高等数学习题解析辅导讲义 考研数学

合集下载

考研高数讲义新高等数学下册辅导讲义——第十二章

考研高数讲义新高等数学下册辅导讲义——第十二章
n1
1 n2
【答案】(1)收敛;( 2)当 0 a 1 时,发散;当 a 1时,收敛;
(3)收敛;
( 4)发散;
( 5)收敛
1
1
【例 2】(97 一)设 a1
2 , an 1
(an 2
)( n 1,2, ) ,证明 an
(
Ⅰ)
lim
n
an 存在;(Ⅱ)级数
( an a n 1 n 1
1)收敛 .
【解析】(1)用单调有界必收敛证明; ( 2)用比较审敛法证明
1
具体的: 若存在 N Z ,对一切 n N , (1) un
,则 un 发
n
n1
散; (2) un
1 np
(p
1) ,则 un 收敛。
n1
【例 1】 判断下列级数的敛散性
( 1)
n
13
n 1n 5
(2)
n
11
1 an
(a
0, a
1)
6n
( 3)
n 1 7n 5n
1
(4)
n 1 n2 n 1
( 5) ln 1
第一节 常数项级数的概念和性质
学习笔记:
一、常数项级数的收敛与发散
给 定 一 个 数 列 u1, u2 , u3 , ,un , 将 各 项 依 次 相 加 , 简 记 为
un ,即 u n u1 u 2 u3
n1
n1
un
,称该式为无穷级数,
其 中 第 n 项 un 叫 做 级 数 的 一 般 项 , 级 数 的 前 n 项 和
【例】 (1 1) (1 1)
0 ,但 1 1 1 1 发散。
【例 2】判断级数的敛散性:

考研高数讲义新高等数学上册辅导讲义——第三章上课资料

考研高数讲义新高等数学上册辅导讲义——第三章上课资料

第三章 中值定理与导数的应用⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫必要条件求解函数的性态,充分渐近线凹凸性,拐点单调性,极值,最值—求极限—洛必达法则—应用数,求极限证明,确定无穷小的阶泰勒中值定理柯西中值定理拉格朗日中值定理罗尔定理中值定理第一节 微分中值定理极值:设)(x f 在0x 的某一邻域)(0x U 内有定义,若对一切)(0x U x ∈有)()(0x f x f ≥))()((0x f x f ≤,则称)(x f 在0x 取得极小(大)值,称0x 是)(x f 的极小(大)值点,极小值和极大值统称为极值,极小值点和极大值点统称为极值点。

费马引理:设)(x f 在0x x =取极值,又)(0x f '存在,则0)(0='x f 。

在0x x =取极值的必要条件:可导的极值点导数必为零。

驻点:若0)(='a f ,则称a x =为)(x f 的驻点。

可导的极值点一定为驻点,但是驻点不一定为极值点。

定理1(罗尔定理): 条件:①)(x f 在],[b a 上连续; ②在),(b a 可导; ③)()(b f a f = 结论:一定存在),(b a ∈ξ, 使得0)(='ξf 。

几何意义:设AB 是 (1)定义在],[b a 上的光滑曲线)(x f y =;(2)若除端点外处处有不垂直于x 轴的切线; (3)两端点纵坐标相等 则在AB 上至少存在一点C ,其切线是水平的.即两端点同高的连续曲线内至少有一点的切线是水平的.(如图所示)【例1】(96二)设)(x f 在区间[]b a ,上具有二阶导数,且0)()(==b f a f ,0)()(>''b f a f ,证明:存在),(b a ∈ξ和),(b a ∈η使0)(=ξf 及0)(=''ηf .定理2(拉格朗日中值定理): 条件: ①)(x f 在],[b a 上连续; ②在),(b a 可导 结论:一定存在),(b a c ∈,使得)()()(c f ab a f b f '=--几何意义:设AB 是 (1)定义在],[b a 上的光滑曲线 )(x f y =;(2)若除端点外处处有不垂直于x 轴的切线; 则在),(b a 内至少有一点处的切线平行于弦AB .与罗尔定理的关系:罗尔定理是拉格朗日中值定理的特殊情况。

高等数学考研讲义

高等数学考研讲义

高等数学考研讲义高等数学是考研数学中的重要组成部分,对于很多考生来说,是需要重点攻克的难关。

在这份讲义中,我们将系统地梳理高等数学的重要知识点,并通过典型例题帮助大家加深理解。

一、函数与极限函数是高等数学的基础概念之一。

函数的定义、性质(奇偶性、单调性、周期性、有界性等)需要熟练掌握。

极限是高等数学中的核心概念。

极限的定义、性质以及计算方法是重点。

1、极限的定义极限的ε δ 定义是理解极限概念的关键,但在实际计算中用得较少。

而对于一些简单函数的极限,可以通过直观的分析来理解。

2、极限的性质极限具有唯一性、局部有界性、局部保号性等性质。

3、极限的计算极限的计算方法有多种,包括四则运算、等价无穷小替换、洛必达法则、泰勒公式等。

例如,计算极限:lim(x→0) (sin x / x)我们可以利用等价无穷小替换,当x → 0 时,sin x ~ x ,所以该极限的值为 1 。

再如,计算极限:lim(x→∞)((x + 1) /(x 1) )^x这是一个1^∞ 型的极限,可以使用重要极限公式或者化为指数形式后用洛必达法则求解。

二、导数与微分导数反映了函数的变化率。

1、导数的定义函数在某一点的导数定义为该点处的切线斜率。

2、导数的计算基本初等函数的导数公式要牢记,同时掌握求导法则(四则运算、复合函数求导法则等)。

例如,求函数 y = sin(2x + 1) 的导数令 u = 2x + 1 ,则 y = sin u ,根据复合函数求导法则,y' = cos u u' = 2cos(2x + 1) 。

微分是函数增量的线性主部。

三、中值定理与导数的应用中值定理是高等数学中的重要定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理。

1、罗尔定理如果函数 f(x) 满足:在闭区间 a, b 上连续;在开区间(a, b) 内可导;f(a) = f(b) ,那么在(a, b) 内至少存在一点ξ ,使得 f'(ξ) = 0 。

考研高数讲义新高等数学下册辅导讲义——第十章上课资料

考研高数讲义新高等数学下册辅导讲义——第十章上课资料

第十章多重积分第一节 二重积分的概念与性质一、问题的提出 1、曲顶柱体的体积1lim (,)ni i i i V f λξησ→==∆∑。

2、平面薄片的质量设有一平面薄片,占有xoy 面上的闭区域D ,在点(,)x y 处的面密度为(,)x y ρ,假定(,)x y ρ在D 上连续,平面薄片的质量为多少?1lim (,)ni i i i M λρξησ→==∆∑。

二、二重积分的概念定义:设(,)f x y 是有界闭区域D 上的有界函数,将闭区域D 任意分成n 个小闭区域1σ∆,2,σ∆,n σ∆,其中i σ∆表示第i 个小闭区域,也表示它的面积,在每个i σ∆上任取一点(,)i i ξη,作乘积(,)i i i f ξησ∆,(1,2,,)i n =,并作和1(,)ni i i i f ξησ=∆∑,如果当各小闭区域的直径中的最大值λ趋近于零时,该和式的极限存在,则称此极限为函数(,)f x y在闭区域D 上的二重积分,记为(,)Df x y d σ⎰⎰,即01(,)lim (,)ni i i i Df x y d f λσξησ→==∆∑⎰⎰。

说明:(1)任意性(2)可积(3)(,)f x y 在D 上可积的充分条件三、二重积分的几何意义和物理意义 1、二重积分的几何意义:(1)当(,)0f x y >时,表示柱体的体积。

(2)当(,)0f x y <时,表示柱体的体积的负值。

(3)(,)Df x y d σ⎰⎰表示以D 为底,以曲面(,)f x y 为顶的曲顶柱体的体积的代数和。

2、二重积分的物理意义:当(,)0f x y ≥时,(,)Df x y d σ⎰⎰表示面密度为(,)f x y 的薄板D 的质量。

四、二重积分的性质1、线性性质:(,)(,)DDkf x y d k f x y d σσ=⎰⎰⎰⎰[(,)(,)](,)(,)DDDf x yg x y d f x y d g x y d σσσ±=±⎰⎰⎰⎰⎰⎰2、对区域的可加性:12()D D D =+12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰3、若σ为D 的面积,1DDd d σσσ=⋅=⎰⎰⎰⎰4、比较性质:(1)若函数(,)f x y 与(,)g x y 在区域D 上可积,且有(,)(,)f x y g x y ≤在区域D 上成立,则有(,)(,)DDf x y dg x y d σσ≤⎰⎰⎰⎰(2)若函数(,)f x y 与(,)g x y 在区域D 上可积,且有(,)(,)f x y g x y ≤,但(,)f x y 不恒等于(,)g x y ,则有(,)(,)D Df x y dg x y d σσ<⎰⎰⎰⎰特殊地(,)(,)DDf x y d f x y d σσ≤⎰⎰⎰⎰(|(,)|(,)|(,)|f x y f x y f x y -≤≤)【例1】设平面区域D 由0,0x y ==,12x y +=,1x y +=围成,若31[ln()]DI x y dxdy =+⎰⎰,32()DI x y dxdy =+⎰⎰,33[sin()]DI x y dxdy =+⎰⎰,则123,,I I I 之间的关系为( )(A)123I I I << (B)321I I I <<(C)132I I I << (D)312I I I <<【答案】(C)【例2】设222211()x y I x y d σ+≤=+⎰⎰,212x y I xyd σ+≤=⎰⎰,2231()x y I x y d σ+≤=+⎰⎰则( )(A ) 123I I I << (B ) 231I I I << (C )312I I I << (D ) 321I I I <<【答案】(B )5、积分估值定理: 设M 、m 分别是(,)f x y 在闭区域D 上的最大值和最小值,σ为D 的面积,则(,)Dm f x y d M σσσ≤≤⎰⎰(二重积分估值不等式)6、积分中值定理:设函数(,)f x y 在闭区域D 上连续,σ为D 的面积,则在D 上至少存在一点(,)ξη使得(,)(,)Df x y d f σξησ=⋅⎰⎰(二重积分中值定理)【例3】设积分区域D 是以原点为中心,半径为r 的圆域,则22201lim cos()x y r De x y d r σπ+→+=⎰⎰ (A)2r π (B)1 (C)21rπ (D)0【答案】(B)第二节 二重积分的计算一、直角坐标系下计算二重积分D 为平面上有界闭区域,(,)f x y 在D 上连续。

考研高数讲义新高等数学上册辅导讲义——第二章上课资料

考研高数讲义新高等数学上册辅导讲义——第二章上课资料

第二章导数与微分第一节导数概念一、导数的定义 定义:若极限()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆存在,则称函数()y f x =在点0x 处可导,此极限值称为函数()y f x =在点0x 处的导数。

记为: ()0f x '、0x x y ='、0x x dy dx =、()0x x df x dx = (或极限()()lim 000x x f x f x x x →--存在也可)()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆单侧导数:左导数:()()lim 000x f x x f x x-∆→+∆-=∆()()lim 000x x f x f x x x -→--存在,则称左导数存在,记为:()0f x -'。

右导数:()()lim 000x f x x f x x+∆→+∆-=∆()()lim 000x x f x f x x x +→--存在,则称右导数存在,记为:()0f x +'。

【例1】(89一)已知()32f '=,则【例2】(87二)设()f x 在x a =处可导,则(A )()f a '. (B )()2f a '.(C )0. (D )()2f a '.【例3】(89二)设()()()()12f x x x x x n =+++,则()0f '= .(C)可导,但导数不连续. (D)可导,但导数连续.处的(A)左、右导数都存在. (B)左导数存在,但右导数不存在.(C)左导数不存在,但右导数存在.(D)左、右导数都不存在.【例7】(96二)设函数()f x在区间(,)-δδ内有定是()f x的(A)间断点. (B)连续而不可导的点. (C)可导的点,且()00f'=.(D)可导的点,且()00f'≠.【例8】(90三)设函数()f x 对任意的x 均满足等式()()1f x af x +=,且有()0f b '=,其中a 、b 为非零常数,则(A )()f x 在1x =处不可导.(B )()f x 在1x =处可导,且()1f a '=.(C )()f x 在1x =处可导,且()1f b '=.(D )()f x 在1x =处可导,()1f ab '=.二、导数的几何意义和物理意义导数的几何意义: 切线的斜率为:()()tan lim 00x x f x f x k x x →-==-α, ()()00f x f x x x --导数的物理意义:某变量对时间t 的变化率,常见的有速度和加速度。

考研--高数讲义

考研--高数讲义

第一讲 极限与连续一、重要的概念 1.极限定义(1)数列极限定义—(N -ε)A a n n =∞→lim :若对任意的0>ε,总存在0≥N ,当N n >时,有ε<-||A a n 成立,称A 为数列}{n a 的极限,记A a n n =∞→lim 。

(2)自变量趋于无穷时函数极限的定义—(δε-)A x f ax =→)(lim :若对任意的0>ε,总存在0>δ,当δ<-<||0a x 时,有ε<-|)(|A x f 成立,称A 为函数)(x f 当a x →时的极限,记A x f ax =→)(lim 。

(3)自变量趋于有限值时函数极限的定义—(X -ε)A x f x =∞→)(lim :若对任意的0>ε,总存在0>X ,当Xx >||时,有ε<-|)(|A x f 成立,称A 为函数)(x f 当∞→x 时的极限,记A x f x =∞→)(lim 。

(4)左右极限的定义—)0(-a f :若对任意的0>ε,总存在0>δ,当δ<-<x a 0时,有ε<-|)(|A x f 成立,称A 为函数)(x f 在a x =处的左极限,记)0()(lim -==-→a f A x f a x 。

)0(+a f :若对任意的0>ε,总存在0>δ,当δ<-<a x 0时,有ε<-|)(|A x f 成立,称A 为函数)(x f 在ax =处的右极限,记)0()(lim +==+→a f A x f a x 。

注解:)(lim x f ax →存在)0(),0(+-⇔a f a f 都存在且相等。

2.无穷小(1)无穷小的定义—以零为极限的函数称为无穷小。

(2)无穷小的层次关系及等价无穷小的定义设0,0→→βα,若0lim=αβ,称β是α的高阶无穷小,记为)(αβo =;若),0(lim ∞≠=k αβ,称β与α为同阶无穷小,记为)(αβO =,特别地,若1lim =αβ,称β与α为等价无穷小,记为αβ~。

考研数学大纲全考点教材(高数上)习题解析

考研数学大纲全考点教材(高数上)习题解析

第一章 极限与连续140114400011440002sin 1lim .1:2sin 2sin lim lim lim 01112sin 2sin lim lim lim 11x x xx x x x x x xx x x x x x x e x x e e x e x I x x e e e x e x I x x e e +++---→→→→→→→⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭⎛⎫++ ⎪=+=+=+ ⎪ ⎪++⎝⎭⎛⎫++ ⎪=+=+= ⎪- ⎪++⎝⎭右左.求解(按课上所讲,容易看出需要分左右极限处理);211;1.I -=⇒= ()()()()()()121111ln cos 12lim.1sin2sin 1ln cos 1cos 1sin 1cos 1224:limlimlimlim.1sincoscossin222222x x x x x x xx x x x x I xxxxππππππππππ→→→→→-⎡⎤⎣⎦----⎡⎤---⎣⎦=====----.求解()()()()()()()4242200032222200001cos ln 1tan 3lim.sin 1ln 1tan ln 1tan tan tan ln 1tan 112:lim lim lim 2211tan tan ln 1tan 1tan 111132lim lim lim lim .22224,x x x x x x x x x x x xx x x x x x x x x I x x x x x x x x x x x x x →→→→→→→→--+⎡⎤⎣⎦-+⎡⎤⎣⎦-+-+-+==*=--+-=+=+=.求解另外().*对也可以直接使用洛必达法则101ln 22000124lim .2:1,11221ln 21lim 1lim lim ln 2,2222xxx A x x x x x I e x A I e x xx →∞→→→⎛⎫+ ⎪⎝⎭=⎛⎫+-=-===== ⎪⎝⎭.求解这是型,直接有其中所以()002215lim sin cos .:1,,21sin 2cos 1lim sin cos 1lim lim 2cos 2sin 2,.xx A x t t x x I e t t A x t t x x t I e →∞∞→∞→→⎛⎫+ ⎪⎝⎭=+-⎛⎫=+-==-= ⎪⎝⎭=.求解这是型直接有其中所以()()()()()()()()()()220222222200ln 16lim2,.551,0,20,1,22211122:lim lim 2,1510,2,1,,.22x x x x ax bx x A a b B a b C a b D a b a x b x o x x x o x ax bx I x x a b a b A →→→+-+===-==-==-==-⎛⎫--++-+-+ ⎪⎝⎭===⎛⎫⇒-=-+===- ⎪⎝⎭.设则____解故选()()()()()10007,lim 2,,.111:,lim lim ,1100,1,0,,lim 1120x x t t t t t t tt a b ax b e x a b x a bt e a t I b e x t t t x a bt e t a I be bt e b +++→+∞→→+→⎡⎤+-=⎢⎥⎣⎦→∞⎧+-⎡⎤⎪⎛⎫==+-=⎨ ⎪⎢⎥⎝⎭⎣⎦⎪⎩+-→→∞=⎡⎤=++=+=⎣⎦.已知实数满足求的值解考虑倒带换则带则此时分子()(否则上述极限为)故此时上述极限为使用洛必达法则有, 1.b =则()()()()22200022200080,____.1arcsin cos :limlim lim 11arcsin cos 11cos 1arcsin 11lim lim lim 22222x x x x x x x x kx x k x x x x I x kx kx x x x x x x kx kx kx k αββα→→→→→→→===+-===+--==+=⋅+.已知当时,与则解11331.244k k k ⋅==⇒={}()()()111122111111111342,2,3,,lim .134211:2,,,123343401,2,1111343314,11n n n n n n n n n n n n n n n n n n n n n n n n nx x x n x x x x x x x x x x x x x x x x x n x x x x x xx x x -→∞----++--++===++⨯===>>+++--=-=>>=+++++==+<+=++ 9.设()证明有极限,并求解由知于是;设则故,单调增;有上界1lim lim ,343433lim .1122n n n n n n n n n x x A x A x A A x x A →∞→∞+→∞=++±+=⇒=⇒==++;所以存在;设在两端取极限,(舍负),故()()()()()()()333000311____.sin 123sin 00,1,2,3;2,3,010,lim lim lim 0sin 01,lim lim sin 0x x x x x x x f x xA B C D x x x x x x x f x x x x x x x f x x ππππππ→→→→→-===±±±±±--====⇒=-⎛== 10.函数的可去间断点的个数为无穷多个解:使的点,都是间断点对于这些点使分子不为,故这些点显然是第二类间断点;对考查是可去间断点;对考查21132lim 1cos 1x x x x x πππ→-⎫==⇒= ⎪⎝⎭=-是可去间断点;同理可知也是可去间断点,选(C).第二章 导数与微分()()()()()()()()()()()()()()()()220000200001.,0____.,0,,100lim lim lim lim 000lim lim lim 0..x x x x x x x x f x g x f x x x g x x A B C D x f x f f x f x f x g x f xg x D x x++++---+→→→→-→→→>==≤⎩-'=====-'====设其中是有界函数,则在处极限不存在极限存在但不连续连续但不可导可导解:;选()0其中左导数最后极限为利用了"无穷小与有界变量乘积仍是无穷小".()()()()()()()()()()()()()()()()()()()()()()()1102.1,0,,,____.11111111100:1limlim lim 0,.111.x x t f x x f x af x f b a b A f x x B f x x f a C f x x f b D f x x f abf x f af x af f t f f a af ab D x x tx t →→→'+=='===''====----''=====---=设对任意的满足且其中为非零常数则在处不可导在处可导,且在处可导,且在处可导,且解选()这里第三个等号利用了的换元()()()()()()()01212001cos ,03.,,0,0,0____.:0lim 01110cos cos sin ,11lim lim cos sin ,"x x x x x f x x f x x xx f x x f x f x f x x x x x x x f x x x x x λλλλλλλλλλλ→----→→⎧≠⎪==⎨⎪=⎩''=⇔='⎛⎫'≠==+ ⎪⎝⎭⎛⎫'=+ ⎪⎝⎭设其中是使有意义的实数的导函数在处连续则的取值范围是解的导函数在处连续;时,则根据无穷小乘有界变量仍()()()()()()()()()010000,10,20,2,lim 0;1cos010lim lim lim cos ,",10,1,00;,2lim 0,00,lim 0x x x x x x f x x f x f x f x x x xf f x f f x f λλλλλλλλ→-→→→→→'->->>=-'==='->>=''''>===为无穷小"此极限若存在则即且此时又根据无穷小乘有界变量仍为无穷小"此极限若存在则即且此时综述当时,且达到的目的.()()202024.(),____.sin sin 1cos cos cos 11:,,.11181t t t tt t t tt t t x t e d yy y x dx y t t e t e y t d tdt y y y x e dt e dx e e ==⎧=+==⎨=⎩-+-⋅'⎛⎫'''''===⋅=⋅⇒=-⎪'+++⎝⎭+设由参数方程确定则解则()()()()()25.tan 0,0____.4:tan ,sec 1,02,440,0020,2.y y y x y e x y e x y y e y y y x y x πππ⎛⎫++= ⎪⎝⎭⎛⎫⎛⎫'''++=++⋅+=⋅=- ⎪ ⎪⎝⎭⎝⎭-=--=-曲线在点处的切线方程是解由则故所以在处的切线方程是即()()()()()()()()()()()()()()220200000sin ,06.,0,,,,00.,0:0,0lim lim 0,0;sin00lim lim lim sin 0,00lim lim x x x x x x x x x x f x A x A a b f x x f ax b x f x x f x x f x f x f b A x f x f x f x x x xf x f a f x πππ-+---++→→-→→→+→→⎧<⎪⎪'===⎨⎪+>⎪⎩==⇒====-'====-'==设求常数的值使在处可导,并求解在处可导则在处连续即而且()20lim 0,;0,00.x x ax a xA b a f +→==∀'⇒===是任意常数,()()()()()()()()()()442222227.sin cos ,____.:sin cos sin cos sin cos cos 2,cos 22cos 2.2n nn n f x x x f x f x x x x x x x x n f x x x π=-==-+=-=-⎛⎫⇒=-=-+⎪⎝⎭设则解第三章 微分中值定理与导数的应用()()11.10,.xf x x ⎛⎫=++∞ ⎪⎝⎭证明在内单调增加()()3222.221,1y y x y y xy x y y x x =-+-===设由方程2确定求的极值点.答案:是极小值点.3.,4?:,.44a aa x y πππ==++将长为的铁丝切成两段一段围成正方形,一段围成圆形.问这两段铁丝各长多少时,正方形与圆形的面积之和最小答案圆的周长为正方形的周长为()324.5____.y x x =-曲线的拐点的坐标为解:311122225151515,2244y x x y x x -'''=-=-,由0y ''=,得14,x y ==-,并且1x >时0y ''>,1x <时0y ''<,所以拐点为()1,4-()()()()()()()()()()()()()()5.,,,.22233132f x A f x f x B f x f x C f x f x D f x f x -∞+∞设在内连续其导函数的图形如图则____函数有个极值点,曲线有个拐点函数有个极值点,曲线有个拐点函数有个极值点,曲线有个拐点函数有个极值点,曲线有个拐点()()()()226.____.10123x xy x A B C D +=-曲线3247.,1234x y x+=设求:()渐近线;()函数的增减区间及极值;()函数图像的凹凸区间及拐点;()作出其图形.解:(1)因为3204lim =+x x x →+∞,所以0x = 为铅直渐近线324lim x x x→∞+不存在,所以无水平渐近线 334lim lim 1x x y x x x→∞→∞+==,()324lim lim 0x x x y x x x →∞→∞+-=-= 所以y x = 是斜渐近线(2)323481x y x x '⎛⎫+'==- ⎪⎝⎭,所以()[),0,2,-∞+∞ 为单调增区间,()0,2 单调减区间,所以2x = 是极小值点,极小值为3 (3)4240y x''=>,所以在定义区间均为凹函数,无拐点。

考研高数讲义新高等数学上册辅导讲义——第一章上课资料

考研高数讲义新高等数学上册辅导讲义——第一章上课资料
函数如果lim那么存在常数o使得当函数性质3数列lim函数若lim0则必存在nxoxtxoxtx0则必存在某邻域nxofxod不能判断大小性质4数列与子列的关系若limuja则它的任一子数列也收敛且极限也nt的两个子数列的极限不相等则该数列发散性质5数列极限与函数极限limfx存在limfxn存在且为同一值x反之
零,但不一定等于 0。
函数极限与无穷小的关系定理
lim f ( x) A ( A 为 一 常 数 )
x x0 x
lim ( x) 0
x x0 x
f (x) A ( x) , 且
二、无穷大(量)
如果当 x x0 时,对应的函数值 f ( x) 的绝对值
x
x
| f ( x) |无限增大,则称当
x0 时, f ( x)是无穷
【例 2】(91 三)设数列的通项为:
n2 n ,若n为奇数,
xn
n
则当 n ,xn是( )
1, 若n为偶数,
n
(A)无穷大量 . (C)有界变量 . 【答案】( D)
(B)无穷小量 . (D)无界变量 .
二、无穷小与无穷大的关系
定理: lim f ( x) x x0 x
1 lim
0
x x0 f ( x)
有 限 次的 四 则 运 算 和复合
初等函数
第二节 数列和函数的极限
一、数列极限的定义
数列: un f (n),n N * ,称为整标函数。其函 数值: u1, u2 , , un , 叫做数列(序列)。数列的 每一个数称为项, 第 n项 un称为数列的一般项。 简 记数列为 {un } 数列极限:已给数列 {un }和常数 A,如果对于
三、无穷小的性质 ( 1)有限个无穷小的代数和仍是无穷小。 ( 2)有界函数与无穷小的乘积仍是无穷小

江西省考研数学复习资料高等数学重点章节梳理与习题讲解

江西省考研数学复习资料高等数学重点章节梳理与习题讲解

江西省考研数学复习资料高等数学重点章节梳理与习题讲解高等数学是江西省考研数学科目中的一项重点内容,对于考生来说,深刻理解高等数学的重点章节,并能够灵活应用其中的知识点解决问题,是取得优异成绩的关键。

本文将就江西省考研数学复习资料中高等数学的重点章节进行梳理,并给出相应的习题讲解,帮助考生全面复习和提高成绩。

1. 一元函数微分学一元函数微分学是高等数学的基础,对于江西省考研来说同样非常重要。

在这一章节中,主要掌握函数的极值,导数与函数的关系以及微分的应用等内容。

以下是一些常见的习题讲解:习题1:已知函数f(x)=x^3 - 3x,则其在x=1处的极值是多少?解答:首先求导数f'(x)=3x^2 - 3,然后令f'(x)=0,即3x^2 - 3=0。

解得x=±1。

接着求二阶导数f''(x)=6x,代入x=1得f''(1)=6>0,说明在x=1处函数f(x)取得极小值。

习题2:已知函数y=e^x + e^(-x),求其在x=0处的切线方程。

解答:首先求导数y'=e^x - e^(-x),代入x=0得y'=1-1=0。

所以在x=0处函数y=e^x + e^(-x)的切线斜率为0。

接着求函数在x=0处的函数值y,y=e^0 + e^0=2。

因此,切线方程为y=2。

2. 一元函数积分学一元函数积分学是高等数学中的另一个重要内容,对于江西省考研数学科目同样占有相当的比重。

在这一章节中,需要掌握函数的不定积分,定积分以及应用问题等。

以下是一些常见的习题讲解:习题1:计算定积分∫[0,π] sinx dx。

解答:由于∫sinx dx=-cosx,所以∫[0,π] sinx dx=-cosπ - (-cos0) = -(-1) - (-1) = 2。

习题2:计算不定积分∫(x^2+3x+2)/(x+1) dx。

解答:根据部分分式分解的方法,将被除式拆分成两个部分,即∫(x^2+3x+2)/(x+1) dx = ∫(x+2) dx + ∫1 dx。

考研数学复习教程答案详解1高数部分—--讲义.教材

考研数学复习教程答案详解1高数部分—--讲义.教材

第一篇高等数学第一章函数、极限与连续强化训练(一)一、选择题1.2.提示:参照“例1.1.5”求解。

3.4.解因选项(D)中的 不能保证任意小,故选(D)5.6.7.8.9.10.二、填空题11.提示:由2cos 12sin 2xx =-可得。

12.13.提示:由1 未定式结果可得。

14.15.提示:分子、分母利用等价无穷小代换处理即可。

16.17.提示:先指数对数化,再利用洛必达法则。

18.19.解因()0000lim lim lim lim lim 1x x x x x x f x x -----→→→→→-=====- ()0lim lim xx x f x ae a --→→==, 而()0f a =,故由()f x 在 0x =处连续可知,1a =-。

20.提示:先求极限(1∞型)得到()f x 的表达式,再求函数的连续区间。

三、 解答题21.(1)(2)提示:利用皮亚诺型余项泰勒公式处理12sin ,sin x x。

(3)(4)(5)提示:先指数对数化,再用洛必达法则。

(6)提示:请参照“例1.2.14(3)”求解。

22.23.解 由题设极限等式条件得21()ln(cos )201()lim ,limln(cos )1f x x xxx x f x e e x x x+→→=+=, 即 2201()1()limln(cos )lim ln(1cos 1)1x x f x f x x x x x x x→→+=+-+=, 利用等价无穷小代换,得201()lim(cos 1)1x f x x x x →-+=,即230cos 1()lim()1x x f x x x→-+=, 故 30()3lim 2x f x x →=。

24.提示:先指数对数化,再由导数定义可得。

25.26.28.提示:利用皮亚诺型余项泰勒公式求解。

30.31.第二章一元函数微分学强化训练(二)一、选择题1.2.3.4.5.解 设曲线在0x x =处与x 轴相切,则 ()()000,0,y x y x '==即300200,30,x ax b x a ⎧++=⎪⎨+=⎪⎩由第二个方程得0x =A ).6.7.8.9.提示:由方程确定的隐函数求导法则求解即可。

2024考研数学李林高等数学辅导讲义解析

2024考研数学李林高等数学辅导讲义解析

2024考研数学李林高等数学辅导讲义解析一、概述2024年考研数学高等数学一直是考研学子备战考试的焦点。

为帮助考生更好地掌握数学知识,提高解题能力,李林老师精心编写了高等数学辅导讲义。

本文将对李林老师的辅导讲义进行解析,帮助考生更好地理解和应用这些知识。

二、讲义内容概述李林老师的高等数学辅导讲义分为多个章节,涵盖了高等数学的各个知识点,包括微积分、多元函数、级数、常微分方程等内容。

讲义内容扎实,逻辑严谨,既包括基础知识的讲解,也包括典型例题的分析和解答,适合考生系统复习和巩固知识点。

三、微积分部分1.极限与连续讲义对极限与连续的概念进行了详细介绍,从基本概念到极限存在的条件,再到连续性的定义和性质,帮助考生理解和掌握这一重要知识点。

讲义中还包括了大量例题分析,帮助考生加深对极限与连续的理解,提高解题能力。

2.微分与微分中值定理针对微分的定义和微分中值定理等内容,讲义中提供了详细的公式推导和典型例题讲解,帮助考生掌握微分的概念和性质,熟练运用微分中值定理解决实际问题。

3.不定积分与定积分在不定积分与定积分部分,讲义重点讲解了换元积分法、分部积分法等解题技巧,并结合典型例题进行深入分析,帮助考生掌握积分的计算方法和技巧,提高解题效率。

四、多元函数部分1.多元函数的概念与性质讲义对多元函数的概念、多元函数的极限、连续性、偏导数等内容进行了系统介绍,并结合实际问题进行讲解,帮助考生理解多元函数的重要性及其在实际问题中的应用。

2.方向导数与梯度在方向导数与梯度的部分,讲义对方向导数的定义、计算方法和梯度的概念进行了详细讲解,并提供了大量例题进行分析,帮助考生掌握这一知识点的计算方法和应用技巧。

五、级数部分1.数项级数的收敛性与敛散性讲义对数项级数的收敛性与敛散性进行了全面介绍,包括正项级数的收敛判别法、一般项级数的审敛法等内容,帮助考生系统掌握级数收敛性的判别方法,提高解题能力。

2.幂级数与傅立叶级数在幂级数与傅立叶级数部分,讲义介绍了幂级数的收敛半径、函数展开成幂级数的方法,以及傅立叶级数的基本概念和性质,帮助考生理解级数在实际问题中的应用。

2024版考研数学高等数学辅导讲义

2024版考研数学高等数学辅导讲义

2024版考研数学高等数学辅导讲义2024年版考研数学高等数学辅导讲义我们来了解一下高等数学的基本概念。

高等数学包括了微积分和数学分析两个部分,其中微积分是高等数学的核心内容。

微积分主要研究函数的极限、导数和积分等概念及其相互关系。

函数的极限是微积分的基础,通过研究函数在某一点的极限,我们可以得到函数在该点的导数。

导数是函数在某一点的变化率,它具有重要的几何和物理意义。

积分是导数的逆运算,它可以求得函数的面积、体积等重要的几何量。

在高等数学的学习过程中,我们需要掌握一些重要的解题技巧。

首先是函数的性质和图像的分析。

通过对函数的性质和图像的分析,我们可以更好地理解函数的行为和特点,从而为解题提供便利。

其次是函数的导数和积分的运算法则。

掌握了导数和积分的运算法则,我们可以更快地计算函数的导数和积分。

另外,我们还需要注意一些常见的函数和定理,如三角函数、指数函数、对数函数以及洛必达法则、泰勒展开等。

除了基本概念和解题技巧,我们还需要了解一些高等数学中的重要定理和公式。

例如,微积分中的中值定理、费马定理、罗尔定理等,它们是解题过程中常用的工具。

另外,我们还需要掌握一些常见的数列和级数的性质和判别法则,如等比数列、等差数列、收敛级数、发散级数等。

在高等数学的学习中,我们还需要进行大量的习题训练。

通过解题训练,我们可以巩固所学的知识,提高解题能力。

在解题过程中,我们要注重思路和方法的灵活运用,遇到难题时要善于思考,多角度思考问题,找到解题的突破口。

总结起来,2024版考研数学高等数学辅导讲义是一本全面系统地介绍了高等数学的基本概念、解题技巧和重要定理的教材。

通过学习该讲义,考研学生可以全面掌握高等数学的知识,提高解题能力,为考研数学的复习打下坚实的基础。

希望大家能够认真学习,刻苦钻研,取得优异的成绩。

考研高数数学讲义

考研高数数学讲义

第一篇 高等数学第一章 函数、极限与连续一、大纲内容与要求【大纲内容】函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:0sin lim 1x x x →=,1lim 1e xx x →∞⎛⎫+= ⎪⎝⎭.函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质. 【大纲要求】1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系. 2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、知识网络Nε-”定义X-”定义δ-”定义数列整体有界函数局部有界两个重要的极限(数一、三)∞∞型、型∞-∞型、0∞⋅1∞、0∞、00型初等函数的连续性分段函数连续性的判定闭区间上连续函数的性质——左右极限都存在第二类——左右极限中至少有一个不存在跳跃间断点可去间断点关系极限连续性函数零点定理最值定理有界性、单调性、奇偶性、周期性1lim1nnen→∞⎛⎫+=⎪⎝⎭sinlim1xxx→=单调有界数列有极限夹逼定理三、基本内容(一)函数1.定义 设x 与y 是两个变量,D 是实数集的某个子集,若对于D 中的每个值x ,变量y 按照一定的法则有一个确定的值y 与之对应,称变量y 为变量x 的函数,记作()y f x =.数集D 称为函数的定义域,由函数对应法则或实际问题的要求来确定,相应的函数值的全体称为函数的值域,对应法则和定义域是函数的两个要素. 2.几种特性(1)有界性 设函数()y f x =在数集X 上有定义,若存在正数M ,使得对于每一个x X ∈,都有()f x M ≤成立,称()y f x =在X 上有界,否则,即这样的M 不存在,称()f x 在X 上无界.所以函数在X 上无界,是对任何0M >,总存在0x X ∈,使0()f x M >.(2)单调性 设函数()y f x =在区间I 上有定义,若对于I 上任意两点1x 与2x ,当12x x <时,均有12()()f x f x < [或12()()f x f x >],称函数()f x 在区间I 上单调增加(或单调减少).如果其中的“<”(或“>”)改为“≤”(或“≥”),称函数()f x 在I 上单调不减(或单调不增). (3)奇偶性 设函数()y f x =的定义域为(,)(0)a a a ->,若对于任一x ∈(,)a a -,都有()()f x f x -=,称()f x 为偶函数,如常数2,,cos C x x 等,其图像关于y 轴对称;若对于任一(,),x a a ∈-都有()()f x f x -=-,称()f x 为奇函数,如3,,sin x x x 等,其图像关于坐标原点对称.(4)周期性 对函数()y f x =,若存在常数0T >,使得对于定义域内的每一个,x x T +仍在定义域内,且有()()f x T f x +=,称函数()y f x =为周期函数,T 称为()f x 的周期. 3.复合函数、反函数、隐函数与分段函数(1)基本初等函数与初等函数基本初等函数 常数函数;幂函数;指数函数;对数函数;三角函数;反三角函数.初等函数 由基本初等函数经过有限次的加、减、乘、除和复合所得到且能用一个解析式表示的函数.(2)复合函数 设函数()y f u =的定义域为f D ,函数()u x ϕ=的值域为z ϕ,若集合f D 与z ϕ的交集非空,称函数[()]y f x ϕ=为函数()y f u =与()u x ϕ=复合而成的复合函数,u 为中间变量.对复合函数,重要的是会把它分解,即知道它是由哪些“简单”函数复合而成的.(3)反函数 设函数()y f x =的值域为f z ,定义域为f D ,则对于每一个f y z ∈必存在f x D ∈使()y f x =.若把y 作为自变量,x 作为因变量,便得一个函数()x y ϕ=,且[]()f y ϕ y =,称()x y ϕ=为()y f x =的反函数,但习惯上把()y f x =的反函数记作1()y f x -=.y()f x =与其反函数1()y f x -=的图像是关于直线y x =对称的.(4)隐函数 设有方程(,)0F x y =,若当x 在某区间内取任一值,便总有满足该方程唯一的值y 存在时,称由方程(,)0F x y =在上述区间内确定了一个隐函数()y y x =.(5)分段函数 若一个函数在其定义域的不同部分要用不同的式子表示其对应规律,如(),()(),x a x bf x x c x dϕψ<<⎧=⎨<<⎩称为分段函数. (二)极限 1.概念(1)定义1 设()y f x =在0x 的一个去心邻域010001(,)(,)x x x x δδ-+内有定义,若对于任意给定的0ε>,总存在0δ>,使得当上述去心邻域内任意x 满足00x x δ<-<时,不等式()f x a ε-<恒成立,则称常数a 为函数()f x 在0x x →的极限,记作0lim ().x x f x a →=或()f x a → (当0x x →).直观地说,即当x 无限趋近0x 时,函数()f x 无限趋近常数a .定义2 设()f x 在区域0x E >>内有定义,若对于任意给定的0ε>,存在0M >,使得当x M E >≥时,不等式()f x a ε-<恒成立,则称a 为当x →∞时函数()f x 的极限,记作lim ().x f x a →∞=直观地说,即当x 无限增大时,函数无限趋近常数a .(2)左极限与右极限 在定义1中,若把“00x x δ<-<”改为“00x x x δ-<<”,即自变量x 从0x 的左侧趋近于0x ,则称a 为函数()f x 当0x x →时的左极限,记作0lim ()(0);x x f x a f x a -→=-=或 相应把定义1中的“00x x δ<-<”改为00x x x δ<<+, a 便是函数()f x 当0x x →时的右极限,记作00lim ()(0).x x f x a f x a +→=+=或 极限存在的充分必要条件:当0x x →时,函数()f x 的极限存在的充分必要条件为其左、右极限存在并相等,即00(0)(0)f x f x -=+.在定义2中,把x M >改为x M >,便得到x →+∞时函数()f x 的极限的定义,即lim (),x f x a →+∞=以及把“x M >”改为x M <-,便得到lim ()x f x a →-∞=的定义.注 把数列{}n x 看作整数函数即()n x f n =(1,2,)n =,则数列极限的概念lim n n x a →∞=便是()f x 在x →+∞时极限的特殊情况:自变量x 取正整数.即对于任意给定的0ε>,总存在正整数N ,使当n N >时,不等式n x a ε-<恒成立,则称常数a 为数列{}n x 的极限,也称此数列收敛于a .2.性质(1)唯一性 在自变量的一个变化过程中(0x x →或x →∞),函数的极限存在,则此极限唯一. (2)有界性 若0lim ()[lim ()]x x x f x a f x a →→∞==或,则存在0x 的某去心邻域(或0x M >>),()f x 在此邻域(或0x M >>)内有界.(3)保号性 设0)lim ()x x f x a →→∞=(x ,0()lim ()x x x g x b →→∞=,若在0x 的某去心邻域(或0x M >>)内恒有()()f x g x <(或()()f x g x ≤),则a b ≤.3.极限存在准则夹逼准则:若在x 的某去心邻域(或0x M >>)内恒有()()()g x f x h x ≤≤, 且000()()()lim ()lim ()lim ().x x x x x x x x x g x h x a f x a →→→→∞→∞→∞===,则单调有界准则:单调有界数列必收敛. 4.两个重要极限(1)0sin lim 1.x x x→= (2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭或10lim xx x e →=(1+). 5.极限的运算设在自变量的同一变化过程中(0x x →或x →∞),lim (),lim ()f x a g x b ==,则有(1)和差:[]lim ()()lim ()lim ()f x g x f x g x a b ±=±=±.(2)积:[]lim ()()lim ()lim ()f x g x f x g x a b ⋅=⋅=⋅.特别地,lim ()lim ()cf x c f x =ca = (其中c 为常数),[][]lim ()lim ()k kk f x f x a ==(其中k 为正整数).(3)商:若lim ()0g x b =≠,则()lim ()lim()lim ()f x f x ag x g x b==. (4)复合函数的运算法则:已知00lim (),lim ()u u x x f u A x u ϕ→→==⇒在有意义的情况下,lim [()]x x f x ϕ→.A =6.无穷小量与无穷大量(1)无穷小量的概念 若0()lim ()0x x x x α→→∞=,称()x α为0x x →(x →∞)时的无穷小,即极限为0的变量为无穷小量,以下简称无穷小.常数0也是无穷小.(2)无穷小量的性质 0lim ()x x f x a →→∞=(x )的充分必要条件为()()f x a x α=+,其中()x α为0x x →(x →∞)的无穷小.(3)无穷小量的运算1°加法:有限多个无穷小的和仍为无穷小; 2°乘法:有限多个无穷小的积仍为无穷小; 3°有界变量与无穷小的乘积亦为无穷小. (4)无穷小量的比较设()x α与()x β都是在同一个自变量变化过程中的无穷小,且()lim ()x x αβ也是在此变化过程中的极限:若()lim0()x x αβ=,称()x α是比()x β高阶的无穷小,记作()(())x o x αβ=; 若()lim()x x αβ=∞,称()x α是比()x β低阶的无穷小; 若()lim0()x c x αβ=≠(其中c 为常数),称()x α与()x β是同阶的无穷小;特别()lim1()x x αβ=,称()x α与()x β是等价无穷小,记作()~()x x αβ. 在求极限过程中,有时利用等价无穷小代换可以化简计算,所以应掌握几个常见的等价无穷小:当0x →时,sin ~~tan x x x ,ln(1)~x x +,1~x e x -11~x n ,211cos ~2x x -等等. (5)无穷大量的概念 设函数()f x 在0x 的某一去心邻域内有定义(或x 大于某一正数时有定义),如果对于任意给定的正数M (不论它多么大),总存在正数δ (或正数X ),只要x 适合不等式00x x δ<-<(或x X >),对应的函数值()f x 总满足不等式()f x M >,则称函数()f x 为当0x x →(或x →∞)时的无穷大量,以下简称无穷大.(6)无穷小量与无穷大量之间的关系在自变量的同一变化过程中,若()f x 为无穷大,则其倒数1()f x 必为无穷小;反之,若()f x 为无穷小,且()0f x ≠,则其倒数1()f x 必为无穷大. 7.洛必达(L’Hospital)法则(1)00⎛⎫⎪⎝⎭型 (),()f x g x 在点0x 的某去心邻域内可导,()0g x '≠,若lim ()x x f x →=0lim ()x x g x →0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (2)∞⎛⎫⎪∞⎝⎭型 (),()f x g x在点0x 的某去心邻域内可导,()0g x '≠,若 0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim ()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (三)连续1.函数的连续性(1)连续性的概念 设函数()y f x =在点0x 某邻域内有定义,若当自变量增量x ∆=0x x -0→时,对应的函数值增量00()()0y f x x f x ∆=+∆-→,即0lim 0x y ∆→∆=,或0lim ()()x x f x f x →=,则称函数()f x 在0x 处连续.若00lim ()()x x f x f x -→=,称函数()f x 在0x 处左连续,00lim ()()x x f x f x +→=,称函数()f x 在0x 处右连续. 显然,函数()f x 在0x 处连续的充分必要条件是()f x 在0x 处既左连续又右连续.若函数()f x 在区间(,)a b 内每一处都连续,称()f x 在开区间(,)a b 内连续,也称()f x 是(,)a b 内的连续函数;若()f x 在(,)a b 内连续,又在a 点处右连续,b 点处左连续,则称()f x 在闭区间[,]a b 上连续.(2)运算1°加法 有限多个在同一点连续的函数之和,仍在该点处连续; 2°乘法 有限多个在同一点连续的函数之积,仍在该点处连续; 3°除法 若()f x 与()g x 均在点0x 处连续,且0()0g x ≠,则()()f xg x 在点0x 处连续. (3)复合函数与初等函数的连续性设函数()u x ϕ=在点0x x =处连续,且00()x u ϕ=,若函数()y f u =在点0u u =处连续,则复合函数[()]y f x ϕ=在点0x x =处连续.一切初等函数在其定义区间上都是连续的. 2.函数的间断点(1)函数间断点的概念 设函数()f x 在点0x 的某去心邻域内有定义.在此前提下,如果函数()f x 有下列三种情形之一:1°在0x x =没有定义;2°虽在0x x =有定义,但()0lim x x f x →不存在;3°虽在0x x =有定义,且()0lim x x f x →存在,但()00lim (),x x f x f x →≠则函数()f x 在点0x 不连续,而点0x 称为()f x 的不连续点或间断点.(2)函数间断点的类型 设0x x =为函数()y f x =的间断点,若0lim ()x x f x -→与0lim ()x x f x +→都存在,称0x 为函数()f x 的第一类间断点,其他均称为第二类间断点.在第一类间断点中,左、右极限相等的称为可去间断点,不相等的称为跳跃间断点;无穷间断点与振荡间断点都是第二类间断点.3.闭区间上连续函数的性质(1)最大值和最小值定理 闭区间上的连续函数一定有最大值与最小值. (2)有界性定理 闭区间上的连续函数在该闭区间上一定有界.(3)介值定理 设函数()f x 在闭区[,]a b 上连续,且()()f a f b ≠,则对于()f a 与()f b 之间的任一常数C ,必在开区间(,)a b 内至少存在一点ξ,使得()f C ξ=.推论 在闭区间上连续的函数必取得介于最大值M 与最小值m 之间的任何值.(4)零点定理 设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号,则在开区间(,)a b 内至少存在函数()f x 的一个零点,即至少有一点(,)a b ξ∈使()0f ξ=.四、典型例题[例1.1]设函数11()01x f x x ⎧≤⎪=⎨>⎪⎩,,,,则[()]f f x =.[例1.2]已知2()sin ,[()]1,f x x f x x ϕ==-则()________x ϕ=,其定义域为 .[例1.3]设函数2sin ()(ln )(tan )x f x x x e =,则()f x 是( ).(A)偶函数.(B)无界函数.(C)周期函数.(D)单调函数.[例1.4]设对任意(,)∈-∞+∞x 有(1)()+=-f x f x ,则()f x 一定是( ).(A)奇函数.(B)偶函数.(C)周期函数.(D)单调函数.[例1.5]设函数21tan(3)()(1)(2)(3)x x f x x x x --=---,则()f x 在下列哪个区间内有界().(A)(0,1).(B)(1,2). (C)(2,3). (D)(3,4).[例1.6]设数列n x 与n y ,满足lim 0n n n x y →∞=,则下列叙述正确的是().(A)若n x 发散,则n y 必发散. (B)若n x 无界,则n y 必有界. (C)若n x 有界,则n y 必为无穷小量. (D)若1nx 为无穷小量,则n y 必为无穷小量. [例1.7]下列极限正确的是().(A)sin lim1x xxπ→=.(B)1lim sin1x x x→∞⋅=. (C)11limsin 1x x x→∞=. (D)sin lim1x xx→∞=.[例1.8]设n n x a y ≤≤,且lim()0n n n y x →∞-=,a 为常数,则数列{}n x 和{}n y ( ).(A)都收敛于a .(B)都收敛,但不一定收敛于a . (C)可能收敛,也可能发散.(D)都发散.[例1.9]设n n n x a y ≤≤,且lim()0n n n y x →∞-=,{}n x ,{}n y 和{}n a 均为数列,则lim n n a →∞( ).(A)存在且等于0.(B)存在但不一定等于0. (C)一定不存在. (D)不一定存在.[例1.10]22212lim 12n n n n n n n n n →∞⎛⎫+++=⎪++++++⎝⎭.[例1.11]30arctan sin limx x xx →-=.[例1.12]求极限limx [例1.13]求下列极限:2011lim()tan x x x x→-. [例1.14]设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a =.[例1.15]21ln(1)0lim(cos )+→x x x =.[例1.16]当0x →时,211()sin f x x x=是( ). (A)无穷小量.(B)无穷大量.(C)有界量非无穷小量.(D)无界但非无穷大量.[例1.17]设220ln(1)()lim 2x x ax bx x →+-+=,则().(A)1a =,52b =-. (B)0a =,2b =-. (C)0a =,52b =-. (D)1a =,2b =-. [例1.18]设当0x →时,()()21cos ln 1x x-+是比sin n x x 高阶的无穷小,而sin n x x 是比2(1)x e -高阶的无穷小,则正整数n 等于().(A)1. (B)2. (C)3. (D)4.[例1.19]当0x →时,求常数,c k 使得(I)3sin sin3~;kx x cx -~kcx .[例1.20]设110x =,1n x +=(1,2,n =),试证数列{}n x 极限存在,并求此极限.[例1.21]下列各式中正确的是( ).(A)01lim (1)1xx x+→+=. (B)01lim(1)e xx x+→+=. (C)1lim(1)e xx x→∞-=. (D)1lim(1)e xx x-→∞+=-.[例1.22]求极限21lim ln(1)→∞⎡⎤-+⎢⎥⎣⎦x x x x.[例1.23]()f x 在0x 点连续是()f x 在0x 点连续的( ). (A)充分条件,但不是必要条件. (B)必要条件,但不是充分条件.(C)充分必要条件.(D)既不是充分条件,也不是必要条件.[例1.24]函数1()tan ()x x e e xf x x e e +=⎛⎫- ⎪⎝⎭在[],ππ-上的第一类间断点是x =().(A)0.(B)1.(C)2π-. (D)2π. [例1.25]设函数21()lim 1nn xf x x →∞+=+,讨论函数()f x 的间断点,其结论为().(A)不存在间断点. (B)存在间断点1x =. (C)存在间断点0x =. (D)存在间断点1x =-.[例1.26]设2(1)()lim1n n xf x nx →∞-=+,则()f x 的间断点为x =.[例1.27]设函数()tan 21e ,0arcsin 2e ,0xx x x f x a x ⎧->⎪⎪=⎨⎪⎪≤⎩在0x =处连续,则________a =.[例1.28]设)(x f 在(+∞∞-,)内有定义,且lim ()x f x a →∞=,1,0()0,0f x g x x x ⎧⎛⎫≠⎪ ⎪=⎝⎭⎨⎪=⎩,则( ).(A)0=x 必是)(x g 的第一类间断点. (B)0=x 必是)(x g 的第二类间断点.(C)0=x 必是)(x g 的连续点.(D))(x g 在点0=x 处的连续性与a 的取值有关.[例1.29]设函数()f x 在[,]a b 上连续,且12n a x x x b <<<<<,证明:存在(,)a b ξ∈,使得12()()()()n f x f x f x f nξ+++=.[例1.30]设()f x 是[0,1]上非负连续函数,且(0)(1)0.f f ==证明:对任意实数r (01r <<),必存在0[0,1]x ∈,使得0[0,1]x r +∈,且00()()f x f x r =+.[例1.31]设()f x 在[0,1]上连续,(0)(1)f f =且 . (1)证明:存在[0,1],ξ∈使1()()2f f ξξ=+.(2)证明:存在[0,1],η∈使1()()f f nηη=+(2n >且n 为正整数).五、经典习题1.求⎪⎪⎭⎫⎝⎛-+→x x x sin 1)1ln(1lim 0. 【答案】212.求xx e e xx x sin lim tan 0--→.【答案】23.已知()01lim2=--++-∞→b ax x xx ,则___________,==b a .【答案】21,1--. 4.极限()()2lim xx xx a x b →∞⎡⎤=⎢⎥-+⎣⎦( )(A) 1.(B) e . (C) a be-.(D) b ae-.【答案】(C).5.求22201cos lim sin x x x x →⎛⎫- ⎪⎝⎭. 【答案】43. 6.求1402sin lim 1x x x e x x e →⎛⎫+ ⎪+ ⎪ ⎪+⎝⎭. 【答案】1. 7.若()3sin 6lim0x x xf x x →+=,则()26limx f x x →+为( ).(A)0.(B)6.(C)36.(D)∞.【答案】(C).8.1lim1cosn n→∞++=________. 【答案】π.9.设103x <<,1n x +=(n =1,2,…),证明数列{}n x 的极限存在,并求此极限.【答案】证明{}n x 单调增加且有上界,3lim 2n n x →∞=. 10.设函数()f x 在0x =的某邻域内具有一阶连续导数,且()00f ≠,()00f '≠,若()()()20af h bf h f +-在0h →时是比h 高阶的无穷小,试确定,a b 的值.【答案】2,1a b ==-.11.设函数()f x 在(,)-∞+∞内连续,且[()]f f x x =,证明在(,)-∞+∞内至少有一个0x 满足00()f x x =.【答案】利用反证法.第二章 一元函数微分学导数与微分是一元函数微分学中的两个重要概念,在高等数学中占有重要地位,其内涵丰富,应用广泛,是研究生入学考试的主要内容之一,应深入加以理解,同时应熟练掌握导数的各种计算方法.中值定理与导数的应用在高等数学中占有极为重要的位置,内容多,影响深远,是复习的重点也是难点,而且具有承上启下的作用,应熟练掌握.一、大纲内容与要求【大纲内容】导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 (弧微分;曲率的概念;曲率圆与曲率半径,数学三不要求). 【大纲要求】1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,(了解导数的物理意义,会用导数描述一些物理量,数学一、二要求),理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当''()0f x >时,()f x 的图形是凹的;当''()0f x <时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径(数学一、二要求).二、知识网络三、基本内容(一)导数概念1.导数定义 设函数()y f x =在点0x 的某邻域内有定义,若自变量从0x 变到0x x +∆时,导数的定义左、右导数基本初等函数的导数导数的四则运算 复合函数的导数 反函数的导数隐函数的导数参数方程求导(数一、二)2阶导数n 阶导数 高阶导数导数的概念导数的计算罗尔定理拉格朗日中值定理 柯西中值定理 中值定理应用洛必达法则求极限 研究函数性质及几何应用单调性定理、函数的单调区间 函数的极值、最值曲线的凹凸性及拐点 渐近线、函数作图 边际、弹性经济中的最大值和最小值应用经济应用(数学三要求) 微分概念微分的计算 一阶微分形式不变性微分导数泰勒定理 曲率(数学一、二要求) 费马引理 切线、法线方程函数的增量00()()y f x x f x ∆=+∆-与自变量增量x ∆之比的极限0000()()limlim x x f x x f x yx x→∆→+∆-∆=∆∆存在,则称()y f x =在0x 处可导,此极限值称为()f x 在0x 处的导数,记作0()f x ',或00,x x x x dyy dx=='等.令0x x x =+∆,可得导数的等价定义0000()()()limx x f x f x f x x x →-'=-2.左导数 若000()()lim x f x x f x x -∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的左导数,记作0()f x -'.3.右导数 若000()()lim x f x x f x x+∆→+∆-∆存在,则称此极限值为()f x 在x =0x 处的右导数,记作0()f x +'.4.若函数()f x 在区间(,)a b 内任意点x 处的导数()f x '都存在,则称()f x 在(,)a b 内可导.5.若函数()f x 在(,)a b 内可导,且()f a +'及()f b -'都存在,称()f x 在闭区间[,]a b 上可导. (二)函数可导的条件1.()f x 在x =0x 处可导的必要(非充分)条件是()f x 在x =0x 处连续.2.()f x 在x =0x 处可导的充分与必要条件是0()f x -'与0()f x +'存在且相等. (三)导数的几何意义与物理意义1.设函数()f x 可导,则0()f x '等于曲线y =()f x 在点00(,())x f x 处切线的斜率.曲线y =()f x 在点00(,())x f x 处的切线与法线方程分别是:000()()()y f x f x x x '--=和0001()(),()y f x x x f x -=--'其中0()0f x '≠. 2.设一质点作变速直线运动,若其位移s 随时间t 的变化规律为函数()s s t =,则导数0()s t '表示该质点在时刻0t 的瞬时速度.注 导数的物理意义有多种,如细棒状物质的线密度,电路中的电流强度,转动物体的角速度等.(四)导数的计算1.基本初等函数的导数公式 (1)()0()c c '=为常数(2)1()()x x μμμμ-'=为实数(3)()ln (01)xxa a a a a '=>≠, (4)();x x e e '=(5) 1(log ||)(0,1);ln a x a a x a '=>≠ (6) 1(ln ||);x x'= (7)(sin )cos ;x x '= (8)(cos )sin ;x x '=- (9)2(tan )sec ;x x '= (10)2(cos )csc x x '=-(11)(sec )sec tan ;x x x '= (12)(csc )csc cot ;x x x '=-(13)(arcsin )x '=(14)(arccos )x '=(15)21(arctan );1x x'=+ (16)21(arccot ).1x x-'=+ 2.导数的四则运算法则 设函数(),()u x v x 都可导,则 (1)();u v u v '''±=±(2)()uv u v uv '''=+,特别()cu cu ''=(c 为常数).(3)2(0).u u v uv v v v '''-⎛⎫=≠ ⎪⎝⎭3.复合函数求导法设()u x ϕ=在x 处可导,()y f u =在对应的()u x ϕ=处可导,则复合函数[()]y f x ϕ=在x 处可导,且{[]}()(),f x f u x ϕϕ'''=()即d .y dy dudx du dx=⋅ 4.反函数的导数若()x y ϕ=在某区间内单调、可导,且()0y ϕ'≠,则其反函数()y f x =在对应的区间内也可导,且1()()f x y ϕ'='. 5.隐函数的导数设()y f x =是由方程(,)0F x y =所确定的可导函数,注意到x 是自变量,y 是x 的函数,y 的函数是x 的复合函数,在方程的两边同时对x 求导,可得到一个含有y '的方程,从中解出y '即可.注 y '也可由多元函数微分法中的隐函数求导公式x y F dydx F '=-'得到,这里()y x 是由方程(,)0F x y =确定的函数.6.高阶导数(1) 函数()y f x =导数的导数,称为函数()f x 的二阶导数,即(),y y ''''=记作()y f x ''''=,或2(2)2,d y y dx.一般地,函数()y f x =的n 阶导数为()(1)(),n n y y-'=也可写作()()n n n d y fx dx或.(2)设(),()u x v x 具有n 阶导数,则有()()()[()()]()()n n n au x bv x au x bv x +=+(,a b 为常数);()()1(1)()()()[()()]()()()()()()()().n n n k n k k n n n u x v x u x v x C u x v x C u x v x u x v x --'=+++++7.由参数方程所确定的函数的导数(数学一、二要求)设()y y x =是由参数方程()()()x t t y t ϕαβψ=⎧<<⎨=⎩确定的函数,(1)若()t ϕ和()t ψ都可导,且()0t ϕ'≠,则()()dy t dx t ψϕ'='. (2)若()()t t ϕψ,二阶可导,且()0t ϕ'≠,则223()1()()()()()()()td y t t t t t dx t t t ψψϕψϕϕϕϕ''''''''⎡⎤-=⋅=⎢⎥'''⎣⎦. (五)微分1.微分定义 设函数()y f x =在点x 的某邻域内有定义,若对应于自变量的增量x ∆,函数的增量y ∆可以表示为()y A x o x ∆=∆+∆,其中A 与x ∆无关, ()o x ∆是x ∆的高阶无穷小,则称函数()y f x =在点x 处可微,并把A x ∆称为()f x 在点x 处的微分,记作dy 或()df x ,即dy =A x ∆.2.函数()y f x =在点x 处可微的充分必要条件是()f x 在x 处可导,此时()A f x '=,即有()dy f x dx '=.3.一阶微分形式的不变性 设()y f u =可微,则微分()dy f u du '=,其中u 不论是自变量还是中间变量,以上微分形式保持不变. (六)微分中值定理1.费马(fermat)引理 若()f x 在0x 的某邻域0()U x 内有定义,且在0x 处可导,如果对任意0()x U x ∈,有0()()f x f x ≤(或0()()f x f x ≥),则0()0f x '=.2.罗尔(Rolle)定理 若函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,并且f (a )=f (b ),则在开区间(,)a b 内至少存在一点ξ,使得()0f ξ'=.3.拉格朗日(Lagrange)中值定理 若函数()f x 在闭区间上连续,在开区间(,)a b 内可导,则在开区间(,)a b 内至少存在一点ξ,使得()()()().f b f a f b a ξ'-=-4.柯西(Cauchy)中值定理 若函数()f x 和()g x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()0g x '≠,则在开区间(,)a b 内至少存在一点ξ,使得()()().()()()f b f a fg b g a g ξξ'-='-5.泰勒(Taylor)定理(1)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到1n +阶的导数,则()20000000()()()()()()()()(),2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+其中(1)10()()(),(1)!n n n f R x x x n ξξ++=-+是0x 与x 之间的某个值,此公式称为带有拉格朗日型余项的泰勒公式.(2)假设函数()f x 在含有0x 的开区间(,)a b 内具有直到n 阶的导数,则()200000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x o x x n '''⎡⎤=+-+-++-+-⎣⎦, 此公式称为带有佩亚诺型余项的泰勒公式.注 当00x =时,以下两公式称为麦克劳林(Maclaurin)公式,即()21(0)(0)(1)()()(0)(0)(01)2!!(1)!n n n f f f n x f x f f x x x x n n θθ+''+'=+++++<<+和 ()2(0)(0)()(0)(0)()2!!n n n f f f x f f x x x o x n '''=+++++.(七)洛必达(L ’Hospital)法则 1.00⎛⎫⎪⎝⎭型 0()()()0,f x g x x g x '≠设,在点的某去心邻域内可导,若0lim ()lim ()x x x x f x g x →→=0=,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. 2.∞⎛⎫⎪∞⎝⎭型 设()()f x g x ,在点0x 的某去心邻域内可导,()0g x '≠,若0lim ()x x f x →=0lim ()x x g x →=∞,且0()lim()x x f x g x →''存在或为∞,则有00()()lim lim()()x x x x f x f x g x g x →→'='. (八)利用导数研究函数及平面曲线的性态1.单调性定理 设函数()f x 在[,]a b 上连续,在(,)a b 内可导,若对任一x ∈(,)a b ,有()0(0)f x '><,则()f x 在[,]a b 上单调增加(减少).注 若将上面的不等式()0(0)f x '><,改为()0(0)f x '≥≤,且使()0f x '=的点(驻点)只有有限个,则结论仍成立.2.极值(1)极值的定义 若()f x 在0x 的某邻域0()U x 内有定义,且对该邻域内任意异于0x 的点x 都有0()()f x f x <(或0()()f x f x >),则称0x 的极大(或小)值点,0()f x 称为()f x 的极大(或小)值.(2)判断极值的第一充分条件 设函数()f x 在点0x 的某邻域00(,)x x δδ-+内连续,0x 是()f x 的驻点或不可导点,在00(,)x x δ-及00(,)x x δ+内()f x 均可导.1°若在00(,)x x δ-内()0(0)f x '<>而在00(,)x x δ+内()0(0)f x '><则()f x 在0x 处取21极小值(极大值);2°若在00(,)x x δ-和00(,)x x δ+内()f x '符号相同,则()f x 在0x 处不取得极值. (3)判断极值的第二充分条件 设函数()f x 在x =0x 处 ,一阶导数0()0f x '=,二阶导数0()f x ''存在且不等于零,则当0()0f x ''>时,()f x 在0x 处取得极小值;当0()0f x ''<时,()f x 在0x 处取得极大值.3.取到极值的唯一性定理 若()f x 在区间I 上可导,驻点唯一,且该驻点是极值点,则该驻点一定是最值点.4.曲线凹凸性及拐点(1)凹凸性的定义 设()x f 在区间I 上连续,若对任意不同的两点21,x x ,恒有()()()()12121212112222x x x x f f x f x f f x f x +⎛+⎫⎛⎫⎛⎫>+<+⎡⎤⎡⎤ ⎪ ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭⎝⎭或则称()x f 在I 上是凸(凹)的.(2)凹凸性的判断 若函数()f x 在区间I 上()0(0)f x ''><则曲线()y f x =在I 上凹 (凸)的.(3)拐点的定义 在连续曲线上,凹凸部分的分界点00(,())x f x 称为曲线的拐点.(4)拐点的第一充分条件 设函数()f x 在点0x 的某邻域内连续且在该去心邻域内二阶可导,若()f x 在0x 的左右两边()f x ''的符号相反,则点00(,())x f x 是曲线)(x f y =的拐点.(5)拐点的第二充分条件:设函数()f x 在点0x 的某邻域内连续,0()0f x ''=,而0()0f x '''≠,则点00(,())x f x 是曲线)(x f y =的拐点.5.曲线的渐近线(1)若lim ()x f x C →∞=(或x →+∞或x →-∞)(C 为常数),则y C =是曲线()y f x =的一条水平渐近线;(2)若0lim ()x x f x →∞=(或0x x +→,或0x x -→),则0x x =是曲线()y f x =的一条铅直渐近线; (3)若()lim,0,x f x a a x→∞=≠且lim[()],x f x ax b →∞-=则y ax b +=是曲线()y f x =的斜渐近线.22(九)平面曲线的曲率(数学一、二要求) 1.弧微分设()y f x =是平面内的光滑曲线,则弧微分.ds = 若曲线方程为(),(),x x t y y t =⎧⎨=⎩则弧微分为.ds =2.曲率(1)设M 和N 是曲线上不同的两点,弧MN 的长为s ∆,当M 点沿曲线到达N点时,M点处的切线所转过角为α∆,则称极限0lims K sα∆→∆=∆为该曲线在点M 处的曲率. (2)曲率计算公式若曲线方程为()y f x =,则曲率23/2(1)y K y ''='+. 若曲线由参数方程()()x x t y y t =⎧⎨=⎩给出,则曲率223/2()t t t t t t x y y x K x y ''''''-=''+. (3)曲率半径1(0)R K K=≠. 三、典型题型[例2.1]已知(3)2f '=,则0lim 2h h→=______________.[例2.2]设函数()f x 在0x =处连续,且201lim (1cos )1h f h h→-=,则().(A)(0)1-'=f .(B)(0)2-'=f .(C)(0)1+'=f . (D)(0)2+'=f .[例2.3]设函数()f x 可导,()(sin 2)()xF x e x f x =+,则(0)0f =是()F x 在0x =处可导的( )条件.(A)充要. (B)充分非必要. (C)必要非充分.(D)非充分非必要.[例2.4]设周期函数()f x 在),(+∞-∞内可导,周期为4,0(1)(1)lim2x f f x x→--=1-,则曲线()y f x =在点))5(,5(f 处的法线斜率为(). (A)21. (B)0.(C)1 .(D)2-.[例2.5]设函数()f x 在区间(,)δδ-内有定义,若当x ∈(,)δδ-时,恒有2()f x x ≤,则23x 0=必是()f x 的( ).(A)间断点.(B)连续而不可导的点. (C)可导的点,且(0)0'=f . (D)可导的点,且(0)0'≠f .[例2.6]设()(1)(2)()f x x x x x n =+++,则(0)________.f '=[例2.7]设函数0()y f x x x ==在处可导,0()1f x '=-,则0limx y dydy∆→∆-=_______.[例2.8] 设函数()f x 处处可微,且有()01f '=,且对任何,x y 恒有()()x f x y e f y +=()x e f y +, 求().f x[例2.9]设函数()f x 在(,)-∞+∞上有定义,对任意,x y ,()f x 满足关系式()()[()1]()f x y f x f x y y α+-=-+,其中0()lim0y y yα→=.又已知(0)2,f =则(1)f =.[例2.10]设()()(),()F x g x x x ϕϕ=在x a =连续,但不可导,又()g a '存在,则()0g a =是()F x 在x a =可导的()条件.(A) 充要. (B) 充分非必要.(C) 必要非充分.(D) 非充分非必要. [例2.11]函数32()2arctan f x x x x x =+-的不可导点的个数是( ). (A)3.(B)2.(C)1.(D)0.[例2.12]设函数11,0()1,0x x f x x e k x ⎧-≠⎪=-⎨⎪=⎩连续,求常数k 的值,并求()f x '.[例2.13] 求下列函数的导数(1)arctanx y e=-(2)2()ln |2a f x x =.24[例2.14]设2sin[()]y f x =,其中f 具有二阶导数,求22,dy d ydx dx . [例2.15]设函数1,()21,x f x x ⎧≥=⎨<⎩,()()y f f x =,则x edy dx ==_____________.[例2.16]设函数()f u 可导,2()y f x =当自变量x 在1=-x 处取得增量0.1x ∆=-时,相应的函数增量y ∆的线性主部为0.1,则(1)'=f _________________.[例2.17] (数一、二)设()2arctan ,25t x t y y x y ty e =⎧⎪=⎨-+=⎪⎩由所确定,求.dy dx[例2.18]设22411x y x -=-,求(100)y .[例2.19]设函数()y f x =由方程23ln()sin +=+x y x y x 确定,则==x dy dx_________.[例2.20]设()()()nf x x a x ϕ=-,其中()x ϕ在x a =处具有1n -阶连续导数,试求()()n f a (2)n ≥.题型三 利用导数研究函数的性态[例2.21]设当a x b <<时函数()f x ,()g x 是大于零的可导函数,且()()f x g x '-()f x ()0g x '<,则当a x b <<时,有().(A)()()()()f x g b f b g x >.(B)()()()()f x g a f a g x >.(C)()()()()f x g x f b g b >.(D)()()()()f x g x f a g a >.。

汤家凤高数辅导讲义24页例题5

汤家凤高数辅导讲义24页例题5

汤家凤高数辅导讲义24页例题5(原创版)目录一、汤家凤高数辅导讲义简介二、例题 5 的题目及解题思路三、例题 5 的详细解答过程四、如何更好地学习高数辅导讲义正文一、汤家凤高数辅导讲义简介汤家凤高数辅导讲义是针对考研数学的高等数学部分编写的一本辅导书籍。

本书由汤家凤老师编著,内容涵盖了高等数学的主要知识点,包括函数、极限、导数、积分等。

书中提供了大量的例题和习题,旨在帮助学生更好地理解和掌握高等数学的知识点。

二、例题 5 的题目及解题思路例题 5 的题目为:“设函数 f(x) = x^3 - 6x^2 + 9x,求 f(x) 在区间 [0, 6] 上的最大值。

”解题思路如下:1.求函数的导数 f"(x) = 3x^2 - 12x + 9。

2.解关于导数的不等式 f"(x) > 0 和 f"(x) < 0,得到函数的单调区间。

3.在单调区间内找到函数的极值点,并比较极值点与端点的函数值,得到最大值。

三、例题 5 的详细解答过程1.求导数:f"(x) = 3x^2 - 12x + 9。

2.解关于导数的不等式:当 f"(x) > 0 时,有 3x^2 - 12x + 9 > 0,解得 x < 1 或 x > 3。

当 f"(x) < 0 时,有 3x^2 - 12x + 9 < 0,解得 1 < x < 3。

3.找到极值点:f"(x) = 0,解得 x = 1 或 x = 3。

将极值点代入原函数,得到 f(1) = 4,f(3) = 9。

4.比较极值点与端点的函数值:f(0) = 0,f(6) = 54。

因此,在区间 [0, 6] 上,函数的最大值为 9,取到的点为 x = 3。

四、如何更好地学习高数辅导讲义1.结合视频课程学习:可以观看汤家凤老师的视频课程,辅助理解辅导讲义中的知识点和例题。

2024考研汤家凤高等数学辅导讲义

2024考研汤家凤高等数学辅导讲义

2024考研汤家凤高等数学辅导讲义(实用版)目录1.2024 考研汤家凤高等数学辅导讲义概述2.汤家凤辅导讲义的内容特点3.如何获取 2024 考研汤家凤高等数学辅导讲义4.汤家凤辅导讲义对考研数学的帮助正文一、2024 考研汤家凤高等数学辅导讲义概述2024 考研汤家凤高等数学辅导讲义是一本针对考研数学的高等数学辅导书籍,由著名数学教育专家汤家凤编写。

这本书旨在帮助广大考研学生更好地掌握高等数学的知识点,提高考研数学成绩。

二、汤家凤辅导讲义的内容特点1.系统性强:汤家凤辅导讲义全面覆盖了考研数学高等数学部分的所有知识点,从基本概念到复杂题目,都有详细讲解。

2.重点突出:汤家凤辅导讲义针对考研数学的考试重点进行了重点讲解,帮助学生把握考试命脉,提高答题效率。

3.技巧性强:汤家凤辅导讲义总结了大量解题技巧和方法,帮助学生快速解决各类题目,提高答题速度。

4.实用性强:汤家凤辅导讲义提供了大量实例和练习题,帮助学生巩固所学知识,提高实际解题能力。

三、如何获取 2024 考研汤家凤高等数学辅导讲义想要获取 2024 考研汤家凤高等数学辅导讲义,可以关注汤家凤的官方公众号或在线教育平台,也可以在各大书店或网络书店购买。

同时,一些考研交流群组也会分享电子版的讲义,可以加入相关群组进行获取。

四、汤家凤辅导讲义对考研数学的帮助1.提高理论水平:通过学习汤家凤辅导讲义,可以系统地掌握高等数学的理论知识,为考研数学打下坚实的基础。

2.提高解题能力:汤家凤辅导讲义中总结了大量解题技巧和方法,可以帮助学生提高解题能力,迅速提高考研数学成绩。

3.提高应试水平:汤家凤辅导讲义针对考研数学的考试重点进行了重点讲解,可以帮助学生把握考试命脉,提高答题效率和准确率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==x x a (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

解:1|'),,0(|),(,sin cos 2/2/2/-==⎪⎩⎪⎨⎧====πθππθθθθθy e y x e y e x x e y -=-2/π5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。

求f(x)在(6,f(6))处的切线方程。

解:需求)1('),1()6('),6(f f f f 或,等式取x->0的极限有:f(1)=0)6(22)1('8)1('4])1()1(3)1()1([lim sin )sin 1(3)sin 1(lim0sin 0-=∴=∴==--+-+=--+>-=>-x y f f t f t f t f t f x x f x f t t x x C.导数应用问题6.已知x e x f x x xf x x f y --=+=1)]('[2)('')(2满足对一切,)0(0)('00≠=x x f 若,求),(00y x 点的性质。

解:令⎩⎨⎧<>>>===-0,00,0)(''00010000x x x e e x f x x x x 代入,,故为极小值点。

7.23)1(-=x x y ,求单调区间与极值、凹凸区间与拐点、渐进线。

解:定义域),1()1,(+∞-∞∈ x:斜:铅垂;;拐点及驻点2100''300'+===⇒===⇒=x y x x y x x y8.求函数x e x y arctan 2/)1(+-=π的单调性与极值、渐进线。

解:101'arctan 2/22-==⇒++=+x x e xx x y x 与驻点π,2)2(-=-=x y x e y 与渐:πD.幂级数展开问题9.⎰=-x x dt t x dx d 022sin )sin( ⎰⎰⎰=⋅⋅⋅++-+⋅⋅⋅+-=-⋅⋅⋅++--+⋅⋅⋅+-=-+---+⋅⋅⋅+-+--=-⋅⋅⋅++--+⋅⋅⋅+---=----+-x n n n nxn n n n x n x x x dt t x dx d n n x x x t x n n t x t x t x dt t x n t x t x t x t x 02)12(2622147302141732)12(2622sin )!12()1(!31)sin()!12)(14()1(7!3131)sin()!12)(14()()1()(7!31)(31)sin()!12()()1()(!31)()sin(或:20202sin sin )(sin x du u dx d du u dx d u t x x x ==-⇒=-⎰⎰ 10.求)0(0)1ln()()(2n fn x x x x f 阶导数处的在=+=解:)(2)1(32()1ln(2213222---+--+⋅⋅⋅-+-=+n n n x o n x x x x x x x =)(2)1(321543n nn x o n x x x x +--+⋅⋅⋅-+-- 2!)1()0(1)(--=∴-n n f n n E.不等式的证明11.设)1,0(∈x ,211)1ln(112ln 1)1(ln )122<-+<-<++x x x x x ,求证( 证:1)令0)0(,)1(ln )1()(22=-++=g x x x x g;得证。

单调下降,单调下降单调下降,时0)()(,0)(')(',0)('')('')1,0(0)0('')0(',0)1()1ln(2)('''),(''),('2<<<∈∴==<++-=x g x g x g x g x g x g x g g x x x g x g x g2)令单调下降,得证。

,0)('),1,0(,1)1ln(1)(<∈-+=x h x xx x h F.中值定理问题12.设函数]11[)(,在-x f 具有三阶连续导数,且1)1(,0)1(==-f f ,0)0('=f ,求证:在(-1,1)上存在一点3)('''=ξξf ,使证:32)('''!31)0(''!21)0(')0()(x f x f x f f x f η+++= 其中]1,1[),,0(-∈∈x x η将x=1,x=-1代入有)('''61)0(''21)0()1(1)('''61)0(''21)0()1(021ηηf f f f f f f f ++==-+=-=两式相减:6)(''')('''21=+ηηf f3)](''')('''[21)('''][2121=+=∍∈∃ηηξηηξf f f ,,13.2e b a e <<<,求证:)(4ln ln 222a b ea b ->-证:)(')()(:ξf ab a f b f Lagrange =-- 令ξξln 2ln ln ,ln )(222=--=a b a b x x f 令2222ln )()(0ln 1)(',ln )(ee t t t t t t >∴>∴<-==ξξϕξϕϕϕ)(4ln ln 222a b e a b ->- (关键:构造函数)三、补充习题(作业) 1.23)0('',11ln)(2-=+-=y x x x f 求 2.曲线012)1,0(2cos 2sin =-+⎪⎩⎪⎨⎧==x y te y te x tt处切线为在 3.ex y x x e x y 1)0)(1ln(+=>+=的渐进线方程为 4.证明x>0时22)1(ln )1(-≥-x x x证:令3222)1(2)('''),(''),(',)1(ln )1()(xx x g x g x g x x x x g -=---= 02)1(''0)1(')1(>===g g g ,00'),,1(0'),1,0(0''2'',0'''),,1(2'',0'''),1,0(>∴⎩⎨⎧>∞∈<∈⇒>⇒⎭⎬⎫>>+∞∈><∈g g x g x g g g x g g x第三讲 不定积分与定积分一、理论要求 1.不定积分 掌握不定积分的概念、性质(线性、与微分的关系) 会求不定积分(基本公式、线性、凑微分、换元技巧、分部) 2.定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值二、题型与解法 A.积分计算1.⎰⎰+-=--=-C x x dx x x dx 22arcsin)2(4)4(22.⎰⎰⎰+=+=+C x e xdx e xdx e dx x e xx x x tan tan 2sec )1(tan 2222223.设xx x f )1ln()(ln +=,求⎰dx x f )( 解:⎰⎰+=dx e e dx x f xx )1ln()(⎰+++-=+-++=--C e e x dx ee e e xx xx xx)1ln()1()11()1ln( 4.⎰⎰∞∞>-∞+=+-+-=112122ln 214)11(lim |arctan 1arctan b b dx x x x x x dx x x π B.积分性质5.)(x f 连续,⎰=10)()(dt xt f x ϕ,且A xx f x =>-)(lim0,求)(x ϕ并讨论)('x ϕ在0=x 的连续性。

相关文档
最新文档