在坐标系中构造平行四边形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在坐标系中构造平行四边形
一.知识复习:
(一)平行四边形的定义 (二)平行四边形的性质 (三)平行四边形的判定:
二.在坐标系中构造平行四边形 (一).三个定点,一个动点
1. 已知A 、B ,在坐标平面内确定一个点P ,使得以O 、A 、B 、P 为顶点的四边形是平行四边
形
(1)A (2,0),B (0,1) (2)A (2,0),B (1,1)
2. 已知A (2,-1)、B (1,1),C (3,3),
在坐标平面内确定一个点P ,使得以A 、B 、
C 、P 为顶点的四边形是平行四边形
(二).两个定点,两个动点(对动点的位置有要求) 1. 两个动点均在直线上
(1)已知:点B (2,0)和直线3y x =-+,点C 在y 轴上,点P 在直线3y x =-+上,若以O 、B 、C 、P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标。
(2) 已知:点A (2,0)、B (0,1)和直线3y x =-+,点C 在
顶
坐标轴上,点P 在直线3y x =-+上,若以O 、B 、C 、P 为点的四边形是平行四边形,求出符合条件的点P 的坐标。
2. 一个动点在直线上,另一个动点在抛物线上
(1) 已知:抛物线232y x x =-+与x 轴交于A 、B 两点(A 点在B 点的左侧),点C 在抛物
A 、
B 、
C 、
(2)已知:抛物线243y x x =-+与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点D ,点C 在抛物线的对称轴上,点P 在抛物线上,若以D 、B 、C
、P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标。
(3)已知:抛物线245y x x =--与x 轴交于A 、B 两点(A 点在B 点的左侧)
,与y 轴交于点D ,点C 在y 轴上,点P 在抛物线上,若以B 、D 、C 、P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标。
(4) 已知:抛物线245y x x =--与x 轴交于A 、B 两点(A 点在B 点的左侧),与y 轴交于点D ,点C 在x 轴上,点P 在抛物线上,若以B 、D 、C 、P 为顶点的四边形是平行四边形,求出符合条件的点P 的坐标。
三.课后练习:
1.已知抛物线21y
x 14
=+(如图所示).
(1)填空:抛物线的顶点坐标是( , ),对称轴是 ; (2)已知y 轴上一点A (0,2),点P 在抛物线上,过点P 作PB ⊥x 轴,垂足为B .若△PAB 是等边三角形,求点P 的坐标;
(3)在(2)的条件下,点M 在直线AP 上.在平面内是否存在点N ,使四边形OAMN 为菱形若存在,直接写出所有满足条件的点N 的坐标;若不存在,请说明理由.
2. 如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处.分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线
x
y D B O x y D B O
y=ax 2+bx+c 经过O ,D ,C 三点.
(1)求AD 的长及抛物线的解析式;
(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P 、Q 、C 为顶点的三角形与△ADE 相似?
(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.
3. 如图甲,在平面直角坐标系中,A 、B 的坐标分别为(4,0)、(0,3),抛物线23y x bx c 4
=++
经过点B ,且对称轴是直线5x 2
=-.
(1)求抛物线对应的函数解析式;
(2)将图甲中△ABO 沿x 轴向左平移到△DCE (如图乙),当四边形ABCD 是菱形时,请说明点C 和点D 都在该抛物线上;
(3)在(2)中,若点M 是抛物线上的一个动点(点M 不与点C 、D 重合),经过点M 作MN ∥y 轴交直线CD 于N ,设点M 的横坐标为t ,MN 的长度为l ,求l 与t 之间的函数解析式,并求当t 为何值时,以M 、N 、C 、E 为顶点的四边形是平行四边形
4.已知,在Rt △OAB 中,∠OAB =90°,∠BOA =30°,AB =2.若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内.将Rt △OAB 沿OB 折叠
后,点A 落在第一象限内的点C 处. (1)点C 的坐标为_____________;
(2)若抛物线y =ax 2+bx 经过C 、A 两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB 交于点D ,点P 为直线OB 上一点,过P 作y 轴的平行线,交抛物线于点M .问:是否存在这样的点P ,使得以C 、D 、M 、P 为顶点的四边形为平行四边形若存在,求出此时点P 的坐标;若不存在,请说明理由. 、
5.(2012陕西中考) 如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;
(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;
(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD 若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由.
6.(2010陕西中考) 如图,在平面直角坐标系中,抛物线A (-1,0),B (3,0)C (0,-1)三点。
(1)求该抛物线的表达式;
(2)点Q 在y 轴上,点P 在抛物线上,要使Q 、P 、A 、B 为顶点的四边形是平行四边形求所有满足条件点P 的坐标。