大学物理电磁感应课件
【高等教育】大学物理电磁感应课件
?
2. 通过回路的电量大小:q
m
R
3. 感应电动势可分为:动生电动势和感生电动势。
(请看录像 )
Chapte作r 1者2:杨电茂田磁 感 应
2 动生电动势
Chapte作r 1者2:杨电茂田磁 感 应
一、动生电动势
非静电力:洛沦兹力 fv
fv qv B
非静电力场强:
Ek
fv q
vB
三、两种形式的感应电动势
()
电源电动势: Ei Ek dl ()
动生电动势:磁场不变,导体位置或回
感应电动势
路形状发生变化。
感生电动势: 磁场变化,导体位置或回
路形状不变。
Chapte作r 1者2:杨电茂田磁 感 应
1.
法拉第电磁感应定律:Ei
dm
dt
规定回路正绕向
m (t) ?
Ei
dm
课堂练习 如图,无限长载流直导线与正方形导线框共面 且相对位置不变,导线中电流以恒定速率J0增长,已知a、 b,求导线框内的感应电动势。
提示 穿过导线框的磁通量:
m
B dS
0 Ia 2
ln(1
a b
)
S
Ei
dm
dt
dI dt
J0
答案:
Ei
0aJ 0 2
ln(
a
a
b)
I(t)
Fe Ei v fv B
()
()
Ei Ek dl (v B) dl
()
()
Chapte作r 1者2:杨电茂田磁 感 应
☻
可以证明:Ei
() (v B)dl
d
dt
,只不过此处
大学物理电磁感应-PPT课件精选全文完整版
的磁场在其周围空间激发一种电场提供的。这
种电场叫感生电场(涡旋电场)
感生电场 E i
感生电场力 qEi
感生电场为非静 电性场强,故:
e E i dld dm t
Maxwell:磁场变化时,不仅在导体回路中 ,而且在其周围空间任一点激发电场,感生 电场沿任何闭合回路的线积分都满足下述关 系:
E id l d d m t d ds B td S d B t d S
线
形
状
电力线为闭合曲线
E感
dB 0 dt
电 场 的
为保守场作功与路径无关
Edl 0
为e非i 保守E 场感作d功l与路径dd有mt关
性
静电场为有源场
质
EdS
e0
q
感生电场为无源场
E感dS0
➢感生电动势的计算
方法一,由 eLE感dl
需先算E感
方法二, 由 e d
di
(有时需设计一个闭合回路)
2.感生电场的计算
Ei
dl
dm dt
L
当 E具i 有某种对称
性才有可能计算出来
例:空间均匀的磁场被限制在圆柱体内,磁感
强度方向平行柱轴,如长直螺线管内部的场。
磁场随时间变化,且设dB/dt=C >0,求圆柱
内外的感生电场。
则感生电场具有柱对称分布
Bt
此 E i 特点:同心圆环上各点大小相同,方向
磁通量 的变化
感应电流的 磁场方向
感应电流 的方向
电动势 的方向
➢ 楞次定律的另一种表述:
“感应电流的效果总是反抗引起感应电流的原因”
“原因”即磁通变化的原因,“效果”即感应电流的 场
大学普通物理学经典课件——电磁感应.ppt
B
R
E R
B r
E
E
E
r<R
B
R
B dS 0 S
H
L
dl
I
涡旋电场: E dl d B ds
L
dt S
一 位移电流
S2
S1
-+ -+
-+
L -+ I
-
dD dt
+ +
I
-
jc -
-
D
+
+ jc
+
B
AI
例 半经为R,相距 l(l R) 的圆形空气平板电容器,两端
L dI RI
dt
Idt LIdI RI2dt
2r R
l K
t Idt 1 LI 2 t RI 2dt
0
2
0
自感线圈磁能
电
电源反 回路电
源 作 功
抗自感 电动势 作的功
阻所放
出的焦 耳热
Wm
1 2
LI 2
自感线圈磁能
Wm
1 LI 2 2
I
L
L n2V , B nI
如图所示。设直导线中的电流强度为I,导线ab 长为L,a端到直导线的距离为d,求导线ab中的
动生电动势,并判断哪端电势较高。
a
《大学物理下教学课件》电磁感应课件
答案与解析
2.【答案】法拉第电磁感应定律:当磁场发生变化时 ,会在导体中产生电动势。楞次定律:闭合电路中感 应电流的方向总是阻碍引起感应电流的磁通量的变化 。
1.【答案】电磁感应是指当磁场发生变化时,会在导 体中产生电动势,从而产生电流的现象。基本原理是 英国物理学家迈克尔·法拉第发现的法拉第电磁感应 定律,即变化的磁场会产生电场,从而在导体中产生 电动势。
答案与解析
5.【答案】实验步骤
将线圈连接到电流计 上。
准备一个线圈、一个 磁铁和一个电流计。
答案与解析
1
将磁铁快速插入线圈中,观察电流计的读数变化。
2
将磁铁缓慢插入线圈中,观察电流计的读数变化。
3
根据观察到的电流计读数变化,可以验证法拉第 电磁感应定律。
THANK YOU
感谢聆听
Байду номын сангаас
02
01
03
电磁感应实验装置
包括磁场线圈、导轨、滑线电刷、测量仪表等。
电源
提供稳定的直流电源或可调交流电源。
测量仪表
电流表、电压表、功率表等。
实验步骤与注意事项
实验步骤 1. 连接实验设备,确保电源连接正确,测量仪表调整至零位。
2. 打开电源,调整磁场线圈的电流,观察感应电动势的变化。
实验步骤与注意事项
《大学物理下教学课件》电磁 感应课件
目
CONTENCT
录
• 引言 • 电磁感应的基本原理 • 电磁感应的应用 • 实验:电磁感应现象的观察 • 习题与解答
01
引言
课程简介
课程名称
《大学物理下教学课件》
适用对象
大学物理专业学生
教学目标
通过学习电磁感应,使学生掌握电磁感应的基本原理、 定律及其应用。
电磁感应优秀课件
自感系数
电磁感应
对于一个任意的回路
L
d dt
d dI
dI dt
L
L
dI dt
L dΨ Ψ dI I
自感(系数)的物理意义:
① L dΨ Ψ dI I
在数值上等于回路中通过单位电流时, 通过自身回路所包围面积的磁通链数。
电磁感应
②
L
d
dt
d( LI ) L dI I dL
解: r R E涡 • dl L
B
•
dS
t
S
分布。 E
L E涡dl
S
B dS t
dB
R L E
d
t
E r
0
B E
E涡
2r
dB dt
r 2
E涡
r 2
dB dt
方向:逆时针
电磁感应
r R
L E涡 •
dl
S'
B t
•
dS
在圆柱体外,由于
l H • dl NI
H 2r NI
H NI 2r
I
R2 R1
B NI
2r
d
B
•
dS
NI
hdr
2r
h
r dr
电磁感应
d
B
•
dS
NI
hdr
2r
d
NIh 2
R2
R1
dr r
NIh ln( R2 )
2
R1
N N 2Ih ln( R2 )
2
R1
L
N 2h
ln(
R2
)
I 2
R1
电磁感应
大学物理-第7章 电磁感应(课堂PPT)
• 自感及自感电动势 • 互感及互感电动势 • 麦克斯韦方程组
❖ 感生电动势
2020/4/26
4
难点
❖ 对电磁感应电动势方向的判定 ❖ 对涡旋电场和位移电流的理解 ❖ 对各种感应电动势的计算 ❖ 对自感和互感相关问题的计算 ❖ 对麦克斯韦方程组物理意义的理解
2020/4/26
5
7.1问题的提出
question
第七章 电磁感应 电磁场理论基础
2020/4/26
1
第七章 问题的提出
❖ 风力发电的原理是什么? ❖ 电场和磁场是单独存在的吗?它们之间有
没有什么关联?
2020/4/26
2
风车发电
本章提纲
7.1 电磁感应现象 法拉第电磁感应 定律
7.1.1 电磁感应现象 7.1.2 法拉第电磁感应定律 7.2 动生电动势 感生电动势 7.2.1 动生电动势 7.2.2 感生电动势 涡旋电场 7.3 自感和互感 磁场的能量 7.3.1 自感现象 自感系数 7.3.2 互感现象 互感系数 7.3.3 磁场能量
上第一台直流发电机示意图
2020/4/26
10
conclusion
两个实验→两个结论:
(1)如果一个闭合回路保持静止,只要穿过 这个回路的磁通量变化时,就会产生感应 电流;(感生电动势)
(2)如果磁场不变,但导体在磁场中运动并
切割磁感线,也会产生感应电动势。(动
生电动势 )
2020/4/26
11
7.1.2 法拉第电磁感应定律(Faraday law of electromagnetic induction)
演唱者美妙的歌声通过麦 克风的传播可以扩大许 多,让一个大厅的观众都 得到欣赏。比较小的声音 经过麦克风就可以扩大许 多,这是什么原因呢?
大学物理电磁学第十章电磁感应PPT课件
dI在圆心处产生的磁场
16
dB20R dI120 dR
由于整个带电园盘旋转,在圆心产生的B为
BR2d R1
B 1 20( R2R 1)
穿过导体小环的磁通
R2
Bd 1 2 S 0( R 2R 1)r2
r R1
R
导体小环中的感生电动势
d d t1 20 (R 2R 1)r2d d t
本质 :能量守恒定律在电磁感应现象上的具体体现
影响感生电流的因素 dm i
6
相对运动
dt R
B
切割磁力线
磁通量m变化
m变化的数量和方向 m变化的快慢
I感
I
•
v
感生电流
3. 电动势
Q
-Q
7
(1)电源
++ ++
仅靠静电力不能维持稳恒电流。
+ +
+ +
维持稳恒电流需要非静电力。
++ ++
F非
____________
r nˆ
B
o
d0
x
13
这是一个磁场非均匀且
随时间变化的题目。
h
r nˆ
1、求通过矩形线圈磁通 o
B
dBd cso s2 0rIbdx rx
d0
x
d d 0 0 a 2 a 2Bc do s sd d 0 0 a 2 a 22 0Ibx2 x h d 2 x
0Ibln 4
例1 有一水平的无限长直导线,线中通有交变电流 12
II0cost,导线距地面高为 h,D点在通电导线的
大学物理第15章电磁感应 ppt课件
解:建坐标如图。在距a点 l处取 dl,
r 其旋转半径为 。
d v i B (v v B B ) dl rB vB cld Bo slins
Bsin2ldl
z B
r
b dl
L
vB
i di Bsi2n0Lldl
l
a
a b
BL2 sin20
2
方向从 a b
2020/10/28
R
m
交流电
ω
o
en
o
' B
iR
2020/10/28
[例2] 直导线通交流电,置于磁导率为 的介质中,求:与其共面的N
匝矩形回路中的感应电动势。
已知 I I0sint ,其中I0 和 是大于零的常数。
L
解:设当I 0时,电流方向如图
设回路L方向如图 建坐标系Ox如图
I
dS l
在 任 N 意 坐2 N 标 处N 0取lIS s一B 面i n 元d S t dsl n N dS d B a d NddS a 2Ixldx
dt
磁通匝数(磁链) NΦ
(2)若闭合回路的电阻为 R ,感应电流为
Ii
1 R
dΦ dt
q
t2 Idt
t1
R 1Φ Φ 12dΦ R 1(Φ 1Φ 2)
2020/10/28
说明: 应用定律中的约定处理 i 的方向
1)先选定一回路的绕行方向:电动势 方向与绕行方向一致时为正;
2)当磁力线方向与绕行方向成右手螺 旋关系时,磁通量为正。
第 15 章 电磁感应
2020/10/28
本章主要内容
§15.1 Faraday电磁感应定律 §15.2 动生电动势 §15.3 感生电动势和感生电场 §15.4 互感 §15.5 自感 §15.6 磁场的能量
大学物理电磁感应(PPT课件)
i
k
dΦ dt
在国际单位制中:k = 1
法拉第电磁感应定律
式中负号表示感应电动势方向与磁通量变化的关系。
注: 若回路是 N 匝密绕线圈
-N d - d(N) - d
dt
dt
dt
NΦ
磁通链数
二、电磁感应规律 2. 楞次定律 闭合回路中感应电流的磁场总是要反抗引起
L A O B
εi
d
dt
1 BL2 dθ 1 BL2ω
2
dt 2
<
0
动生电动势方向:A O O端电势高
例17.5 在空间均匀的磁场B Bz中,长为L的导
线ab绕z轴以 匀速旋转,导线ab与z轴夹角为
求:导线ab中的电动势。
解:建坐标,在坐标l 处取dl
B
该段导线运动速度垂直纸面向内
dΦ
1 R (Φ1
Φ2 )
q只与磁通量的改变量有关,与磁通量改变快慢无关。
例17.1 设有长方形回路放置在稳恒磁场中,ab边可以 左右滑动,如图磁场方向与回路平面垂直,设导体以
速度 v 向右运动,求回路上感应电动势的大小及方向。
解:取顺时针为回路绕向, ×c × × × b × ×
ε 设ab = l,da = x,则通过回路 × ×L × × ×v ×
b
结 1、动生电动势只存在于运动的导体上,不运动的 论 导体没有动生电动势。
2、电动势的产生并不要求导体必须构成回路, 构成回路仅是形成电流的必要条件。
3、要产生动生电动势,导体必须切割磁感线。
导线AB在单位时间内 扫过的面积为:
ABBA vl
大学物理课件电磁感应
电磁感应的应用
发电机
利用电磁感应原理将机械能转化为电能的设备。
变压器
通过电磁感应变换交流电压或电流大小的设备。
感应炉
利用电磁感应产生的感应电流进行加热或熔化金属。
感应电流和感应电动势的定的关系,感应电动势是产生感应电流的驱动力。
自感和互感
自感是指导体中的电流变化所产生的感应电动势,互感是指两个或者多个线 圈之间电流变化所产生的感应电动势。
电磁感应的实验
楞次定律实验
通过观察磁感线、导体和电流的相 互关系,验证电磁感应的规律。
法拉第电磁感应定律实验
利用变化的磁场和线圈,观察感应 电流的产生。
变压器实验
通过改变线圈的匝数和电流大小, 研究变压器的工作原理。
电磁感应的问题与解答
1 为什么变压器能改变电压?
变压器利用互感作用,通过改变线圈的匝数比例,实现对电压的改变。
2 如何提高感应电流的大小?
增大磁通量变化率、增加导体长度、减小导体电阻等方法都可以提高感应电流的大小。
3 为什么感应电流会引起感应电动势?
根据法拉第电磁感应定律,当导体中的磁通量发生变化时,会引起感应电动势,使感应 电流产生。
大学物理课件电磁感应
本课件将介绍电磁感应的概念、法拉第电磁感应定律、电磁感应的应用、感 应电流和感应电动势的关系、自感和互感、电磁感应的实验,以及电磁感应 的一些常见问题与解答。
电磁感应的概念
电磁感应是指当导体中的磁通量发生变化时,会在导体中产生感应电流或感 应电动势的现象。
法拉第电磁感应定律
法拉第电磁感应定律表明,当导体中的磁通量发生变化时,感应电动势的大 小与磁通量的变化率成正比。
大学物理电磁学ppt完整版
05 电磁感应现象和 规律
法拉第电磁感应定律内容
01
法拉第电磁感应定律指出,当一个回路中的磁通量发生
变化时,会在回路中产生感应电动势。
02
感应电动势的大小与磁通量的变化率成正比,即e=-
dΦ/dt,其中e为感应电动势,Φ为磁通量,t为时间。
03
法拉第电磁感应定律是电磁学的基本定律之一,揭示了
电磁感应现象的本质和规律。
01
变化的电场和磁场相互激发,形成电磁波。
电磁波传播方式
02
电磁波在真空中以光速传播,不需要介质。
电磁波传播特性
03
电磁波具有横波特性,电场和磁场振动方向相互垂直,且与传
播方向垂直。
电磁波谱及其在各领域应用
电磁波谱
按频率从低到高可分为无线电波、微波、红外线、可见光、紫外线、 X射线和伽马射线等。
无线电波
处于静电平衡状态的导体具有静电屏蔽效应,即外部电场 对导体内部无影响。这种效应在电磁屏蔽、静电防护等方 面有重要应用。
03 稳恒电流与电路 基础知识
稳恒电流条件及特点
稳恒电流条件
电路中各处电荷分布不随时间变化,即达到动态平衡状态。
稳恒电流特点
电流大小和方向均不随时间变化,呈现稳定的流动状态。
欧姆定律与非线性元件分析
技术应用
激光在科研、工业、医疗等领域有着广泛的应用,如激 光测距、激光雷达、激光切割、激光焊接、激光打印、 激光治疗等。随着科技的不断发展,激光的应用领域还 将不断扩大。
THANKS
感谢观看
激光原理及技术应用
激光原理
激光是一种特殊的光源,具有单色性、方向性和相干性 三大特点。激光的产生需要满足粒子数反转和光放大两 个基本条件。在激光器中,通过泵浦源提供能量,使工 作物质中的粒子被激发到高能级,形成粒子数反转分布。 当有一束光通过工作物质时,与激发态粒子相互作用, 产生受激辐射,发出与入射光相同的光子,实现光放大。 通过反射镜的反馈作用,使得光在激光器内来回反射, 不断被放大,最终从输出镜射出形成激光。
大学物理课件电磁感应
小结:tΦd d -=ε适用于一切产生感应电动势的回路;适用于切割磁力线的导体;⎰⋅⨯=l B vd )(ε⎰⋅∂∂-=S S tBd ε普遍的情况下:导体回路在变化磁场中运动——既有感生电动势,又有动生电动势。
⎰⎰⋅⨯+⋅∂∂-=S LlB v S t B d )(d ε适用变化的磁场中的固定回路。
例.如图,若忽略线框中的自感电动势,并设开始时滑动边与对边重合,试求任意时刻t 在矩形线框内的感应电动势,并讨论的方向。
i εi εrrd 0()etI t I λ-=bavrox x解:取顺时针方向为线框回路的正方向。
建坐标系如图,t 时刻,线框的磁通量:⎰⋅=SS B t Φ d )(r x r Ib a a d ⎰+=πμ20ab a vt I t+=-ln2e 00πμλ由法拉第电磁感应定律:tΦi d d -=εtt a b a v I λλπμ--⋅+=e )1(ln 200rrd 0()etI t I λ-=bavxxro(1) 动生电动势:lB v εLd ⋅⨯=⎰)(动方向:逆时针⎰+=ba a r rIv d πμ20t ab a v I λπμ-⋅+=e ln 200(2) 感生电动势:⎰⋅∂∂-=S t B d 感εrI B tπμλ200-=e r vt e r I t b a a d λπλμ-+⎰=200t te a b a v I λλπμ-+=ln 200方向:顺时针总感应电动势ti et ab a v I λλπμε--+=)1(ln 2001>t λ顺时针1<t λ逆时针感动εεε+=iilN ni B μμ==NBS N Φ==ψVn iL 2μψ==几何条件介质固有的性质、电惯性解:i lS N 2μ=例1.求长直密绕螺线管的自感系数,已知。
μ,,,N S l ilS μ设通电流i ,ilSl N 22μ=例2.计算同轴电缆单位长度的自感。
设电流由内筒流入,外筒流回。
大学物理电磁感应课件全篇
由上述关系可知,一个自感线圈截成相等的两部分 后,每一部分的自感均小于原线圈自感的二分之一.
在无磁漏的情况下可以证明 M L.1L2 .
在考虑磁漏的情况下 M K L1L2 ,K≤1称为耦合 系数.
§11-5 磁场能量
11.5.1 自感磁能
自感为L的线圈与电源接通,线圈中的电流i将要由 零增大至恒定值I.这一电流变化在线圈中所产生的 自感电动势与电流的方向相反,起着阻碍电流增大 的作用.
f (e)v B
f的方向从b指向a.
图10.4 动生电动势
在洛仑兹力作用下,自由电子有向下的定向漂 移运动.如果导轨是导体,在回路中将产生沿abcd方 向的电流;如果导轨是绝缘体,则洛仑兹力将使自 由电子在a端积累,使a端带负电而b端带正电.在ab 棒上产生自上而下的静电场.静电场对电子的作用力 从a指向b,与电子所受洛仑兹力方向相反.当静电力 与洛仑兹力达到平衡时,ab间的电势差达到稳定值, b端电势比a端电势高.
图10.12 互感现象
在两线圈的形状、相互位置保持不变时,根据毕
奥—萨伐尔定律,由电流I1产生的空间各点磁感应 强度B1均与I1成正比.因而B1穿过另一线圈(2)的磁通 链Ψ21也与电流I1成正比.即
21 M21I1
同理
12 M12I2
式中M21和M12是两个比例系数.实验与理论均证明 M21=M12,故用M表示,称为两线圈的互感系数, 简称互感.
两个有互感耦合的线圈串联后等效于一个自感线圈, 但其等效自感系数不等于原来两线圈的自感系数之 和.见图10.14,其中图10.14(a)的联接方式叫顺接, 其联接后的等效自感L为
L L1 L2 2M
图10.14 自感线圈的串联
大学物理电磁学第十章电磁感应.ppt
第10章 电磁感应
本章研究变化的电磁场的基 本规律,从产生磁通的方式和磁 通变化的方式入手,总结感应电 动势的各种表达式。要求会熟练 计算电动势和磁场能量。
2
第10章 电磁感应
一、电磁感应基本定律 二、动生电动势 三、感生电动势 四、自感和互感 五、磁场能量
3
电磁感应
Electromagnetic induction
4. 法拉第电磁感应定律
9
数学表式:
i
dN dt
d dt
N
(N: 磁链,全磁通)
Note: d d B• dS d BcosdS
的变化 i 动生电动势(S或变化) 感生电动势( B变化)
•切忌出现如下错误:
d 10
dt
d B dS B dS
dt dt
dt
电动势的“方向”是电源内从负极到正
____________
____________
电源-提供非静电力的装置。
F静
电源的作用:
使流向低电位的正 电荷回到高电位,维持 两极板的恒定电势差。 (干电池、蓄电池等)
+ + + + + +
+ + + + + +
电 源
F非
F静
____________
____________
(2)电源电动势
把单位正电荷从负极经过
(R2
R1)
r2
d
dt
例3 两个半径分别为r和R的同轴圆形线圈,相 17
距x,且R>>r, x>>R ,若大线圈通有电流I而小线
圈沿x轴方向以速率v运动, 求x=NR 时小线圈中
电磁感应课件ppt
用于判断电流方向与磁场方向的关系。
右手定则在交流电中的应用
用于判断电流方向与磁场方向的关系,但需注意交流电的矢量性。
楞次定律与右手定则的实例
楞次定律的实例
当一个条形磁铁插入线圈时,线 圈中会产生抵抗磁通变化的感应 电流,从而阻碍磁铁的插入。
右手定则的实例
当直流电通过一个线圈时,用右 手握住线圈,拇指指向电流方向 ,四指指向即为磁场方向。
法拉第电磁感应定律
说明电磁感应现象,磁场可由 电场感应产生,而电场也可由
磁场感应产生。
麦克斯韦方程组的实例
静电场的电势分布
通过电势分布来描述静电场的性质和规律 。
恒定电流的磁场
描述恒定电流产生的磁场分布和性质,如 磁感线的形状和方向。
电磁感应现象
如发电机的工作原理,磁场感应电场,电 场感应磁场等。
• 安培环路定律:$ • abla \times \overset{\longrightarrow}{E} = -\frac{\partial \overset{\longrightarrow}{B}}{\partial t}$ • 法拉第电磁感应定律:$ • abla \times \overset{\longrightarrow}{B} = \mu_{0}\overset{\longrightarrow}{J} + \frac{\partial
VS
详细描述
将一根导线置于磁场中,并通以交变电流 ,根据右手定则,用右手握住导线,让大 拇指指向电流方向,四指的弯曲方向就是 磁场方向。在实验中,可以通过观察电流 表指针的偏转方向来验证右手定则。
谢谢您的聆听
THANKS
楞次定律的表述
感应电流的方向总是要使感应电动势反抗 引起感应电流的原磁场的磁通变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
感应电动势的非静电力实质?
Q
=- d (m )
v d (B
v S)
v (S
v dB
r B
v dS )
dt
dt
dt
dt
研究表明对应于磁通变化的两种方式,其产生电 动势的非静电力的实质是不同的。
一是磁场不变,回路的一部分相对磁场运动或回 路面积发生变化致使回路中磁通量变化而产生的感 应电动势,谓之动生电动势。
(3)磁通计
如果闭合回路为纯电阻R 时,则回路中的感应电流为
I 1 d
R R dt
那么t1 ~ t2 时间内通过导线上任一截面的感应电量大 小为
q
t2 Idt 1
t1
R
2 1
d
1 R
(1
2)
式中 1,2 是t1 , t2 时刻回路中的磁通。
上式说明,在一段时间内,通过导线截面的电量 与这段时间内导线所围磁通的增量成正比。
如何定量计算感应电动势的大小?
(2)法拉第电磁感应定律
不论何种原因使通过回路面积的磁通量发 生变化时,回路中产生的感应电动势的大小 与磁通量对时间的变化率成正比。即
K d
dt
①在SI制中
K=1
②式中的负号是楞次定律的数学表示 ③若为N 匝线圈,则 N d d
dt dt
式中 N 称作磁通匝链数,简称磁链。
图10.7
解 在ab上取一线元dl,它与长直导线的距离为r,
则该处磁场方向垂直向里,大小为B 0I .v×B的
方向与dl方向之间夹角为
,且 dl
2
drr
.
2
sin
ab
b
(vv
r B)
r dl
a
b 0Iv sin 90o cos( )dl
a 2 r
2
b 0Iv sin dl rb 0Iv dr
a 2 r
ra 2 r
0Iv ln d l sin
2
d
因为εab<0
所以 电动势方向从b指向a.当θ=90°时
ab
0 Iv 2
ln
d l d
11.2.2 感生电动势
麦克斯韦提出:变化的磁场在其周围空间激发一种 新的电场,这种电场称为感生电场或涡旋电场,用 Er表示.
涡旋电场与静电场的共同之处在于,它们都是一种 客观存在的物质,它们对电荷都有作用力.涡旋电场 与静电场的不同之处在于,涡旋电场不是由电荷激 发,而是由变化的磁场激发的.r B)ຫໍສະໝຸດ dr la
一般而言,在任意的稳恒磁场中,一个任意形状的
导线L(闭合的或不闭合的)在运动或发生形变时,各
个线元dl的速度v的大小和方向都可能不同.这时,
在整个线圈L中所产生的动生电动势为
L (vv
rr B) dl
例 电流为I的长直载流导线 近旁有一与之共面的导体ab, 长为l.设导体的a端与长导线 相距为d,ab延长线与长导线 的夹角为θ,如图10.7所示.导 体ab以匀速度 v沿电流方向平 移.试求ab上的感应电动势.
1、电磁感应现象:
两种情况:
S
N
N
v
S
回路某一部分相对磁场运 动或回路发生形变使回路 中磁通量变化而产生电流
回路静止而磁场变化 使回路中磁通量变化 而产生电流
2、法拉第电磁感应定律 (1)感应电动势的概念
①从全电路欧姆定律出发——电路中有电流就必定 有电动势,故感应电流应源于感应电动势。
②从电磁感应本身来说:电磁感应直接激励的是感 应电动势。
*:如果能测出导线中的感应电量,且回路中的电 阻为已知时,那么由上面公式,即可算出回路所围 面积内的磁通的变化量——磁通计就是根据这个原 理设计的。
11.1.2 楞次定律
1、定律内容:
闭合回路中产生的感应电流的方向,总是使得这 感应电流在回路中所产生的磁通去补偿(或反抗) 引起感应电流的磁通的变化。
v f
(e)vv
r B
f的方向从b指向a.
图10.4 动生电动势
在洛仑兹力作用下,自由电子有向下的定向漂 移运动.如果导轨是导体,在回路中将产生沿abcd方 向的电流;如果导轨是绝缘体,则洛仑兹力将使自 由电子在a端积累,使a端带负电而b端带正电.在ab 棒上产生自上而下的静电场.静电场对电子的作用力 从a指向b,与电子所受洛仑兹力方向相反.当静电力 与洛仑兹力达到平衡时,ab间的电势差达到稳定值, b端电势比a端电势高.
前面所讨论的都是不随时间变化的稳恒场
即稳恒静电止流电-荷--激-发激稳发恒静磁电场场,稳恒电场 我们现将研究随时间变化的磁场,电场,以进
一步揭示电与磁的联系。
注意区分均 稳匀 恒- -- -
不随时间变化, 不随位置变化,
非稳恒 场量是时间的函数 非均匀-场量是位置的函数
§11-1 电磁感应定律
11.1.1 法拉第电磁感应定律
*:注意其“补偿”的是磁通的变化,而不是磁通 本身。
2、感应电流方向的判断
确定外磁场方向→分析磁通量的增减△ m→
运用“反抗磁通量的变化”判断感应电流磁场的 方向→运用右手缧旋法则确定感应电流方向(即 感应电动势方向)。
原 感
S
NN
v
S
3、楞次定律是能量守恒定律在电磁感应现象上的 具体体现。
§11-2 动生电动势与感生电动势
另一种情况是回路面积不变,因磁场变化使回路 中磁通量变化而产生的感应电动势,谓之感生电动势。
11.2.1 动生电动势
动生电动势的产生,可以用洛仑兹力来解释. 如图10.4所示,长为l的导体棒与导轨所构成的矩 形回路abcd平放在纸面内,均匀磁场B垂直向里. 当导体ab以速度v沿导轨向右滑动时,导体棒内的 自由电子也以速度v随之向右运动.电子受到的洛仑 兹力为
B
ÑL Er dl S t dS
这就是法拉第电磁感应定律的积分形式.负号表示Er 与 B 构成左手螺旋关系,是楞次定律的数学表示.
Ñ 它的电力线是闭合的,即 L Er dl 0 .涡旋电场不
是保守场,而在回路中产生感生电动势的非静电力 正是这一涡旋电场力,即
ÑL Er
dl
d dt
因为对l围成的面积S,磁通量
ÑS B dS
所以感生电动势可表示为
ÑL Er
dl
d dt
S
B
dS
当闭合回路l不动时,可以把对时间的微商和对曲面 S的积分两个运算的顺序交换,得
由此可见,这段运动导体棒相当于一个电源, 它的非静电力就是洛仑兹力.
电动势定义为把单位正电荷从负极通过电源内部移
到正极的过程中,非静电力做的功.在动生电动势的
情形中,作用在单位正电荷上的非静电力Ek是洛仑
兹力,即
ur Ek
v f
vv
r B
e
所以,动生电动势
ab
ur r Ek dl
b
(vv