圆章节考点情况总结分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆》章节知识点
一、圆的概念
1.平面内到定点的距离等于定长的所有点组成的图形叫做圆。其中,定点称为圆心,定长称
e”,读作“圆O”。
为半径,以点O为圆心的圆记作“O
2.确定圆的基本条件:(1)、圆心:定位置,具有唯一性,(2)、半径:定大小。
3.半径相等的两个圆叫做等圆,两个等圆能够完全重合。
4.①连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径,②圆上任意两点间的部分叫做圆弧,简称弧,弧用符号“⋂”表示,圆的任意一条直径的两个端点分圆成为两条等弧,每一条弧都叫做半圆,大于半圆的弧称为优弧,小于半圆的弧称为劣弧。③在同圆或等圆中,能过重合的两条弧叫做等弧。理解:弧在圆上,弦在圆及圆上:弧为曲线形,弦为直线形。
5.不在同一直线上的三个点确定一个圆且唯一一个。
6.①三角形的三个顶点确定一个圆,经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形。②与三角形三边都相切的圆叫做这个三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。三角形的内切圆是三角形内面积最大的圆,圆心是三个角的角平分线的交点,他到三条边的距离相等:内心到三顶点的连线平分这三个角。
(补充)圆的集合概念 1、圆可以看作是到定点的距离等于定长的点的集合;
2、圆的外部:可以看作是到定点的距离大于定长的点的集合;
3、圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹形式的概念:
1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫
中垂线);
3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定
长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离
都相等的一条直线。
二、点与圆的位置关系
点与圆的位置关系是由这个点到圆心的距离d与半径r的大小关系决定的。
1、点在圆内⇒d r
<⇒点C在圆内;
2、点在圆上⇒d r
=⇒点B在圆上;
3、点在圆外⇒d r
>⇒点A在圆外;
解题注意点和圆的位置不确定性。
圆的对称性
圆是轴对称图形,他有无数条对称轴,每一条过圆心的直线都是他的对称轴。圆是以圆心为对称中心的中心对称图形,圆绕圆心旋转任意一个角度,都能够与原来的图形重合,这种性质叫做圆的旋转不变性。圆既是轴对称图形,又是中心对称图形。
三、直线与圆的位置关系:相交,相切,相离
如果圆O的半径为r,圆心O到直线l的距离为d,那么:
1、直线与圆相离⇒d r
>⇒无交点;
2、直线与圆相切⇒d r
=⇒有一个交点;
3、直线与圆相交⇒d r
<⇒有两个交点;
四、圆与圆的位置关系
设两圆半径分别为R和r,圆心距为d,那么:
外离(图1)⇒无交点⇒d R r
>+;
外切(图2)⇒有一个交点⇒d R r
=+;
相交(图3)⇒有两个交点⇒R r d R r
-<<+;
内切(图4)⇒有一个交点⇒d R r
=-;
内含(图5)⇒无交点⇒d R r
<-;
A
五、垂径定理(非常重要)
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD
解题技巧:在圆中,解有关弦的问题时,常常需要做“垂直于弦的直径”作为辅助线。 六、圆心角定理
顶点在圆心的角叫做圆心角。圆心角的度数与他所对的弧的度数相等。 圆心角定理:在同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =;
③OC OF =;④ 弧BA =弧BD 七、圆周角定理
顶点在圆上,并且两边都和圆相交的角叫做圆周角。
1、圆周角定理:同弧所对的圆周角等于它所对的圆心角(或弧的度数)的一半。
图4
图5
B
D
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ 2、圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;
即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角 ∴C D ∠=∠
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒ ∴90C ∠=︒ ∴AB 是直径
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==
∴△ABC 是直角三角形或90C ∠=︒
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
注:忽略一条弦所对的弧有两条,所对的圆周角边有两种不同的角。 八、圆内接四边形
一般的,如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆的内接多边形,这个圆叫做多边形的外接圆。
圆的内接四边形定理:圆的内接四边形的对角互补。
推论:圆内接四边形任何一个外角都等于他的内对角。
即:在⊙O 中,
∵四边形ABCD 是内接四边形
∴180C BAD ∠
+∠=︒ 180B D ∠+∠=︒ DAE C ∠=∠
B
A
B
A O