初升高数学衔接班教材

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学

前言

数学是一门重要的课程,其地位不容置疑,同学们在初中已经学过很多数学知识,这是远远不够的。

初升高数学衔接班学法指导

一、学习目标:

1、认识初高中数学学习的特点和差异

2、了解高中数学的考法

3、了解高中数学的学习策略和学习方法

二、学习重点:

1、初高中数学知识差异与学法差异

2、针对高中数学的特点与考法,培养适合高中数学的学习方法、养成良好的学习习惯。

三、重点讲解:

高中数学的特点是:注重抽象思维,内容庞杂、知识难度大。高中教材不再像初中教材那样贴近生活,生动形象,知识容量也更为紧密。客观的说,初高中知识之间存在断层,正是由于这种断层造成很多同学难以在较短时间内适应高中数学的学习。那么,如何做好初高中数学学习的衔接过渡,使得同学们对高中数学学习有一个正确的认识,并迅速适应新的教学模式呢?

下面我们就一起探讨如何应对高中数学的学习。

(一)高中数学教材分析

高中数学课程分为必修和选修。必修课程由5个模块(5本书)构成;选修课程有4个系列,其中系列1、系列2由若干模块构成(系列1两本书、系列2三本书),系列3、系列4由若干专题组成。内容涉及初等函数、数列、概率与统计、算法、平面解析几何、立体几何等等。进入高中,我们首先学习的是《必修1》模块,我们应先对这一模块有一个大体的了解。

《必修1》模块由两章构成,分别是:

第一章:集合

第二章:函数

如何理解集合呢?集合是一种数学语言,我们要能够使用最基本的集合语言表示有关的数学对象,提高我们运用数学语言进行交流的能力。

在初中学习函数的基础上,我们还要进一步学习函数,只不过高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,在初中一次函数、二次函数、反比例函数的基础上,我们还将学习指数函数、对数函数、幂函数这些新的函数类型,而函数的思想方法将贯穿高中数学的始终。

(二)高中数学与初中数学特点的变化

1、数学语言在抽象程度上的突变。

初中的数学主要是以形象、通俗的语言方式进行表达。而高中数学一开始即在初中学习的“函数”的基础上触及抽象的“集合语言”。

例如:初中是这样定义函数的:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,都有惟一的值y与它对应,那么就说自变量x是y的函数。那么,y=1是函数吗?我们需要进一步深化函数的概念。在高中是用集合的语言来定义函数的:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有

惟一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作:y=f(x),x∈A.可以得到y=1是函数的结论。

集合作为数学的基本语言可以简洁地表示数学对象,对刚步入高中的同学来说,也是抽象的。而后续的几何部分也削弱了直观性而突出了抽象性和空间的想象能力。这就是说,思维要从初中的直观、经验型向抽象、理论型过渡。

2、思维方法向理性层次跃迁。

高一的同学产生数学学习障碍的一个原因是高中数学的思维方法与初中阶段大不相同。初中阶段,很多老师将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,即使是解答思维非常灵活的平面几何问题,也对线段相等、角相等……分别确定了各自的思维套路。因此,同学们在初中学习中习惯于这种机械的、便于操作的定势方式,而高中数学在思维形式上发生了很大的变化,同学们一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证型思维。

3、知识内容剧增

初中数学知识少、浅、难度低、知识面窄。高中数学知识广泛,将对初中的数学知识进行推广和引申,也是对初中数学知识的完善。如:初中学习的角的概念只是“0~180°”范围内的,但实际当中也有720°和“-360°等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小的角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法?(答:6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答:3种),高中将学习统计这些排列方式的数学方法。初中的

学习中对一个负数开平方无意义,但在高中规定了于是令-1的平方根为±i,这样

即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在今后的学习中将逐渐接触到。

4、综合性增强,学科间知识相互渗透,相互为用,加深了学习的难度。

比如这样一个实际问题:把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为a,如果天平制造得不够精确,天平的两臂长短略有不同(其他因素不计),那么a并非物体的实际质量。不过我们可以做第二次测量:把物体调换到

另外一个盘子上,此时称得的物体的质量为b,如何合理地表示物体的质量呢?

要解决这个问题我们需要用到物理中力学的知识,且我们还可以从中得出一个重要的

数学不等式。

5、系统性增强。

由于高中教材的理论性增强,常以某些基础理论为纲,根据一定的逻辑,把基本的概念、基本原理、基本方法联结在一起,构成一个完整的知识体系。前后知识的关联是其中一个表现。另外,知识结构的形成是另一个表现,因此高中教材知识的结构化明显升级。如函数,初中只简单地介绍一次、二次、反比例、正比例函数,对函数的性质很少研究,而高中的函数是一个大的知识体系。函数的定义域、值域、解析式、性质等是一个小系统;指数函数、对数函数、三角函数、二次函数也是一个小系统;函数图象也是一个小系统等等。这些小知识体系相互渗透、联系构成函数大体系。再比如小学里就有根据规律填数,如2,4,6,(),10,而数列的理论体系到高中才建立起来。

6、能力要求更高

高中课程目标明确地提出要提高学生的五种基本能力,即空间想象、抽象概括、推理论证、运算求解、数据处理能力。平时要注重对这些能力的培养。比如空间想象能力是对空间形式进行观察、分析、抽象的能力.主要表现为识图、画图和对图形的想象能力。同学们在初中学习过三视图,可以画出简单空间图形的三视图,到高中,我们会具体给出三视图的定义,而且会考查由三视图如何还原出实际物体。

例1:下面是一个组合图形的三视图,请描述物体形状

如果给出相应的数据,同学们是否能够求出它的体积呢?这道题考查的就是同学们的空间想象能力。

例2:三角数阵中的归纳推理

根据以上排列规律,数阵中第n(n≥3)行从左至右的第3个数是。

这道题考查的就是同学们的归纳推理能力。

当然,对于一个实际问题,同学们是否能够建立恰当的数学模型来处理问题,这又对大家的能力提出了更高的要求。

相关文档
最新文档