Mathematica矩阵的各种运算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mathematica可进行矩阵的各种运算,如矩阵求逆、矩阵的转置、矩阵与向量的乘法等.下面列出主要的运算.记k为常数,u,v为向量,A,B为矩阵
k*A------------------------常数乘矩阵
k+u-----------------------向量u的每一个元素加上k
u+v----------------------向量的对应元素相加
向量的内积
u*v-----------------------向量的对应元素相乘
矩阵乘向量
向量乘矩阵
矩阵乘矩阵
Transpose[A]-----------------求矩阵A的转置阵
Inverse[A]--------------------求矩阵A的逆矩阵
Det[A]-------------------------求矩阵A的行列式
Eigenvalues[A]-----------------求数字阵A的特征值
Eigentvectors[A]---------------求数字阵A的特征向量
LinearSolve[A,v]---------------求解线性方程组Ax=v
Chop[%n]-------------------舍去第n个输出中无实际意义小量
矩阵可以左乘以向量或右乘以向量, Mathematica也不区分“行”,或“列”向量,自动进行可能的运算.
例:
In[1]:=A={{a,b},{c,d}}; v={x,y};
In[2]:= (A左乘以v)
Out[2]={ax+by,cx+dy}
In[3]:= (A右乘以v)
Out[3]={ax+cy,bx+dy}
In[4]:=Inverse[A]
Out[4]=
如果矩阵的元素是近似数,则求出的逆矩阵也是近似的。
In[5]:=B={{,},{,}}; Inverse[B]
Out[5]=
In[6]:=%.B
Out[6]=
结果与单位矩阵有微小误差,用函数Chop消去无实际意义小量
In[7]:=Chop[%]
Out[7]={{1.,0},{0,1.}}
前面已介绍了用Solve解线性方程组,但对于矩阵形式Ax=v的线性方程组,用 LinearSolve[A,v]更方便.
In[8]:=M={{2,1},{1,4}}; LinearSolve[M,{a,b}]
有些符号打不出来,你也可以参见()
Out[8]=