人教版七年级下册数学动点问题完整版
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级下册数学动点问题
动点问题
1、如图6-7,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在 轴上行驶,从原点O出发.
(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.
(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.
(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?
(1)线段BC的长为,点A的坐标为;
(2)如图1,EA平分∠CAO,DA平分∠CAH,CF⊥AE点F,试给出∠ECF与∠DAH之间满足的数量关系式,并说明理由;
(3)若点P是在直线CB与直线AO之间的一点,连接BP、OP,BN平分 ,ON平分 ,BN交ON于N,请依题意画出图形,给出 与 之间满足的数量关系式,并说明理由.
(2)在y轴上是否存在一点P,连结PA,PB,使S△PAB=S△PDB,若存在这样一点,求出点P点坐标,若不存在,试说明理由;
(3)若点Q自O点以个单位/s的速度在线段AB上移动,运动到B点就停止,设移动的时间为t秒,(1)是否是否存在一个时刻,使得梯形CDQB的面积是四边形ABCD面积的三分之一?
5、如图,△ABC的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).
(1)求△ABC的面积;
(2)若把△ABC向下平移2个单位长度,再向右平移3个单位长度,得到△ ,请你在图中画出△ ;
(3)若点A、C的位若点B、 C的位置不变,当点Q在x轴上什么位置时,使 .
7、如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7)
(1)在坐标系中,画出此四边形;
(2)求此四边形的面积;
(3)在坐标轴上,你能否找一个点P,使S△PBC=50,若能,求出P点坐标,若不能,说明理由.
8、如图,A点坐标为(-2, 0),B点坐标为(0, -3).
2.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴
和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足 .
(1) 则A点的坐标为___________,C点的坐标为__________;
(2) 已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=
6、如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足 ,过C作CB⊥x轴于B.
(1)求三角形ABC的面积;
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数;(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P点坐标;若不存在,请说明理由.
10、在平面直角坐标系中,OA=4,OC=8,四边形ABCO是平行四边形.
(1)求点B的坐标及的面积 ;
(2)若点P从点C以2单位长度/秒的速度沿CO方向移动,同时点Q从点O以1单位长度/秒的速度沿OA方向移动,设移动的时间为t秒,△AQB与△BPC的面积分别记为 , ,是否存在某个时间,使 = ,若存在,求出t的值,若不存在,试说明理由;
4、如图,在平面直角坐标中,A(0,1),B(2,0),C(2,).
(1)求△ABC的面积;
(2)如果在第二象限内有一点P(a,),试用a的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
S△ODQ,若存在,请求出t的值;若不存在,请说明理由;
(3) 点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中, 的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由.
3.如图1,在平面直角坐标系中,第一象限内长方形ABCD, AB∥y轴,点A(1,1),点C(a,b), 满足 .
(1)求长方形ABCD的面积.
(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.
①当t=4时,直接写出三角形OAC的面积为;
②若AC∥ED,求t的值;
(3)在平面直角坐标系中,对于点 ,我们把点 叫做点 的伴随点,已知点 的伴随点为 ,点 的伴随点为 ,点 的伴随点为 ,…,这样依次得到点 , , ,…, .
①若点 的坐标为(3,1),则点 的坐标为,点 的坐标为;
②若点 的坐标为( , ),对于任意的正整数 ,点 均在 轴上方,则 , 应满足的条件为.
(1)作图,将△ABO沿x轴正方向平移4个单位, 得到△DEF, 延长ED交y轴于C点, 过O点作OG⊥CE, 垂足为G;
(2) 在(1)的条件下, 求证: ∠COG=∠EDF;
(3)求运动过程中线段AB扫过的图形的面积.
9、在平面直角坐标系中,点B(0,4),C(-5,4),点A是x轴负半轴上一点,S四边形AOBC=24.
(4)是否是否存在一个时刻,使得梯形CDQB的面积等于△ACO面积的二分之一?
12、在直角坐标系中,△ABC的顶点A(—2,0),B(2,4),C(5,0).
(1)求△ABC的面积
(2)点D为y负半轴上一动点,连BD交x轴于E,是否存在点D使得 ?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点F(5,n)是第一象限内一点,,连BF,CF,G是x轴上一点,若△ABG的面积等于四边形ABDC的面积,则点G的坐标为(用含n的式子表示)
(3)在(2)的条件下,四边形QBPO的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.
11、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D连结AC,BD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;
动点问题
1、如图6-7,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在 轴上行驶,从原点O出发.
(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.
(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.
(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?
(1)线段BC的长为,点A的坐标为;
(2)如图1,EA平分∠CAO,DA平分∠CAH,CF⊥AE点F,试给出∠ECF与∠DAH之间满足的数量关系式,并说明理由;
(3)若点P是在直线CB与直线AO之间的一点,连接BP、OP,BN平分 ,ON平分 ,BN交ON于N,请依题意画出图形,给出 与 之间满足的数量关系式,并说明理由.
(2)在y轴上是否存在一点P,连结PA,PB,使S△PAB=S△PDB,若存在这样一点,求出点P点坐标,若不存在,试说明理由;
(3)若点Q自O点以个单位/s的速度在线段AB上移动,运动到B点就停止,设移动的时间为t秒,(1)是否是否存在一个时刻,使得梯形CDQB的面积是四边形ABCD面积的三分之一?
5、如图,△ABC的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).
(1)求△ABC的面积;
(2)若把△ABC向下平移2个单位长度,再向右平移3个单位长度,得到△ ,请你在图中画出△ ;
(3)若点A、C的位若点B、 C的位置不变,当点Q在x轴上什么位置时,使 .
7、如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7)
(1)在坐标系中,画出此四边形;
(2)求此四边形的面积;
(3)在坐标轴上,你能否找一个点P,使S△PBC=50,若能,求出P点坐标,若不能,说明理由.
8、如图,A点坐标为(-2, 0),B点坐标为(0, -3).
2.如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴
和y轴建立平面直角坐标系,点A(0,a),C(b,0)满足 .
(1) 则A点的坐标为___________,C点的坐标为__________;
(2) 已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使S△ODP=
6、如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足 ,过C作CB⊥x轴于B.
(1)求三角形ABC的面积;
(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数;(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等,若存在,求出P点坐标;若不存在,请说明理由.
10、在平面直角坐标系中,OA=4,OC=8,四边形ABCO是平行四边形.
(1)求点B的坐标及的面积 ;
(2)若点P从点C以2单位长度/秒的速度沿CO方向移动,同时点Q从点O以1单位长度/秒的速度沿OA方向移动,设移动的时间为t秒,△AQB与△BPC的面积分别记为 , ,是否存在某个时间,使 = ,若存在,求出t的值,若不存在,试说明理由;
4、如图,在平面直角坐标中,A(0,1),B(2,0),C(2,).
(1)求△ABC的面积;
(2)如果在第二象限内有一点P(a,),试用a的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在这样的点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
S△ODQ,若存在,请求出t的值;若不存在,请说明理由;
(3) 点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中, 的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由.
3.如图1,在平面直角坐标系中,第一象限内长方形ABCD, AB∥y轴,点A(1,1),点C(a,b), 满足 .
(1)求长方形ABCD的面积.
(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.
①当t=4时,直接写出三角形OAC的面积为;
②若AC∥ED,求t的值;
(3)在平面直角坐标系中,对于点 ,我们把点 叫做点 的伴随点,已知点 的伴随点为 ,点 的伴随点为 ,点 的伴随点为 ,…,这样依次得到点 , , ,…, .
①若点 的坐标为(3,1),则点 的坐标为,点 的坐标为;
②若点 的坐标为( , ),对于任意的正整数 ,点 均在 轴上方,则 , 应满足的条件为.
(1)作图,将△ABO沿x轴正方向平移4个单位, 得到△DEF, 延长ED交y轴于C点, 过O点作OG⊥CE, 垂足为G;
(2) 在(1)的条件下, 求证: ∠COG=∠EDF;
(3)求运动过程中线段AB扫过的图形的面积.
9、在平面直角坐标系中,点B(0,4),C(-5,4),点A是x轴负半轴上一点,S四边形AOBC=24.
(4)是否是否存在一个时刻,使得梯形CDQB的面积等于△ACO面积的二分之一?
12、在直角坐标系中,△ABC的顶点A(—2,0),B(2,4),C(5,0).
(1)求△ABC的面积
(2)点D为y负半轴上一动点,连BD交x轴于E,是否存在点D使得 ?若存在,请求出点D的坐标;若不存在,请说明理由.
(3)点F(5,n)是第一象限内一点,,连BF,CF,G是x轴上一点,若△ABG的面积等于四边形ABDC的面积,则点G的坐标为(用含n的式子表示)
(3)在(2)的条件下,四边形QBPO的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.
11、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D连结AC,BD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;