABC Ð=Ð=°. ∵AE BD ∥.∴四边形ABDE 是平行四边形.是平行四边形. ∴2DE AB ==. ∴4CE =.在Rt ECF △中,45ECF Ð=°,4CE =. ∴22EF =.BC FDEA24.(1)19400.13; (2)2010;(3)答案不唯一.如:2020年我国汽车保育量将达到28000万辆,预估理由合理,支撑预估的数据.万辆,预估理由合理,支撑预估的数据. 25.(1)证明:∵BE BA ^于点B , ∴BE 是⊙O 的切线.的切线. ∵DE 是⊙O 的切线,C 为切点.为切点. ∴BE CE =. ∴ECB EBC Ð=Ð. (2)解:连接AF . ∵AB 是⊙O 直径,直径,∴90AFB ACB Ð=Ð=°.BE 是⊙O 的切线,切点为B ,CE 是⊙O 的切线,切点为C . ∴BE CE =,EO 平分BED Ð.∴EO BC ^,CH BH =.∴6BF CF ==,BF CF =,OH AC ∥. ∴FBC BAF FCB Ð=Ð=Ð.在Rt ABF △中,3sin 5BAF Ð=,6BF =.∴10AB =,5OF =.在Rt FCH △中,3sin 5FCB Ð=,6CF =.∴185FH =. ∴75OH OF FH =-=.∴1425AC OH ==.O HEFC D AB26.解:(1)50;(2)①答案不唯一,如:当04x ££时,1520y x =+; 当416x <≤时,320y x=; ②246810121416182022242628303234y xO10080604020(3)56.27.解:(1)∵二次函数2(21)5y mx m x m =-++-的图象与x 轴有两个公共点.轴有两个公共点. ∴[]2(21)4(5)0m m m m ¹ìïí-+--ïî> 解得124m ->且0m ¹. ∴m 的取值范围是124m ->且0m ¹. (2)①m 取满足条件的最小的整数,由(1)可知1m =. ∴二次函数的解析式为234y x x =--. ②图象的对称轴为直线32x =. 当时312n x ≤≤<,函数值y 随自变量x 的增大而减小.的增大而减小. ∵函数值y 的取值范围是64y n --≤≤, ∴当1x =时,函数值为6-. 当x n =时,函数值为4n -.∴2346n n --=-.解得2n =-或4n =(不合题意,舍去).(不合题意,舍去). ∴n 的值为2-.③由①可知,1a =, 又函数图象经过原点,又函数图象经过原点,∴2k h =-,∵当2x <时,y 随x 的增大而减小,的增大而减小, ∴2h ≥, ∴4k -≤.x=32P O-7-6-5-4-3-2-1-4-3-2-16432112345678y28.证明:在ABC △中,AB BC =,BD AC ^于点D . ∴ABD CBD Ð=Ð,AD BD =.(1)①∵90ABC Ð=°,FEADCBM∴45ACB Ð=°. ∵CE 平分ACB Ð∴22.5ECB ACE Ð=Ð=°,∴67.5BEF CFD BFE Ð=Ð=Ð=°, ∴BE BF =.∴BEF △是等腰三角形.是等腰三角形.②延长AB 至M ,使得BM AB =,连接CM .∴BD CM ∥,12BD CM =.∴45BCM DBC ABD BMC Ð=Ð=Ð=Ð=°, BFE MCE Ð=Ð∴BC BM =.由①可得,,BEF BFE BE BF Ð=Ð=. ∴BFE MCE BEF Ð=Ð=Ð. ∴EM MC =.∴1()2BD BC BF =+.(2)14ACE ABC Ð=Ð.FPBACDa .与(1)②同理可证BD PC ∥,12BD PC =,BP BC =;b .由1()2BD BC BF =+可知PEC △和BEF △分别是等腰三角形;分别是等腰三角形;c .由180BEF BFE EBF Ð+Ð+Ð=°,90FCD DFC Ð+Ð=°,可知14ACE ABC Ð=Ð.29.解:(1)①点B 的坐标为(3,0); ②a 的值为2-.③直线3l 的表达式为2y x =-+.(2)112b -≤≤;(3)将点N 关于y 轴的对称点记为点P . ∴点P 和点'N 关于直线:31l y x =+对称,对称, ∵直线313y x =+和y 轴关于直线:31l y x =+对称.对称. ∴点P 在直线313y x =+上,上, ∵直线313y x =-+和直线313y x =+关于y轴对称,轴对称,∴点N 在直线313y x =-+上,上, ∴符合题意的点N 是直线313y x =-+与⊙E 的公共点.的公共点. (i )当直线313y x =-+与⊙E 相离时,则不存在符合题意的点N .(ii )当直线313y x =-+与⊙E 相切时,如图所示.相切时,如图所示. 则符合题意的点N是直线313y x =-+与⊙E 相切时的切点,相切时的切点,记直线313y x =-+与x 轴交于点(3,0)R , 若点E 在点R 的左侧,的左侧,由112E N =,可得14RE =,143OE =-, ∴143t =-+. 若点E 在点R 的右侧,的右侧,由222E N =,可得24RE =,243OE =+. ∴243t =+.(iii )当直线313y x =-+与⊙E 相交时,相交时,4343t -++<<.综上,t 的取值范围是:4343t -++≤≤.y=-33x +1y=-3x +1y=-33x +1N 1N 2E 2E 1ROxy 5642-2-5。

中考数学一模试卷(含答案)2017

中考数学一模试卷(含答案)2017

2016-2017学年度第二学期九年第一次质量调查一 选择题:1.计算(-3)-(-6)的结果等于( )A.3B.-3C.9D.18 2.计算tan60°的值等于( ) A .33B.23C.1D.33.下列图形中,是中心对称图形但不是轴对称图形的为( )4.将57000000用科学记数法表示应为( )A.570×105B.57×106C.5.7×107D.0.57×1085.如图,是一个由4个相同的正方体组成的立体图形,它的左视图是( )6.分式方程1212=--x x 的解为( ) A.x=-1 B.x=0.5 C.x=1 D.x=2 7.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( )A.a>-2B.a<-3C.a>-bD.a<-b 8.如图,在⊙O 中,OA ⊥BC ,∠AOB=50°,则∠ADC 等于( )A.15°B.25°C.30°D.50°9.将五边形纸片ABCDE 按如图方式折叠,折痕为AF ,点E ,D 分别落在E /,D /点.已知∠AFC=76°,则∠CFD /等于( )A.15°B.25°C.28°D.31°10.将函数y=x 2+x 的图象向右平移a(a>0)个单位,得到函数y=x 2-3x+2的图象,则a 的值为( ) A.1 B.2 C.3 D.411.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例关系,如果500度近视眼镜片的焦距为0.2m ,则表示y 与x 函数关系的图象大致是( )12.已知抛物线y=x2-(2m-1)x+2m 不经过第三象限,且当x>2时,函数值y 随x 的增大而增大,则实数m 的取值范围是( )A.0≤m ≤1.5B.m ≥1.5C.0≤m ≤1D.0<m ≤1.5 二 填空题:13.计算(x2)4的结果等于 ; 14.化简399622---++x xx x x 的结果是 ; 15.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面数字是5的概率为 ;16.如图,一次函数3432+-=x y 的图象与反比例函数y=)0(<x xk的图象交于点A ,与x 轴交于点B ,△AOB 的面积为2,则k 的值等于 ;17.如图为等边三角形ABC 与正方形DEFG 的重叠情形,其中D 、E 两点分别在AB ,BC 上,且BD=BE ,若AC=19,GF=6,则点F 到AC 的距离为 ;18.如图①,如图②是由边长相等的小正方形组成的网格.(1)如图①,点A ,B ,C ,D 均在格点上,连接AC ,BD ,CD ,则tan ∠ACD 的值等于 ; (2)如图②,点M ,N 均落在格点上,在网格中,用无刻度的直尺,画出MON ,需满足以下两个条件: ①tan ∠MON=3;②角的顶点O 不在网格线上;并简要说明点O 的位置时如何找到的(不要求证明) .三 解答题: 19.解不等式组:⎩⎨⎧≥--≥+)2(153)1(123x x x ,请结合题意填空,完成本题的解答:(1)解不等式①,得: ; (2)解不等式②,得: ; (3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为: .20.甲、乙两校参加区举办的学生英语口语竞赛,两校参赛人人数相等,比赛结束后,对学生的乘积进行了统计,并绘制了如下尚不完全的统计图表.(1)在图1中,“7分”所在扇形的圆心角度数等于;(2)甲校参赛人数为;(3)请求出甲校的平均分、中位数;21.已知AB为⊙O的直径,C为⊙O上一点,AB=2AC.(1)如图1,点P时弧BC上一点,求∠APC的大小;(2)如图2,过点C作ɑO的切线MC,过点B作BD⊥MC于点D,BD与⊙O交于点E,若AB=4,求CE的长.22.如图,某幢大楼顶部有一块广告牌CD,在A处测得D点的仰角为45°,在B处测得C点的仰角为60°,A,B,E三点在一条直线上,且与地面平行,若AB=8m,BE=15m,求这块广告牌CD的高度.(取733 ,计算结果保.1留整数)23.A市和B市分别有库存某种机器12台和6台,现决定支援C市10台,D市8台,已知A市调动一台机器到C 市、D市的运费分别为400元和800元;从B市调动一台机器到C市、D市的运费分别为300元和500元.(1)设从B市运往C市机器x台,填写下表.表一:表二:(2)求使总运费最低的调运方案,最低总运费是多少?24.如图,在平面直角坐标系中,直角三角形OAB的顶点O在坐标原点,A(2,0),B(0,32),将△OAB沿y轴翻折,得△OCB.(1)求OCB的度数;(2)动点P在线段CA上从点C向点A运动,PDBC于点D,把△PCD沿y轴翻折,得△QAE,设△ABC被△PCD和△QAE盖住部分的面积为S1,未被盖住的部分的面积为S2.①设CP=a(a>0),用含a的代数式分别表示S1,S2;②直接写出当S1=S2时点P的坐标.25.已知O点为坐标原点,抛物线y1=ax2+bx+c(a≠0)与y轴交于点C,且O,C两点间的距离为3.(1)求点C的坐标;(2)抛物线y1=ax2+bx+c(a≠0)与x轴交于点A(x1,0),B(x2,0),x1∙x2<0,|x1|+|x2|=4.点A,C在直线y2=-3x+t上.①求该抛物线的顶点坐标;②将抛物线y1=ax2+bx+c(a≠0)向左平移n(n>0)个单位,记平移后y随x的增大而增大的部分为P,直线y2=-3x+t 向下平移n个单位,当平移后的直线与P有公共点,求2n2-5n的最小值.。

2017年上海市初三数学一模试卷18题汇总解析

2017年上海市初三数学一模试卷18题汇总解析

2017年上海市初三一模数学考试18题解析2017.01一. 普陀区18. 如图,DE ∥BC ,且过△ABC 的重心,分别与AB 、AC 交于点D 、E ,点P 是线 段DE 上一点,CP 的延长线交AB 于点Q ,如果14DP DE ,那么:DPQ CPE S S【解析】根据题意,△DPQ ∽△BCQ ,∴0.251211.5436QP DP DE QC BC DE , 则15QP PC ,∴1113515DPQ Q CPE C S DP h DP QP S PE h PE PC二. 浦东新区18. 如图,在Rt △ABC 中,90C,60B,将△ABC 绕点A 逆时针旋转60, 点B 、C 分别落在点B 、C 处,联结BC 与AC 边交于点D ,那么BDDC【解析】根据题意,作C E AC ,∴60EAC,设2BC,则AC ACAE 3EC ,∴23BD BC DC EC三. 奉贤区18. 如图,在矩形ABCD 中,6AB ,3AD ,点P 是边AD 上的一点,联结BP ,将 ABP 沿着BP 所在直线翻折得到EBP ,点A 落在点E 处,边BE 与边CD 相交于点G , 如果2CG DG ,那么DP 的长是【解析】由题得,2CG DG ,∴4CG ,2DG ,∵3BC ,∴5BG ,1EG , 由图可知,△DPF ∽△EGF ∽△CGB ,∴54FG ,∴34DF ,1DP四. 长宁区/金山区18. 如图,在△ABC 中,90C,8AC ,6BC ,D 是AB 的中点,点E 在边AC 上,将△ADE 沿DE 翻折,使得点A 落在点A 处,当A E AC 时,A B【解析】根据题意,第一种情况,如中图所示,作DG AC ,BF A E ,根据对称, ∴45DEG,∴3DG GE ,∴1EC BF ,7AE A E ,∴1A F ,∴A B 7EC A F BF ,即A B五. 闵行区18. 如图,已知△ABC 是边长为2的等边三角形,点D 在边BC 上,将△ABD 沿着直线AD 翻折,点B 落在点1B 处,如果1B D AC ,那么BD【解析】作DE AB ,∵1B D AC ,∴130B DC,∴175ADB ADB,∴145DAB DAB,设BE x ,则DE AE,2AB x ,解得1x ,∴22BD x六. 松江区18. 如图,在△ABC 中,90ACB,9AB ,2cos 3B,把△ABC 绕着点C 旋转, 使点B 与AB 边上的点D 重合,点A 落在点E 处,则点A 、E 之间的距离为【解析】作CF AB ,2cos 3B,6BC CD ,4BF DF ,AC CE∵BCD ACE ,∴△BCD ∽△ACE ,∴68BC CEBD AE,∴AE七. 徐汇区18. 如图,在平行四边形ABCD 中,:2:3AB BC ,点E 、F 分别在边CD 、BC 上, 点E 是边CD 的中点,2CF BF ,120A,过点A 分别作AP BE 、AQ DF , 垂足分别为P 、Q ,那么APAQ的值是【解析】延长BE 交直线AD 于H ,作BG AD ,设2AB ,由题得,2FC CD , ∴30DFC FDC ADF,∴32AQ,由图得,3DH ,1AG ,7GH ,BG ,∴BH BH AP AH BG ,即AP∴AP 2313AP AQ八. 虹口区18. 如图,在梯形ABCD 中,AD ∥BC ,AB BC ,1AD ,3BC ,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么sin ADP 为【解析】作DE BC ,∴1AD BE ,2EC ,∵3CB CD ,∴DE AB ,设BP DP x ,则AP x ,勾股定理,∴22)1x x ,解得,5x,即5PD,5PA ,∴2sin 3ADP 【法二】∵90ADE PDC,∴ADP EDC ,∴2sin sin 3ADP EDC九. 崇明县18. 如图,△ABC 中,45ABC,AH BC 于点H ,点D 在AH 上,且DH CH , 联结BD ,将△BHD 绕点H 旋转,得到△EHF (点B 、D 分别与点E 、F 对应),联结 AE ,当点F 落在AC 上时(F 不与C 重合),若4BC ,tan 3C ,则AE【解析】作HG AC ,∵90EHF AHC,∴EHA FHC ,∵EH AH ,FH CH ,∴△EHA ∽△FHC ,∵4BC ,tan 3C ,∴3AH BH ,1HC ,∵tan 3C ,∴10GC ,5FC ,∵31AE AH FC CH ,∴5AE十. 黄浦区18. 如图,菱形ABCD 内两点M 、N ,满足MB BC ,MD DC ,NB BA ,ND DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A【解析】联结AC 、BD 交于点O ,延长BM 交AD 于点E ,∴AC BD ,AD BE ,设1MO ,根据题意,则5AO ,根据相似,∴25OB ON OA ,即OB∴AB AD ,BD BM BM BD MO ED,∴3ED ,∴3AE ,∴2cos 3AE A AB十一. 宝山区18. 如图,D 为直角ABC 的斜边AB 上一点,DE AB 交AC 于E ,如果AED 沿DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果8AC ,1tan 2A ,则:CF DF【解析】作EM ∥CD ,8AC ,1tan 2A,4BC ,AB AD DBED ,5AE BE ,3EC ,∴::5:8ME DC AE AC ,∵DC∴ME,∴MD ,∴811DF DB ME MB ,∴DF ,FC , ∴:6:5CF DF十二. 静安区18. 一张直角三角形纸片ABC ,90C,24AB ,2tan 3B ,将它折叠,使直角顶 点C 与斜边AB 的中点重合,那么折痕的长为【解析】已知AB 中点为D ,联结CD 交折痕EF 于点O ,∴CD AD BD ,∴BDCB CDF DEF ,∴△DEF ∽△ODF ∽△CBA ,∵24AB ,∴12CD , 6OD ,∵32EO OD OD OF ,∴9EO ,4OF ,即折痕13EF十三. 杨浦区18. 如图,△ABC 中,5AB AC ,6BC ,BD AC 于点D ,将△BCD 绕点B 逆 时针旋转,旋转角的大小与CBA 相等,如果点C 、D 旋转后分别落在点E 、F 的位置, 那么EFD 的正切值是【解析】作DG FB ,∴EFD FDG ,由题易知,3cos cos 5C GBD , 设5BD m ,则5BF m ,3BG m ,4GD m ,2GF m ,∴tan 0.5FDG十四. 青浦区18. 如图,将△ABC 绕点A 顺时针旋转,使点C 落 在边AB 上的点E 处,点B 落在点D 处,联结BD , 若DAC DBA ,那么BDAB【解析】作ABD 的角平分线BF ,∴34 , 由题可得,12 ,AB AD ,∴1221DBA ADB DAC ,∴123436,∴△ABD ∽△BFD ,∴1BD FD AD BD AD AB BD BD BD,解得12BD AB十五. 嘉定区18. 在Rt △ABC 中,D 是斜边AB 的中点,点M 、N 分别在边AC 、BC 上,将△CMN 沿直线MN 翻折,使得点C 的对应点E 落在射线CD 上,如果B ,那么AME 的度数为(用含 的代数式表示)【解析】由题可知90A B,1290,∵AD BD ,∴2A , ∴1B ,13B ,∴1802AME。

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)初中的学习至关重要,广大中学生朋友们一定要掌握科学的学习方法,提高学习效率。

以下是精品学习网初中频道为大家提供的中考数学一模考试试题练习,供大家复习时使用A级基础题1.若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点( )A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为( )A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.如图3 4 11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc 0B.2a+b 0C.a-b+c 0D.4ac-b2 04.二次函数y=ax2+bx的图象如图3 4 12,那么一次函数y=ax+b的图象大致是( )5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x -3 -2 -1 0 1y -3 -2 -3 -6 -11则该函数图象的顶点坐标为( )A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.二次函数y=ax2+bx+c的图象如图3 4 13,给出下列结论:①2a+b ②b a ③若-1图3 4 1312.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3 4 14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.如图3 4 15,已知抛物线y=1a(x-2)(x+a)(a 0)与x轴交于点B,C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1 0(1)求证:n+4m=0;(2)求m,n的值;(3)当p 0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图3 4 16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与△C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案:1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又△1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)△抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)△y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m= 1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.△点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=12 6 2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2. 直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:△二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:△二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x1 0OA=-x1,OB=x2,x1+x2=-nm,x1 x2=pm.令x=0,得y=p,C(0,p). OC=|p|.由三角函数定义,得tan CAO=OCOA=-|p|x1,tan CBO=OCOB=|p|x2.△tan CAO-tan CBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1 x2=-1|p|.将x1+x2=-nm,x1 x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|= 1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p 0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.△二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与△C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO△Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.△以点C为圆心的圆与直线BD相切,△C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2 426.则此时抛物线的对称轴与△C相离.(3)假设存在满足条件的点P(xp,yp),△A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90 时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90 时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).这就是我们为大家准备的中考数学一模考试试题练习的内容,希望符合大家的实际需要。

【精品】2017.5东城区初三一模数学试题及答案

【精品】2017.5东城区初三一模数学试题及答案
北京市东城区 2016— 2017 学年第二学期统一练习(一)
初三数学
2017.5
一、选择题(本题共 30 分,每小题 3 分)下面各题均有四个选项,其中只有一个 ..是符合题意的.
1.数据显示: 2016 年我国就业增长超出预期 . 全年城镇新增就业 1 314 万人,高校毕业生就业创业人数再
创新高 . 将数据 1 314 用科学记数法表示应为
步数这组数据中,众数和中位数分别是
A .1.2, 1.3
B .1.3, 1.3
C.1.4, 1.35
D .1.4, 1.3
E
A
M
B
5. 如图, AB∥ CD,直线 EF 分别交 AB,CD 于 M ,N 两点,将一个含有 45°角的
直角三角尺按如图所示的方式摆放,若∠ EMB=75°,则∠ PNM 等于
2
3
19 .先化简,再求值:
12 x
x 2 x 4 ,其中 2 x2 4x 1 0 . x2 x2
1
20.如图,在△ ABC 中,∠ B=55 °,∠ C= 30°,分别以点 A 和点 C 为圆心, 大于 AC
2
的长为半径画弧, 两弧相交于点 M ,N,作直线 MN ,交 BC 于点 D ,连接 AD ,
A . 1.314 103
B. 1.314 104 C. 13.14 102
2.实数 a, b 在数轴上的对应点的位置如图所示,则正确的结论是
D . 0.1314 10 4
A. a < b
B. a>- b
C. b> a
D. a>- 2
3.在 一 个 布 口 袋 里 装 有 白 、红 、黑 三 种 颜 色 的 小 球 ,它 们 除 颜 色 外 没 有 任 何 区 别 ,其 中 白

2017南京市各区中考一模数学试题(含答案及评分标准)

2017南京市各区中考一模数学试题(含答案及评分标准)

九年级数学试卷 第1 页 共 6 页2016~2017学年度第一次调研测试九年级数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算-1+2的值是( ▲ )A .-3B .-1C .1D .32.不等式组⎩⎨⎧ 2 x >-1,x -1≤0的解集是( ▲ )A .x >-12B .x <-12C .x ≤1D .-12<x ≤13. 计算32)(a 的结果是( ▲ )A. 23a B. 32a C. 5a D. 6a4.地球绕太阳每小时转动通过的路程约是1.1×105千米,用科学记数法表示地球一天(以24小时计)转动通过的路程约是( ▲ )A .0.264×10 7千米B .2.64×10 6千米C .26.4×10 5千米D .264×10 4千米 5.如图所示的平面图形能折叠成的长方体可能是( ▲ )6.把函数y =2x 2的图象先沿x 轴向右平移3个单位长度,再沿y 轴向下平移2个单位长度得到新函数的图象,则新函数的关系式是( ▲ )A .y =2(x +3)2-2B .y =2(x -3)2-2C .y =2(x +3)2+2D .y =2(x -3)2+2(第5题)A .B .C .D .九年级数学试卷 第2 页 共 6 页DCBA(第13题) 二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.计算:20 +112-⎛⎫ ⎪⎝⎭= ▲ .8.分解因式:269xx -+= ▲ .9.计算:82+= ▲ .10.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是 ▲ (填“甲”、“乙”、“丙”中的一个). 11.如果反比例函数y =kx 的图象经过点(1,3),那么它一定经过点(-1, ▲ ).12.圆锥形烟囱帽的底面直径为80 cm ,母线长为50 cm ,该烟囱帽的侧面积等于 ▲ cm 2(结果保留π).13.如图,在△ABC 中,AD =DB =BC .若∠C =n °,则∠ABC = ▲ 度.(用含n 的代数式表示)14.如图,在Rt △ABC 中,∠C =90°,∠B =60°,内切圆O 与边AB 、BC 、CA 分别相切于点D 、E 、F ,则∠DEF 的度数为 ▲ °.15.已知正比例函数y =2x 的图象过点),(11y x 、),(22y x .若112=-x x ,则21y y -= ▲ . 16.如图,已知A 、B 两点的坐标分别为(2,0)、(0,4),P 是△AOB 外接圆⊙C 上的一点,且∠AOP =45°,则点P的坐标为 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. (7分)计算: (a 2a -b +b 2b -a)÷a +b ab .(第14题)(第16题)九年级数学试卷 第3 页 共 6 页18. (7分) 解方程组:⎩⎪⎨⎪⎧x +y =2,2x - 13 y =53.19. (7分)某校学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不合格”、“合格”、“优秀”三个等级.为了了解电脑培训的效果,随机抽取其中32名学生两次考试考分等级制成统计图(如图),试回答下列问题:(1)这32名学生经过培训,考分等级“不合格”的百分比由 ▲ 下降到 ▲ ; (2)估计该校640名学生,培训后考分等级为“合格”与“优秀”的学生共有多少名.20. (8分) 如图,某同学在大楼AD 的观光电梯中的E 点测得大楼BC 楼底C 点的俯角为45°,此时该同学距地面高度AE 为20米,电梯再上升5米到达D 点,此时测得大楼BC 楼顶B 点的仰角为37º,求大楼的高度BC .(参考数据:sin37 º≈0.60, cos37 º≈0.80, tan37 º≈0.75)不合格合格 15 5 10(第19题)(第20题)九年级数学试卷 第4 页 共 6 页21.(8分)如图,在△ABC 中,AB=AC ,AD ⊥BC ,垂足为D ,AE ∥BC , DE ∥AB . 求证:(1)AE =DC ;(2)四边形ADCE 为矩形.22.(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏. (1)在实验中他们共做了50次试验,试验结果如下:① 填空:此次实验中,“1点朝上”的频率是 ▲ ;② 小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么? (2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.23.(8分)建造一个池底为正方形、深度为2m 的长方体无盖水池,池壁的造价为每平方米100元,池底的造价为每平方米200元,总造价为6400元.求该水池池底的边长.ABCDE(第21题图)九年级数学试卷 第5 页 共 6 页24.(8分)甲、乙两车从A 地将一批物品匀速运往B 地,已知甲出发0.5h 后乙开始出发,如图,线段OP 、MN 分别表示甲、乙两车离A 地的距离S (km )与时间t (h )的关系,请结合图中的信息解决如下问题: (1)计算甲、乙两车的速度及a 的值; (2)乙车到达B 地后以原速立即返回.①在图中画出乙车在返回过程中离A 地的距离S (km )与时间t (h )的函数图象;(请标出必要的相关数据)②请问甲车在离B 地多远处与返程中的乙车相遇?25.(8分)如图,CD 为⊙O 的直径,弦AB 垂直于CD ,垂足为H ,∠EAD =∠HAD . (1)求证:AE 为⊙O 的切线;(2)延长AE 与CD 的延长线交于点P ,过D 作DE ⊥AP ,垂足为E ,已知P A =2,PD =1,求⊙O 的半径和DE 的长.26.(9分)已知:二次函数y =ax 2 +bx 的图像经过点M (1,n )、N (3,n ).(1)求b 与a 之间的关系式;(2)若二次函数y =ax 2 +bx 的图像与x 轴交于点A 、B ,顶点为C ,△ABC 为直角三角形,求该二次函数的关系式.C(第25题)九年级数学试卷 第6 页 共 6 页27.(10分)重温我们知道:同弧或等弧所对的圆周角相等.也就是,如图(1),⊙O 中,AB ︵所对的圆周角∠ACB=∠ADB=∠AEB . 应用(1)已知:如图(2),矩形ABCD . ①若AB <12BC ,在边AD 上求作点P ,使∠BPC =90°.(保留作图痕迹,写出作法.)②小明经研究发现,当AB 、BC 的大小关系发生变化时,①中点P 的个数也会发生变化,请你就点P 的个数,探讨AB 与BC 之间的数量关系.(直接写出结论) 创新(2)小明经进一步研究发现:命题“若四边形的一组对边相等和一组对角相等,则这个四边形是平行四边形.”是一个假命题,并在平行四边形的基础上利用“同弧或等弧所对的圆周角相等.”作出了一个反例图形.请你利用下面如图(3)所给的□ABCD 作出该反例图形.(不写作法,保留作图痕迹)(第27题图(1))C(第27题图(2))ADBABCD(第27题图(3))九年级数学试卷 第7 页 共 6 页初三一模数学试题参考答案及评分标准一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3 8.(x-3)2 9.10.乙 11.-3 12.2000π 13.180-1.5n 14.75 15.2 16.(3,3) 三、解答题(本大题共11小题,共88分) 17.(7分)解:原式=(a 2a -b -b 2a -b)÷a +b ab ………2分=a 2-b 2a -b ÷a +bab ……………4分=()()a b a b a b+--×aba +b……6分 =ab ……………………………7分18. (7分) 对某一方程进行有效变形且正确 ………………………………………1分 得用代入或加减消去一个未知数得一元一次方程正确………………3分 解得一个未知数的值正确………………………………………………4分 代入求得另一个未知数的值正确………………………………………6分正确写出方程组的解1,1.x y =⎧⎨=⎩…………………………………………7分.19.(7分)(1)75﹪,25﹪…………………………………………………………………4分 (2)据题意得:培训后32名学生中“合格”与“优秀”的学生共有24名 ………5分 考分等级为“合格”与“优秀”的学生人数约占2432=34…………………………6分 所以,培训后全校考分等级为“合格”与“优秀”的学生人数约有: 640×34=480名分20. (8分)解:过点E 、D 分别作BC 的垂线,交BC 于点F 、G .在Rt △EFC 中,因为FC =AE =20,∠FEC =45° 所以EF =20………………………………………3分 在Rt △DBG 中,DG =EF =20,∠BDG =37°C因为tan∠BDG=BGDG≈0.75 ………………………………5分所以BG≈DG×0.75=20×0.75=15………………………6分而GF=DE=5所以BC=BG+GF+FC=15+5+20=40答:大楼BC的高度是40米.………………………………8分21.(8分)证明:(1)在△ABC中,∵AB=AC,AD⊥BC,∴BD=DC ……………………………………………………2分∵AE∥BC, DE∥AB,∴四边形ABDE为平行四边形………………………………4分∴BD=AE,…………………………………………………5分∵BD=DC∴AE = DC.……………………………………………………6分(2)∵AE∥BC,AE = DC,∴四边形ADCE为平行四边形.………………………………7分又∵AD⊥BC,∴∠ADC=90°,∴四边形ADCE为矩形.………………………………………8分22.(8分)(1)①0.2 …………………………………………………………1分②不正确……………………………………………………2分因为在一次实验中频率并不一定等于概率,只有当实验中试验次数很大时,频率才趋近于概率.………………………………………………………3分(2)列表如下:………5分所有可能的结果共有36种,每一种结果出现的可能性相同.九年级数学试卷第8 页共6 页九年级数学试卷 第9 页 共 6 页)所以P (点数之和超过6)=2136 ,P (点数之和不超过6)=1536 ………7分因为2136 >1536,所以小亮获胜的可能性大.………………………………8分23.(8分)设池底的边长为x m . ……………………………………1分 200x 2+800x =6400 …………………………………………4分 解得x 1=4,x 2=-8(舍) …………………………………7分 答:池底的边长为4m . ……………………………………8分24.(本题8分) 解:(1)由题意可知M (0.5,0),线段OP 、MN 都经过(1.5,60)甲车的速度60÷1.5=40 km/小时,……………………………………………1分乙车的速度60÷(1.5-0.5)=60 km/小时, ………………………………2分 a =40×4.5=180 km ; …………………………………………………………3分(2)①乙车在返回过程中离A 地的距离S (km )与时间t (h )的函数图象25.(8分)连结OA∵AB ⊥CD ,∴∠AHD =90°.∴∠HAD +∠ODA =90°………………………1分 ∵OA =OD ,∴∠OAD =∠ODA …………2分 又∵∠EAD =∠HAD∴∠EAD +∠OAD =90°, …………………3分 ∴OA ⊥AE ,又∵点A 在圆上,∵AE 为⊙O 的切线.………4分 (2)设⊙O 的半径为x ,在Rt △AOP 中,OA 2+AP 2=OP 2x 2+22=(x +1)2 …………………5分 解得x =1.5 ………………………6分 ∴⊙O 的半径为1.5∵OA ∥DE ,所以△PED ∽△P AO ,PC九年级数学试卷 第10 页 共 6 页∴DP PO =DE AO ,1 2.5 =DE1.5,…………………7分 解得DE =35…………………………………8分26.(本题9分)解:(1)∵图像经过M (1,n )、N (3,n )∴图像的对称轴为直线x =2. …………………………………2分 ∴22ba-=,所以b = -4a .…………………………………4分 (2)y =ax 2 -4ax 的图像与x 轴交于点A (0,0)、B (4,0).………5分∵△ABC 为直角三角形,∴顶点C 坐标为(2,2)或(2,-2).…………………………7分 代入得4a -8a =2或4a -8a =-2.∴a =-12 或12 .……………………………………………………8分∴y = - 12 x 2 +2x 或y =12x 2 -2x .…………………………………9分27.(10分)(1)①作图正确………………………………………………………………2分.作法:以BC 为直径作⊙O ,交AD 于P 1、P 2P 1、P 2 为所求作的点P .………………………………………………4分 ②AB <12BC 时,点P 有两个;………………………………………………5分 AB=12BC 时,点P 有且只有1个; ………………………………………6分 AB >12BC 时,点P 有0个; ………………………………………………7分(2)……………………………………………10分连接AC ,作△ADC 的外接圆⊙O ,再以C 为圆心, CD 的长为半径画弧,与⊙O 相交于点E ,则四边形ABCE 即为所求反例图形.(画法不计分)九年级数学试卷 第11 页 共 6 页2017年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算│-4+1│的结果是( ▲ )A .-5B .-3C .3D .52.计算(-xy 2)3的结果是( ▲ )A .x 3y 6B .-x 3y 6C .-x 4y 5D . x 4y 5 3.与17 最接近的整数为( ▲ )A .2B .3C .4D .54.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则 DEEF 的值为( ▲ )A .23B .25C .13D .355. 若一组数据2,4,6,8,x 的方差比另一组数据5,7,9,11,13的方差大,则 x 的值可以为( ▲ )A .12B .10C .2D .0(第4题) A BCD (第6题)6.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,则△ABC 的面积为(▲)A.48 B.50 C.54 D.60九年级数学试卷第12 页共6 页九年级数学试卷 第13 页 共 6 页二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.9的平方根是 ▲ ;9的立方根是 ▲ . 8.使x +1 有意义的x 的取值范围是 ▲ .9.2016年南京全市完成全社会固定资产投资约55000000万元,将55000000用科学记数法表示为 ▲ .10.分解因式x 3+6x 2+9x 的结果是 ▲ . 11.计算33-13的结果是 ▲ . 12.已知关于x 的方程x 2-3x +m =0的一个根是2,则它的另一个根是 ▲ ,m 的值是 ▲ . 13.如图,∠A =∠C ,只需补充一个条件 ▲ ,就可得△ABD ≌△CDB .14. 如图,在△ABC 中,AB 、AC 的垂直平分线l 1、l 2相交于点O ,若∠BAC 等于82°,则∠OBC = ▲ °.15.已知点A (-1,-2)在反比例函数y =k x 的图像上,则当x >1时,y 的取值范围是 ▲ .16.如图,在半径为2的⊙O 中,弦AB =2,⊙O 上存在点C ,使得弦AC =22,则∠BOC = ▲ °.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式组⎩⎪⎨⎪⎧ x +1≥ 0, x -12<x 3.,并写出它的整数解.18.(7分)化简:( 2m m 2-4- 1 m +2 )÷1 m 2-2m.(第14题)A BD(第13题)(第16题)19.(8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下两幅统计图.请根据相关信息,解答下列问题:(1)扇形统计图中a=_▲_,初赛成绩为1.70m所在扇形图形的圆心角为_▲_°;(2)补全条形统计图;(3)这组初赛成绩的众数是▲ m,中位数是▲ m;(4)根据这组初赛成绩确定8人进入复赛,那么初赛成绩为1.60m的运动员杨强能否进入复赛?为什么?20.(8分)在一个不透明袋子中有1个红球、1 个绿球和n个白球,这些球除颜色外都相同.(1)从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀,不断重复该试验.发现摸到白球的频率稳定在0.75,则n的值为;(2)当n=2时,把袋中的球搅匀后任意摸出2个球,求摸出的2个球颜色不同的概率.21.(8分)如图,将矩形ABCD绕点C旋转得到矩形FECG,点E在AD上,延长ED交FG 于点H.(1)求证:△EDC≌△HFE;九年级数学试卷第14 页共6 页九年级数学试卷 第15 页 共 6 页(2)连接BE 、CH .①四边形BEHC 是怎样的特殊四边形?证明你的结论. ②当AB 与BC 的比值为 时,四边形BEHC 为菱形.(第21题)ABCDGFEH九年级数学试卷 第16 页 共 6 页22.(8分)据大数据统计显示,某省2014年公民出境旅游人数约100万人次,2015年与2016年两年公民出境旅游总人数约264万人次. 若这两年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年该省公民出境旅游人数的年平均增长率;(2)如果2017年仍保持相同的年平均增长率,请你预测2017年该省公民出境旅游人数约多少万人次?23.(8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离. (参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)24.(8分)已知二次函数y =x 2-2m x +m 2+m +1的图像与x 轴交于A 、B 两点,点C 为顶点.(1)求m 的取值范围;(2)若将二次函数的图像关于x 轴翻折,所得图像的顶点为D ,若CD =8.求四边形ACBD 的面积。

上海市各市县2017届中考数学试题分类汇编-初三一模18题

上海市各市县2017届中考数学试题分类汇编-初三一模18题

上海市2017届中考数学试题分类汇编初三一模18题汇编题型一:翻折问题; 性质: 翻折前后两个图形全等:边相等,角相等折痕垂直平分对应点的连线学会找等腰画图: 已知折痕:过对应点做折痕的垂线并延长已知对应点:做对应点连线的垂直平分线【2017年虹口一模18】如图,在梯形ABCD 中,BC AD ∥,BC AB ⊥,1=AD ,3=BC ,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么ADP ∠sin 为 。

【答案】32 【解析】 ∵把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合∴3==BC CD在直角梯形中,作BC DH ⊥,则1==AD BH ,2=CH作DCP ∠的角平分线交AB 于点P ,联结PD ,过点C 作CB 的垂线交AD 的延长线于点G 。

由翻折可知,90=∠=∠PBC PDC ,由作图易得△PAD ∽△DGC ,GCD ADP ∠=∠在DGC Rt △中,由勾股定理易得,3232sin sin ==∠=∠GCD ADP【2017年奉贤一模18】 如图,在矩形ABCD 中,6AB =,=3AD ,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边DC 相交于点G ,如果DG CG 2=,那么DP 的长是 【答案】2【解析】21315423354cos cos 23,33,90,5343,423213214,22,//3,422=-=∴==+-==∠=∠∴∠=∠=∠+=-==∴-==︒=∠=∠=∴∆∆=+=∴===⇒=====∴=====AP x x x BG CG CGB FPE CGBFGD FPE x PF x AP PE xAP x DP A PEB AP PE PEFABP BG BC CG DF DF CG DG BC DF CG DG DGCG BC AD BC AD CD AB 解得即易证则设翻折得到即【2017年崇明一模18】如图,已知△ABC 中,∠45=ABC ,BC AH ⊥于点H ,点D 在AH 上,且CH DH =,联结BD ,将△BHD 绕点H 旋转,得到△EHF (点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时(F 不与C 重合),如果4=BC ,3tan =C ,那么AE 的长为 。

2017中考数学一模达标测试卷(练习)_题型归纳

2017中考数学一模达标测试卷(练习)_题型归纳

2017中考数学一模达标测试卷(练习)_题型归纳我们经常听见这样的问题:你的数学怎么那么好啊?教教我诀窍吧?其实学习这门课没有什么窍门。

只要你多练习总会有收获的,希望小编的这篇中考数学一模达标测试卷,能够帮助到您!1.用下列一种多边形不能铺满地面的是()A.正方形B.正十边形C.正六边形D.等边三角形2.下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形3.如图4­3­9,在▱ABCD中,AC与BD相交于点O,则下列结论不一定成立的是()A.BO=DOB.CD=ABC.▱BAD=▱BCDD.AC=BD图4­3­9 图4­3­10 图4­3­11 图4­3­12 图4­3­134.如图4­3­10,在▱ABCD中,AD=2AB,CE平分▱BCD,并交AD边于点E,且AE=3,则AB的长为()A.4B.3C.52D.25.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.(2013年山东烟台)如图4­3­11,▱ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则▱DOE的周长为____________.7.(2013年江西)如图4­3­12,▱ABCD与▱DCFE的周长相等,且▱BAD=60°,▱F=110°,则▱DAE 的度数为__________.8如图4­3­13,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH 的形状一定是__________.9.已知一个多边形的内角和是外角和的32,则这个多边形的边数是________.10.如图4­3­14,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB 于E,交CD于F.求证:OE=OF.11.(2013年福建漳州)如图4­3­15,在▱ABCD中,E,F是对角线BD上两点,且BE=DF.(1)图中共有______对全等三角形;(2)请写出其中一对全等三角形:________▱__________,并加以证明.B级中等题12如图4­3­16,已知四边形ABCD是平行四边形,把▱ABD沿对角线BD翻折180°得到▱A′BD.(1)利用尺规作出▱A′BD(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:▱BA′E▱▱DCE.13.如图4­3­17,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:▱AEM▱▱CFN;(2)求证:四边形BMDN是平行四边形.C级拔尖题14.(1)如图4­3­18(1),▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC 于点E,F.求证:AE=CF.(2)如图4­3­18(2),将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.1.B2.A3.D4.B5.C6.157.25°8.平行四边形9.510.证明:▱四边形ABCD是平行四边形,▱OA=OC,AB▱CD.▱▱OAE=▱OCF.▱▱AOE=▱COF,▱▱OAE▱▱OCF(ASA).▱OE=OF.11.解:(1)3(2)①▱ABE▱▱CDF.证明:在▱ABCD中,AB▱CD,AB=CD,▱▱ABE=▱CDF.又▱BE=DF,▱▱ABE▱▱CDF(SAS).②▱ADE▱▱CBF.证明:在▱ABCD中,AD▱BC,AD=BC,▱▱ADE=▱CBF,▱BE=DF,▱BD-BE=BD-DF,即DE=BF.▱▱ADE▱▱CBF(SAS).③▱ABD▱▱CDB.证明:在▱ABCD中,AB=CD,AD=BC,又▱BD=DB,▱▱ABD▱▱CDB(SSS).(任选其中一对进行证明即可)12.解:(1)略(2)▱四边形ABCD是平行四边形,▱AB=CD,▱BAD=▱C,由折叠性质,可得▱A′=▱A,A′B=AB,设A′D与BC交于点E,▱▱A′=▱C,A′B=CD,在▱BA′E和▱DCE中,▱A′=▱C,▱BEA′=▱DEC,BA′=DC,▱▱BA′E▱▱DCE(AAS).13.证明:(1)▱四边形ABCD是平行四边形,▱▱DAB=▱BCD.▱▱EAM=▱FCN.又▱AD▱BC,▱▱E=▱F.又▱AE=CF,▱▱AEM▱▱CFN(ASA).(2)▱四边形ABCD是平行四边形,▱AB▱CD,AB=CD.又由(1),得AM=CN,▱BM=DN.又▱BM▱DN▱四边形BMDN是平行四边形. 14.证明:(1)▱四边形ABCD是平行四边形,▱AD▱BC,OA=OC.▱▱1=▱2.又▱▱3=▱4,▱▱AOE▱▱COF(ASA).▱AE=CF.(2)▱四边形ABCD是平行四边形,▱▱A=▱C,▱B=▱D.由(1),得AE=CF.由折叠的性质,得AE=A1E,▱A1=▱A,▱B1=▱B,▱A1E=CF,▱A1=▱C,▱B1=▱D.又▱▱1=▱2,▱▱3=▱4.▱▱5=▱3,▱4=▱6,▱▱5=▱6.在▱A1IE与▱CGF中,▱A1=▱C,▱5=▱6,A1E=CF,▱▱A1IE▱▱CGF(AAS).▱EI=FG.提供的中考数学一模达标测试卷,是我们精心为大家准备的,希望大家能够合理的使用!。

2017届上海初三数学各区一模压轴题汇总情况(15套全),推荐文档

2017届上海初三数学各区一模压轴题汇总情况(15套全),推荐文档

2016~2017 学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15 套整理廖老师EFS S y = ax 2 -3x + 2 (a ¹ 0) 2两点,与 轴交于点 已知点y CABOx宝山区一模压轴题18(宝ft )如图, D 为直角DA BC 的斜边 AB 上一点, 交 AC 于 ,如果D AED 沿着 DE 翻折,A 恰好与B 重合,联结 交 BE 于 F ,如果 AC = 8 , ,那么 CF : DF =.24(宝ft )如图,二次函数的图像与 x 轴交于图 18图.(1) 求抛物线与直线 AC(2) 若点 D (m , n ) 是抛物线在第二象限的部分上的一动点,四边形 OCDA 的面积为 ,求 关于 m 的函数关系;(3) 若点 为抛物线上任意一点,点 为 x 轴上任意一点,当以 为顶点的四边形是平行四边形时, 请直接写出满足条件的所有点 E 的坐标.图 24图E EF y A 、C 、E F A (- 4 , 0) C , A 、 B CD DE ^ AB tan A = 12t 5 10 14G EH FP BE 、C D25(宝ft)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 以1cm / s 的速度沿着折线运动到点时停止,点Q 以2cm / s 的速度沿着BC 运动到点C 时停止。

设P 、Q 同时出发t 秒时,D BPQ 的面积为ycm2,已知的一部分,其余各部分均为线段).(1)试根据图(2)求0 < t £ 5 时,D BPQ 的面积与t的函数关系图像如图(2)(其中曲线OG 为抛物线关于t 的函数解析式;(2)求出线段BC 、B、E ED 的长度;(3)当t 为多少秒时,以B 、P、Q 为顶点的三角形和D ABE 相似;(4)如图(3)过点E 作EF ^ BC 于F ,D BEF 绕点B 按顺时针方向旋转一定角度,如果D B EF 中E 、F 的对应点H 、I 恰好和射线的交点G 在一条直线,求此时C 、I 两点之间的距离.E y A4020Q C图 1 图图 2图图25图I 图3图Cyy BE - ED - DCABD崇明县一模压轴题18(崇明)如图,已知 中, ∠ABC = 45o , AH ⊥BC 于点 H ,点 D 在 上,且 DH = CH ,联结 , 将V BHD 绕点 旋转,得到∆EHF (点 B 、 D 分别与点 E 、 F 对应),联结 ,当点 F 落在AC 上时,( F 不 与C 重合)如果 BC = 4 , tan C = 3 ,那么AE 的长为 ;H AE AH ∆ABCD l ⊥ x 24(崇明)在平面直角坐标系中,抛物线 y = - 3x 2 + bx + c 与y 轴交于点A (0, 3),与 5轴的正半轴交于点 B (5, 0),点 在线段 OB 上,且 OD = 1 ,联结 AD 、将线段 AD 绕着点 D 顺时针旋转 90︒ ,得到线段 DE ,过点 E 作直线 轴,垂足为 H ,交抛物线于点 F .(1) 求这条抛物线的解析式;(2) 联结 , 求cot ∠EDF 的值;(3) 点 G 在直线 l 上,且∠EDG = 45︒ ,求点 的坐标.x G DFCD BCPC = CE25(崇明)在 ∆ABC 中, ∠ACB = 90︒, cot A = 3, 2,以 BC 为斜边向右侧作等腰直角∆EBC , P 是延长线上一点,联结(1) 求证:; PC ,以 PC 为直角边向下方作等腰直角∆PCD , CD 交线段 BE 于点 F ,联结 BD .(2) 若 PE = x , ∆BDP 的面积为 y ,求 y 关于 x 的函数解析式,并写出定义域;(3) 当∆BDF 为等腰三角形时,求 的长.AC = 6 2 PE BE奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB=6,AD=3,点P 是边AD 上的一点,联结BP,将△ABP 沿着BP 所在直线翻折得到△EBP,点A 落在点E 处,边BE 与边CD 相交于点G,如果CG=2DG,那么DP 的长是.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线y =-x2+bx +c 与x 轴相交于点A(-1,0)和点B,与y 轴相交于点C(0,3),抛物线的顶点为点D,联结AC、BC、DB、DC.(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO∽△DBC;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO,求点E 的坐标。

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)

2017中考数学一模测试卷(含答案)中考数学是历年“拉分”科目,很多学生与自己心仪的高中失之交臂,主要原因就是数学“失手”。

下文为大家准备了中考数学一模测试卷的内容。

A级基础题1.在数0,2,-3,-1.2中,属于负整数的是( )A.0B.2C.-3D.-1.22.下列四个实数中,绝对值最小的数是( )A.-5B.-2C.1D.43.-2是2的( )A.相反数B.倒数C.绝对值D.算术平方根4.-3的倒数是( )A.3B.-3C.13D.-135.下列各式,运算结果为负数的是( )A.-(-2)-(-3)B.(-2)×(-3)C.(-2)2D.(-3)-36.计算:12-7×(-4)+8÷(-2)的结果是( )A.-24B.-20C.6D.367.如果+30m表示向东走30m,那么向西走40m表示为______________.8.计算:-(-3)=______,|-3|=______,(-3)-1=______,(-3)2=______.9.若a=1.9×105,b=9.1×104,则a______b(填“”).10.计算:|-5|-(2-3)0+6×13-12+(-1)2.B级中等题11.实数a,b在数轴上的位置如图1-1-4所示,以下说法正确的是( )图1-1-4A.a+b=0B.b0D.|b| 12.北京时间2011年3月11日,日本近海发生9.0级强烈地震.本次地震导致地球当天自转快了0.0000016秒.这里的0.0000016秒用科学记数法表示__________秒.13.观察下列顺序排列的等式:a1=1-13,a2=12-14,a3=13-15,a4=14-16……试猜想第n个等式(n为正整数):an=__________.14.计算:|1-3|+-12-3-2cos30°+(π-3)0.C级拔尖题15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=2013,且AO=2BO,则a+b的值为________.16.观察下列等式:第1个等式:a1=11×3=12×1-13;第2个等式:a2=13×5=12×13-15;第3个等式:a3=15×7=12×15-17;第4个等式:a4=17×9=12×17-19;……请解答下列问题:(1)按以上规律列出第5个等式:a5=__________________=__________________;(2)用含有n的代数式表示第n个等式:an=__________________=__________________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.1.C2.C3.A4.D5.D6.D7.-40m 8.3 3 -13 9 9.>10.解:原式=5-1+(2-3)+1=4.11.D 12.1.6×10-6 13.1n-1n+214.解:原式=3-1-8-2×32+1=-8.15.-67116.解:(1)19×1112×19-111(2)12n-1×2n+112×12n-1-12n+1(3)a1+a2+a3+a4+...+a100=12×1-13+12×13-15+12×15-17+...+12×1199-1201=12×1-13+13-15+15-17+ (1199)1201=12×1-1201=12×200201=100201.精心整理,仅供学习参考。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图1,DE ∥BC ,且过△ABC 的重心,分别与AB 、AC 交于点D 、E ,点P 是线段DE 上一点,CP 的延长线交AB 于点Q ,如果4
1
=DE DP ,那么DPQ S △:CPE S △的值是___________. (2017年普陀区一模卷18题)
2、如图2,在矩形ABCD 中,AB=6,AD=3,点P 是边AD 上的一动点,联结BP ,将△ABP 沿着BP 所在的直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是_______________.(217年奉贤区一模卷18题)
3、如图3,D 是直角△ABC 的斜边AB 上一点,DE ꓕAB 交AC 于E ,如果△AED 沿DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果AC=8,2
1
tan =
A ,那么CF :DF=___________. (2017年宝山区一模卷18题)
4、如图4,△ABC 中,AB=AC=5,BC=6,BD ꓕAC 于点D ,将△BCD 绕点B 逆时针旋转,旋转角的大小与∠CBA 相等,如果点C 、D 旋转后分别落在点E 、F 的位置,那么∠EFD 的正切值是______________.
(2017年杨浦区一模卷18题)
A B
C
图2
C
图1
A
D
B
图3
C B 图4
5、如图5,已知△ABC 是边长为2的等边三角形,点D 在边BC 上,将△ABD 沿着直线AD 翻折,点B 落在点B 1处,如果B 1D ꓕAC ,那么BD=_______________. (2017年闵行区一模卷18题)
6、如图6,在
ABCD
中,AB :BC=2:3,点E 、F 分别在边CD 、BC 上,点E 是CD 的中点,
CF=2BF ,∠A=120°,过点A 分别作AP ꓕBE 、AQ ꓕDF ,垂足分别为P 、Q ,那么AQ
AP
的值是______________.(2017年徐汇区一模卷18题)
7、一张直角三角形纸片ABC ,∠C=90°,AB=24,3
2
tan
B (如图7),将它折叠使直角顶点
C 与斜边AB 的中点重合,那么折痕的长是___________.(2017年静安区一模卷18题)
8、如图8,在△ABC 中,∠ACB=90°,AB=9,3
2
=
cosB ,把△ABC 绕着点C 旋转,使点B 与AB 边上的点D 重合,点A 落在点E ,则点A 、E 之间的距离为_____________.
(2017年松江区一模卷18题)
C
B 图5
B C
D
图6
C A B
图7
图8
B E
9、在ABC R △t 中,D 是斜边AB 的中点(如图9),点M 、N 分别在边AC 、BC 上,将△CMN 沿直线MN 翻折,使得点C 的对应点落在射线CD 上,如果∠B=α,那么∠AME 的度数为__________.(用含α的代数式表示)(2017年嘉定区一模卷18题)
10、如图10,在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=1,BC=3,点P 是边AB 上一点,如果把△BCP 沿折痕CP 向上翻折,点B 恰好与点D 重合,那么ADP ∠sin 为_____________. (2017年虹口区一模卷18题)
11、如图11,在△ABC 中,∠C=90°,AC=8,BC=6,D 是AB 的中点,点E 在边AC 上, 将△ADE 沿DE 翻折,使得点A 落在点A ’处,当A ’E ⊥AC 时,A ’B=_____________. (2017年长宁、金山区一模卷18题)
12、如图12,在ABC Rt △中,∠C=90°,∠B=60°,将△ABC 绕点A 逆时针旋转60°,点B 、C 分别落在点B ’、C ’处,联结BC ’与AC 边交于点D ,那么='
DC BD
_____________. (2017年浦东新区一模卷18题)
B C 图
9 A C

10 B C A 图
11 图12
C
B
13、如图13,已知△ABC ,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,联结BD ,如果∠DAC=∠DBA ,那么
AB
BD
的值是________________. (2017年青浦区一模卷18题)
14、如图14,菱形ABCD 形内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的
5
1
,cosA=__________.(2017年黄浦区一模卷18题)
15、如图15,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为________________.(2017黄埔一模17题)
C A B
图13 图14 M C B A N
C
A
图15。

相关文档
最新文档