高温α-淀粉酶的使用说明

高温α-淀粉酶的使用说明
高温α-淀粉酶的使用说明

高温α-淀粉酶的使用说明

高温α-淀粉酶

规格:250g

Grade: BR

英文名称:α-Amylase from Aspergillus oryzae;1,4-α

-D-Glucan-glucanohydrolase

其他名称:高峰淀粉酶;高温淀粉酶;耐热α-淀粉酶

CAS号:9001-19-8

提取来源:米曲霉

活力:≥4000U/g

酶活定义:在70℃,PH6.0条件下,1分钟液化1mg可溶性淀粉成为糊精所需要的酶量,即为1个酶活力单位。

温度范围:最适作用温度在90℃以上,95-97℃液化迅速,100℃仍保持相当的活力,在喷射液化时,瞬间温度可达105-110℃。

PH范围:有效PH范围在5.5~8.0,最适PH范围在6.0-6.5。

钙离子浓度对酶活性的影响:本品对Ca2+要求不高,在50-70ppm Ca2+已足够。

性状:黄褐色或类白色粉末。由米曲霉提取。在较高温度条件下,此酶能迅速水解淀粉分子的精制α-1,4葡萄糖苷键,将淀粉分子从内部任意切断成长短不一的短键糊精和少量的低聚糖,从而使淀粉浆的粘度迅速下降。液化时间延长,还会产生少量的葡萄糖和麦芽糖。

用途:生化研究。工业上广泛应用于葡萄糖、饴糖、糊精、果糖、低聚糖、酒精、啤酒、味精、食品酿造、有机酸、纺织、印染、造纸、其他发酵工业。

保存:2-8℃

淀粉酶及其应用

淀粉酶及其应用 0 引言 淀粉酶分布非常广泛,是人们经常研究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用。 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。最初,淀粉酶一词用来指可以水解直链淀粉、支链淀粉、肝糖及其降解产品中α-1,4-糖苷键的酶(本菲尔德(Bernfeld),1955年;费希尔(Fisher)和斯坦(Stein),1960年;迈拜克(Myrback)和纽慕勒(Neumuller),1950年)。它们水解相邻葡萄糖单体之间的键,产生带有具体用酶特征的产品。 近年来,人们发现了很多与淀粉及相关多糖结构降解有关的新型酶,并对其进行了研究(鲍伊(Boyer)和英格尔(Ingle),1972年;博诺考尔(Buonocore)等人,1976年;格里芬(Griffin)和福格蒂(Fogarty),1973年;福格蒂(Fogarty)和格里芬(Griffin),1975年)。 (1)有一些微生物源可以劈开这些结构中的α-1,4或α-1,4和/或α-1,6键,人们将现在已经或将来可能对这些微生物源工业化生产有重大影响的酶分为六种(福格蒂(Fogarty)和凯利(Kelly),1979年)。 (2)水解α-1,4键和绕过α-1,6键的酶,比如α-淀粉酶(内作用淀粉酶)。 (3)水解α-1,4键,但不能绕过α-1,6键的酶,比如β-淀粉酶(把麦芽糖当作一个重要的终端产品来生产的外作用淀粉酶)。 (4)水解α-1,4和α-1,6键的酶,比如淀粉葡糖苷酶(葡萄糖淀粉酶)和外作用淀粉酶。 (5)仅水解α-1,6键的酶,比如支链淀粉酶和其它一些脱支酶。 (6)优先水解其它酶对直链淀粉和支链淀粉所起的作用产生的短链低聚糖中α-1,4键的酶,比如α-葡萄糖苷酶。 (7)将淀粉水解为一连串非还原环状口葡糖基聚合物,称为环糊精或塞查丁格(Sachardinger)糊精的酶,比如浸麻芽孢杆菌(Bacillus macerans)淀粉酶(环糊精生成酶)。 1 淀粉 在描述淀粉分解酶的作用方式和性质前,有必要来讨论一下这种天然基一一淀粉的特性。淀粉是所有高等植物中主要储备碳水化合物的。在有些植物中,淀粉占整个未干植物的70%。淀粉是不溶于水的细小颗粒。这些颗粒的大小和形状常常由植物母体决定,具有植物品种的特征。当把淀粉颗粒置于水中加热时,颗粒中的连接氢键变弱,颗粒开始膨胀、凝胶化。最终,它们根据多糖的浓度或形成糊状物或形成弥散现象。淀粉来自于植物,比如玉米、小麦、高梁、稻米的种子,或木薯、马铃薯、竹芋的茎根,或来自于西谷椰子的木髓。玉 米是淀粉的主要商业原料,通过湿磨生产工艺便可获得商品淀粉(博考特(Berkhout),1976年)。直链淀粉和支链淀粉的特性见表1。 表1直链淀粉和支链淀粉的比较 性质 直链淀粉 支链淀粉 基本结构 基本直线 分岔 在水溶液中稳定性 回生 稳定 聚合度 C.103 C.104~105 平均链长 C.103 C.20~25 β淀粉酶水解 87% 54%

(整理)α-淀粉酶综述

α-淀粉酶综述 佚名2013-10-06 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

(植物中)淀粉酶活性的测定

(植物中)淀粉酶活性的测定 一实验目的 本实验的目的在于掌握淀粉酶的提取及活性的测定方法。 二实验原理 植物中的淀粉酶能将贮藏的淀粉水解为麦芽糖。淀粉酶几乎存在于所有植物中,有α-淀粉酶及β-淀粉酶,其活性因植物生长发育时期不同而有所变化,其中以禾谷类种子萌发时淀粉酶活性最强。 α-淀粉酶和β-淀粉酶都各有其一定的特性,如β-淀粉酶不耐热,在高温下容易钝化,而α-淀粉酶不耐酸,在pH3.6以下容易发生钝化。通常酶提取液中同时存在两种淀粉酶,测定时,可以根据他们的特性分别加以处理,钝化其中之一,即可以测出另一种酶的活性。将提取液加热到70℃维持15分钟以钝化β-淀粉酶,便可测定α-淀粉酶的活性。或者将提取液用pH3.6的醋酸在0℃加以处理,钝化α-淀粉酶,以测出β-淀粉酶的活性。 淀粉酶水解淀粉生成的麦芽糖,可用3,5-二硝基水杨酸试剂测定。由于麦芽糖能将后者还原成3-氨基-5-硝基水杨酸的显色基团,在一定范围内其颜色的深浅与糖的浓度成正比,故可以求出麦芽糖到含量。以麦芽糖的毫克数表示淀粉酶活性大小。 三实验材料 萌发的小麦、大麦或者豆类等(芽长1cm左右) 四实验仪器和试剂 1.仪器: 电子天平、研钵、100mL容量瓶(1个)、50mL量筒(1个)、刻度试管[25mL(9个)、10mL(1个)]、试管6支、移液管[1mL(2支)、2mL(2支)、10mL(2支)]、离心机、恒温水浴锅、7220型分光光度计 2.试剂: 1%淀粉溶液、0.4mol/LNaOH、 pH5.6的柠檬酸缓冲液:A、称取柠檬酸20.01g,溶解后稀释至1 000mL;B、称取柠檬酸钠29.41g,溶解后稀释至1 000mL;取A液13.70mL与B液26.30mL 混匀即是。 3,5-二硝基水杨酸:精确称取3,5-二硝基水杨酸1g溶于20mL1mol/LNaOH 中,加入50mL蒸馏水,在加入30g酒石酸钾钠,待溶解后用蒸馏水稀释至100mL,盖紧瓶盖,勿让CO2进入。 麦芽糖标准液:称取化学纯麦芽糖0.100g溶于少量蒸馏水中仔细移入100mL 容量瓶中,用蒸馏水稀释至刻度。 五操作步骤 1.酶液的提取: 称取萌发的水稻种子0.5g(芽长1cm左右,置于研钵中加石英砂研磨成匀浆,移入25mL刻度试管中,用水稀释至刻度,混匀后在温室下放置,每隔数分钟振荡一次,放置20分钟后离心,取上清液备用。 2.α-淀粉酶活性的测定: (1)取三支试管,编号注明1支为对照管,2支为测试管。 (2)于每管中各加入酶提取液1mL,在70℃恒温水浴中(水文的变化不应该超过±0.5℃),准确加热15分钟,在此期间β-淀粉酶受热钝化,取出后迅速在自来水中冷却。

a-淀粉酶的生产与应用

α-淀粉酶的合成与应用 谷君 摘要:酶, 发酵,生产,合成,应用 关键词:生产应用 一,淀粉酶的产生菌及酶的特性 (1)淀粉酶可由微生物发酵产生,也可从植物和动物中提取,目前I业生产上都以微生物发酵法进行大规模生产淀粉酶。在 1 9 0 8年和 1 9 1 7年德国的 B o k i i n 和 F A f r o n t [ 日先后由细菌中生产出 d .淀粉酶,用于纺织品脱浆。1 9 3 7年日本的福本口获得了产生a 一淀粉酶的括革杆菌。第二次世界大战后,由干抗生素的发明,使得微生物I业大步前进, 1 9 4 9年Ⅱ - 淀粉酶开始采用深层通风培葬法进行生产。1 9 7 3年耐热性淀粉酶投入了生产r 4 3 。随淀粉酶的用途日蓝扩大,产量日见增多,生产水平也逐步提高。近些年我们国家的酶制剂行业发展较快,从 1 9 6 5年开始应用解淀粉芽孢杆菌B F 一7 6 5 8生产淀粉酶,当时仅无锡酶制剂厂独家生产,近年在国内生产酶制剂的厂家已发展到 l 2 O多个,其中约有 4 O 左右的I厂生产淀粉酶,产品也由单一的常温I业用 d 一淀粉酶,发展到现在有I业用也有食品鼓,既有常温也有耐热的,剂型上有固体的也有液体淀粉酶。酶制剂I业现已成为近代I业生产中不可缺少的组成部门,它对社会的贡献远远超过酶I业本身。 (2)世界上许多国家都以枯草杆菌,地衣芽孢杆菌生产细菌淀粉酶和米曲霉生产的真苗淀粉酶为主要产品,在工业生产中使用的菌种,最初都是从自然中得到的,通过筛选和诱变育种工作,可改变菌种的特性,提高 n 一淀粉酶的活力。O n t t r u p 以地衣芽孢杆苗AT C C 9 7 9 8为出发菌株,用 Y射线, N T G以及 uV反复 7次 诱变,使其 n 一淀粉酶的产量为原苗株的 2 5 倍。A n d r e e v a 等将枯草杆菌孢子悬浮液经 5 0 ℃加热处理 3 0分钟,酶合成速度提高了 2 —2 、 7倍,可见采用诱变育种是行之有效的方法,但也有一定的局限性和缺点,由于发生平顶效应使之育种效果降低,利用转化法改良菌种,在枯草杆菌 n 一淀粉酶的生产苗上已 取得可喜的结果 K a z u m a s a 等采用转化和诱变结合的方法.使 n 一淀粉酶产量比亲株高 l 5 0 0 - -2 0 0 0倍近年来,随生物工程技术的发展,基因工程技术已应用到菌种的改造方面。 P a l v a r 2 等把解淀粉芽孢杆菌n 一淀粉酶基因克隆到枯草芽孢杆菌中,其 n 一淀粉酶活力比其原始的野生型苗株高 5 0 0倍。 H e n a c h a n 又把地衣芽孢杆菌耐热淀粉酶基因克隆到枯草芽孢杆苗中,美国 C P C国 际公冠的 Mo f f c t 研究中心,已获得美国食品药品管理局( F DA) 的批准,可用其研制的基因工程菌生产淀粉酶,这是第一个由 F D A 批准用基因工程菌生产的酶髑剂。。我国在利用基因重组构建耐热性一淀粉酶方面已取得一定的进展,何超刚[ 3 等将脂肪嗜热芽孢杆菌淀粉酶基因质粒带人大肠杆菌,使后者具有生 产高淀粉酶能力。任大明0 将带有淀粉酶基因的克隆片段,在枯草杆菌中得到表达。朱卫民将枯草杆菌 a淀粉酶基因在大肠杆苗中的得表达。

α-淀粉酶的研究及应用[文献综述]

毕业论文文献综述 生物工程 α-淀粉酶的研究及应用 淀粉酶是一种水解酶,是目前发酵工业上应用最广泛的一类酶。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。因α-淀粉酶作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖,而β-淀粉酶从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链生成分子量比较大的极限糊精,且α-淀粉酶分布更广泛,已是一种十分重要的酶制剂,α-淀粉酶大量应用于粮食加工、食品工业、酿造、发酵、和医药行业等,它占了整个酶制剂市场份额的25%左右[1]。目前工业生产上都以微生物发酵法大规模生产α-淀粉酶。但随着社会需求的增大,工业生产对α-淀粉酶的需求量也越来越大,急需寻找满足生产需要的具新型特征的酶制剂。因此本文主要讨论以α-淀粉酶为代表的淀粉酶的研究及应用。 1 α-淀粉酶的研究 1.1 α-淀粉酶分离纯化方法的研究 高纯度α-淀粉酶是一种重要的水解淀粉类酶制剂,可用于研究酶反应机理和测定生化反应平衡常数等。分离纯化α-淀粉酶的方法很多,一般都是依据酶分子的大小、形状、电荷性质、溶解度、稳定性、专一性结合位点等性质建立的。要得到高纯度的α-淀粉酶,往往需要将各种方法联合使用。盐析沉淀、凝胶过滤层析、离子交换层析、疏水作用层析、亲和层析和电泳等,是蛋白质分离纯化的主要方法。用吸附树脂法、40%乙醇从α-淀粉酶发酵液中分离高活性α-淀粉酶,用离子交换法和透析法对初酶液进行脱盐处理,最后用DEAE-纤维素纯化α-淀粉酶,所得酶活力为60153U/g,酶活性回收率为66.04%[2]。另通过乙醇沉淀、离子交换层析和凝胶过滤层析等方式,从白曲霉菌A. kawachii的米曲粗抽出液中,分离纯化到两个耐酸性α-淀粉酶比活性极高的组分。用疏水吸附法和DEAE-cellulose(二乙氨基乙基-纤维素)柱层析法分离纯化α-淀粉酶,所得酶活力为110 000 U/g。用硫酸铵沉淀和垂直板制备凝胶电泳对地衣芽孢杆菌A. 4041耐高温α-淀粉酶进行分离纯化,得到3种电泳均一的组分。通过超滤、浓缩、脱盐和聚丙烯酰胺垂直板凝胶电泳,对利用基因工程菌生产的重组超耐热耐酸性α-淀粉酶进行纯化,得到电泳纯级的超耐热耐酸性α-淀粉酶,纯化倍数为11. 7,活力回收率为29. 8%[3]。但上述方法存在的共同问题是,连续操作和规模放大都比较困难。双水相技术具有处理容量大、能耗低、易连续化操作和工程放大等优点。应用双水相系统PEG/磷酸盐分离

α-淀粉酶

根据淀粉酶对淀粉的水解方式不同,可将其分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶等。其中,α-淀粉酶(α-1,4-葡聚糖-4-葡聚糖苷酶)多是胞外酶,其作用于淀粉时可从分子内部随机地切开淀粉链的α-1,4糖苷键,而生成糊精和还原糖,产物的末端残基碳原子构型为α-构型,故称α-淀粉酶。 α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中,当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。它可以由微生物发酵制备,也可以从动植物中提取。不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。 目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。如在淀粉加工业中,微生物α-淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。相对地,关于α-淀粉酶抑制剂国内外也有很多研究报道,α-淀粉酶抑制剂是糖苷水解酶的一种。它能有效地抑制肠道内唾液及胰淀粉酶的活性,阻碍食物中碳水化合物的水解和消化,降低人体糖份吸收、降低血糖和血脂的含量,减少脂肪合成,减轻体重。有报道表明,α-淀粉酶可以帮助改善糖尿病患者的耐糖量。 α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶,其最早的商业化应用在1984年,作为治疗消化紊乱的药物辅助剂。现在,α-淀粉酶已广泛应用于食品、清洁剂、啤酒酿造、酒精工业和造纸工业。 在焙烤工业中的应用: α-淀粉酶用于面包加工中可以使面包体积增大,纹理疏松;提高面团的发酵速度;改善面包心的组织结构,增加内部组织的柔软度;产生良好而稳定的面包外表色泽;提高入炉的急胀性;抗老化,改善面包心的弹性和口感;延长面包心储存过程中的保鲜期 在啤酒酿造中的应用: 啤洒是最早用酶的酿造产品之一,在啤洒酿造中添加α-淀粉酶使其较快液化以取代一部分麦芽,使辅料增加,成本降低,特别在麦芽糖化力低,辅助原料使用比例较大的场合,使用α-淀粉酶和β-淀粉酶协同麦芽糖化,可以弥补麦芽酶系不足,增加可发酵糖含量,提高麦汁率,麦汁色泽降低,过滤速度加快,提高了浸出物得率,同时又缩短了整体糊化时间。在酒精工业中的应用: 在玉米为原料生产酒精中添加α-淀粉酶低温蒸煮的新工艺,每生产1t酒精可节煤 224.42kg。又可减少冷却用水,提高出酒率8.8%,酒精成品质量也有显著提高。酒精生产应用耐高温α-淀粉酶。采用中温95℃~105℃蒸煮,既可有效地杀死原料中带来的杂菌,降低入池酸度和染菌机率,又可保护原材料中的淀粉组织不被破坏,形成焦糖或其它物质而损失,从而提高原料利用率 在造纸工业中的应用: 当代造纸工业中,造纸用化学品在提高纸品质量、增加纸品功能、提高生产效率和降低生产成本等方面发挥着极为重要的作用。由于淀粉与造纸用植物纤维素结构相近,相互间有良好的亲和作用,资源广泛,廉价易得,尤其是经变性处理的淀粉,能赋予纸张优异的性能,因此各类变性淀粉在造纸中广泛用于湿部添加、层间喷雾、表面施胶和涂布粘合。α-淀粉酶可以生产涂布粘合用变性淀粉

a-淀粉酶的简介

淀粉酶【拼音:diàn-fěn méi;英文:Amylase】是一种水解酶,是目前发酵工业上应用最广泛的一类酶。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。 α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。微生物的酶几乎都是分泌性的。此酶以Ca2+为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。因此,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖。另一方面在分解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。一般分解限度以葡萄糖为准是35-50%,但在细菌的淀粉酶中,亦有呈现高达70%分解限度的(最终游离出葡萄糖)。 β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。对于象直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止了,因此生成分子量比较大的极限糊精。从上述的α-淀粉酶和β-淀粉酶的作用方式,分别提出α-1,4-葡聚糖-4-葡萄糖水解酶(α-1,4-glucan 4-glucanohydrolase)和α-1,4-葡聚糖-麦芽糖水解酶(α -1,4-glucan maltohydrolase)的名称等而被使用。 α-淀粉酶是一种内切葡萄糖苷酶,属于淀粉酶α-淀粉酶催化水解淀粉会使淀粉黏度迅速下降,所以又称为液化淀粉酶。 理化性质:米黄色、灰褐色粉末。能水解淀粉中的α-1,4,葡萄糖苷键。能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶。作用温度范围60~90℃,最适宜作用温度为60~70℃,作用pH值范围5.5~7.0,最适pH值为6.0。Ca2+具有一定的激活、提高淀粉酶活力的能力,并且对其稳定性的提高也有一定效果。可催化水解α-1,4-糖苷键,但只能催化水解直链淀粉,生成α-麦芽糖和少量葡萄糖。主要存在于人的唾液和胰脏中,也存在于麦芽、蟑螂涎腺、芽胞杆菌、枯草杆菌、黑曲霉和米曲霉中。可由米曲霉、嗜酸性普鲁士蓝杆菌、淀粉液化杆菌、地衣芽孢杆菌和枯草杆菌分别经发酵、精制、干燥而得。

淀粉酶的提取要点

α-淀粉酶的提取、分离及测定 (生化试验小组-2005.4) 试验全程安排: 试验一、色谱分离淀粉酶 1.1 试剂及设备 离子交换树脂 -20℃冰箱 样品管(5-10ml试管) 1.5ml离心管 紫外分光光度计 α-淀粉酶样品 秒表 胶头吸管(进样用) 平衡缓冲液(pH8.0,0.01M磷酸盐缓冲液) 洗脱缓冲液(平衡缓冲液+0.1M,0.3M,0.5M,1.0M的氯化钠) 试剂瓶 1.2 离子交换色谱原理与方法 色谱(chromatography)是一种分离的技术,随着现代化学技术的发展应运而生。20世纪初在俄国的波兰植物化学家茨维特(Twseet)首先将植物提取物放入装有碳酸钙的玻璃管中,植物提取液由于在碳酸钙中的流速不同分布不同因此在玻璃管中呈现出不同的颜色,这样就可以对各种不同的植物提取液进行有效的成分分离。到1907年茨维特的论文用俄文公开发表,他把这种方法命名为chromatography, 即中文的色谱,这就是现代色谱这一名词的来源。

但由于茨维特当时没有知名度,而且能看懂俄文的人也不多,加之很快爆发了第一次世界大战,茨维特的分离方法一直被束之高阁。20世纪20年代,许多植物化学家开始采用色谱方法对植物提取物进行分离,色谱方法才被广泛地应用。自20世纪40年代以来以Martin为首的化学家建立了一整套色谱的基础理论使色谱分析方法从传统的经验方法总结归纳为一种理论方法,马丁等人还建立了气相色谱仪器使色谱技术从分离方法转化为分析方法。20世纪50年代以后由于战后重建和经济发展的需要,化学工业特别是石油化工得到广泛的发展,亟需建立快速方便有效的石化成分分析。而石化成分十分复杂,结构十分相似,且多数成分熔点又比较低,气相色谱正好吻合石化成分分析的要求,效果十分明显、有效。同样,石化工业的发展也使色谱技术特别是气相色谱得到广泛的应用。气相色谱的仪器也不断得到改进和完善,气相色谱逐渐成为一种工业分析必不可少的手段和工具。 20世纪80年代以后我国也大规模采用气相色谱和高效液相色谱。随着环境科学的发展,不仅需要对大量有机物质进行分离和检测,而且也要求对大量无机离子进行分离和分析。1975年美国Dow化学公司的H.Small等人首先提出了离子交换分离抑制电导检测分析思维 即提出了离子色谱这一概念离子。色谱概念一经提出便立即被商品化产业化由Dow公司组建的Dionex公司最早生产离子色谱并申请了专利。我国从20世纪80年代开始引进离子色谱仪器,在我国八五、九五科技攻关项目中均列有离子色谱国产化的项目,对其进行了重点技术攻关。 色谱的分类 色谱的分类有多种,主要按两相的状态及应用领域的不同可分为两大类 1. 按应用领域不同分类制备色谱半制备色谱 2. 以流动相和固定相的状态分类气相色谱、气固色谱、气液色谱、液相色谱、液固 色谱、液液色谱、超临界色谱、毛细管电泳 离子交换色谱 离子色谱分离主要是应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子。它在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架在苯环上引入磺酸基形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构以便于快速达到交换平衡。离子交换树脂耐酸碱,可在任何pH范围内使用,易再生处理,使用寿命长。缺点是机械强度差,易溶胀,易受有机物污染。 离子色谱基本流程图如下图所示:

α_淀粉酶在食品工业应用研究

α-淀粉酶在食品行业的应用研究 摘要:α-淀粉酶作为淀粉酶的一种,广泛应用于工业生产,在食品、医药、造纸、酿造以及饲料等工业中发挥着越来越重要的作用。文章综述了α-淀粉酶的酶学性质和在食品工业的应用,以及对α-淀粉酶未来发展的思考,如何进一步研究,使其应用价值得到更好的发挥。 关键词:淀粉酶;α-淀粉酶;应用;展望。 1概述 淀粉酶(amylase,Amy,AMS),广泛存在于自然界,几乎所有的植物、动物和微生物都含有淀粉酶。依据对淀粉作用方式的不同分为:α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶、支链淀粉酶和异淀粉酶等;而根据淀粉酶来源的不同又可以分为:细菌淀粉酶、真菌淀粉酶、动物淀粉酶和植物淀粉酶[1]。 其中,α-淀粉酶(α-amylase)属于葡萄糖水解酶家族13(GH13),国际酶学分类编号为 EC 3.2.1.1[2],能随机切开淀粉、糖原等大分子部的α-1,4-葡萄糖苷键,将其水解成糊精、低聚糖和葡萄糖等一系列小分子[3,4],使淀粉黏度迅速下降。由于产物的末端残疾C原子为α 构型,故称α-淀粉酶[5]。不同来源的α-淀粉酶性质有一定的区别,工业上主要是应用真菌和细菌产生的α-淀粉酶。 2α-淀粉酶性质 由于α-淀粉酶来源广泛,其酶学和理化性质会有一定区别,为了满足不同工业生产需要,需要充分了解所使用α-淀粉酶的来源以及其性质,主要有以下三个方面: 2.1温度和pH值 不同温度和pH值条件下,α-淀粉酶的活力会有所不同,只有在最适温度和pH值条件下,酶的稳定性最好,其活力最强,才能更好地发挥作用[6,7]。 2.2底物 和其他酶类一样,α-淀粉酶也具有底物特异性,不同来源的淀粉酶反应底

真菌α-淀粉酶的研究和应用

真菌α-淀粉酶的研究和应用 16120901 20092348 王德美 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。α-淀粉酶在现代淀粉糖浆、焙烤制品、啤酒酿制及生料酒精等行业已得到广泛的应用。随着现代制糖工业与发酵工业的发展及其对真菌α-淀粉酶的使用需求,使得真菌α-淀粉酶在现代工业酶制剂中占有重要地位。对真菌α-淀粉酶的研究和利用,为满足国内市场需求、调整我国酶制剂工业结构和带动相关食品或发酵行业的发展等具有重要意义。 关键词:真菌α-淀粉酶,可发酵性糖,固态发酵,冷冻沉析,食品应用 1.真菌α-淀粉酶的结构及其催化机制 1.1真菌α-淀粉酶的结构 与大多数α-淀粉酶类似,真菌α-淀粉酶通常含有三个结构域,分别称为A、B和C。结构域A为酶的催化反应中心区域,其典型结构为(a/b)8TIM-桶状结构,结构域B和结构域C基本上位于结构域A得到对立两端【1】。其中,Ca2+的保守结合位点位于结构域A和结构域B之间的表面区域,而大多数情况下Ca2+的存在对于α-淀粉酶家族保持其酶活力和稳定性是必须的。结构域B位于TIM-桶状结构域的第三个β-折叠和第三个α-螺旋之间,该区域富含不规则的β-片层结构,在不同的淀粉酶中的大小和结构差异较大,被认为与α-淀粉酶的第五特异性有关。同时,通过定点突变或随机突变结果表明,该部位在淀粉酶中核能相对比较脆弱,与α-淀粉酶的总体稳定性关联密切,其中部分氨基酸的改变对酶的pH稳定性和热稳定性影响较为显著。结构域C形成α-淀粉酶蛋白质羧基端,并含有α-淀粉酶家族所特有的希腊钥匙β-sandwich结构,通常认为其通过将结构域A的疏水区域与溶剂相隔离以稳定催化区域或TIM桶状结构【2】。 1.2真菌α-淀粉酶的催化机制 通过X-射线晶体结构、化学修饰和定点突变等手段,表明Asp206、Glu230和Asp2973个氨基酸可能是α-淀粉酶、家族的核心催化位点【3】。在α-淀粉酶的催化过程中,酶首先固定住异头物(α-构象),然后通过双替换反应进行催化。在第一个替换过程中,酶的酸性基团(Glu230)使糖苷中的氧原子质子化,并使碳和氧的链接键断裂,形成一种鎓盐转换状态,继而在第二个替换过程中由蛋白的亲质子酸性基团对糖的异头物中心进行攻击,形成β-糖基和酶复合的一种临时状态,继而底物的糖基配基离开活性位点。 2.真菌α-淀粉酶的分类 在目前已报道的文献中,各种真菌来源的α-淀粉酶可以粗略的按酶学性质或作用条件将真菌α-淀粉酶分为3种类型:

α-淀粉酶分离提纯技术研究进展

α-淀粉酶分离提纯技术研究进展 摘要:为了更好地研究α-淀粉酶的性质与应用α-淀粉酶,我们需要不断地从不同的生物体内提取α-淀粉酶并将其高纯化。随着生物技术的不断发展,分离提纯的方法也越来越复杂越精确,然而它却为生物学的发展奠定了一定的基础,此篇综述简要地说明近年来国内外在α-淀粉酶的分离纯化等方面成就,也部分介绍了α-淀粉酶的研究现状和工业应用以及发展前景。 关键字:α-淀粉酶分离提纯现状应用前景 α-淀粉酶(α-Amylase)是一种内切葡萄糖苷酶,属于淀粉酶。米黄色、灰褐色粉末。能水解淀粉中的α-1,4,葡萄糖苷键,在催化水解α-1,4-糖苷键只能催化水解直链淀粉,生成α-麦芽糖和少量葡萄糖。能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶。作用温度范围60-90℃,最适宜作用温度为60-70℃,作用pH值范围5.5-7.0,最适pH值为6.0。Ca2+具有一定的激活、提高淀粉酶活力的能力,并且对其稳定性的提高也有一定效果。主要存在于人的唾液和胰脏中也存在于麦芽、蟑螂涎腺、芽胞杆菌、枯草杆菌、黑曲霉和米曲霉中。 一、α-淀粉酶分离提纯的研究历史与现状 1991年中科院北京微生物研究所孔显良等将米曲霉(Aspergillur oryzae)突变株6-193的麦麸固体培养物,经水浸泡其中α-淀粉酶活力为每克于曲 600单位。用硫酸铵分段沉淀,Sephadex G一75凝胶过滤和制备垂直平板电泳纯化,经PAGE 鉴定为一条带。以此来研究其性质,对其与可溶性淀粉溶液作用后的产物经薄层色谱分析,根据扫描结果,葡萄糖、麦芽糖、麦芽三糖、麦芽四糖分别占6.4%、32.3%、37.1%、10.9%。麦芽糖和麦芽三糖二者之和占69.4%,与Novo公司Norman报道的相似,属糖化型α-淀粉酶,可用于制糖、啤酒和面包食品工业,并可以替代一淀粉酶生产麦芽糖浆。米曲霉α-淀粉酶作为面包添加剂比细菌α-淀粉酶耐热性低,避免面包在制造过程中造成过度液化现象,而使生产的面包发粘,在当时此酶是目前较理想的面包食品类的添加剂。 1992年姜涌明等采用壳聚糖絮凝、淀粉吸附、乙醇沉淀等步骤,从枯草芽孢杆菌86315发酵液中提取了α-淀粉酶。然后用Sepbadex G一100凝胶过滤、DEAE—纤维素柱层析进一步提纯,得到DISC-电泳一条带的淀粉酶制剂,从而更好地研究其动力学问题。 1994年西北大学李汉、李华儒等率先开发了一个用强阴离子高效液相色谱分离纯化α-淀粉酶的新方法,在给定的条件下纯化工业α-淀粉酶,其活性回收率达96%,比活性为388u/mg蛋白质.纯化倍数提高30倍,经SDS-PAGE分析,得到分子量分别为58K和33K两条α-淀粉酶谱带。此法纯化α-淀粉酶简单、快速、救率高,不仅能纯化工业粗酶,也可纯化其它来源的α-淀粉酶。在当时,此法的研究成功为大规模制备高纯度α-淀粉酶提供了一个新工艺路线。 在1995年时,唐梓进、肖俊方等针对工业α-淀粉酶常混有其他酶类的问题,改良了淀粉微球亲和吸附纯化α-淀粉酶的方法,将淀粉做成网状结构微球,作为亲和吸附载体,装柱后用于吸附、纯化淀粉酶。此球机械强度大,对酶吸附量高达125mg/mL床体积。低温条件下(4℃)操作,球与酶很少反应,重复操作9次未见明显变化。工业生产较纯的酶经一次过柱后,酶比活仍提高2.3倍,每克干粉酶活提高16.5倍。整个操作过程简单、方便,酶失活很少,过柱后回收率高达91.6%。此球既适用于工业生产中纯化淀粉酶,也适用于实验室中淀粉酶的

α-淀粉酶在食品工业应用研究汇编

α-淀粉酶在食品工业 应用研究

α-淀粉酶在食品行业的应用研究 摘要:α-淀粉酶作为淀粉酶的一种,广泛应用于工业生产,在食品、医药、造纸、酿造以及饲料等工业中发挥着越来越重要的作用。文章综述了α-淀粉酶的酶学性质和在食品工业的应用,以及对α-淀粉酶未来发展的思考,如何进一步研究,使其应用价值得到更好的发挥。 关键词:淀粉酶;α-淀粉酶;应用;展望。 1概述 淀粉酶(amylase,Amy,AMS),广泛存在于自然界,几乎所有的植物、动物和微生物都含有淀粉酶。依据对淀粉作用方式的不同分为:α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶、支链淀粉酶和异淀粉酶等;而根据淀粉酶来源的不同又可以分为:细菌淀粉酶、真菌淀粉酶、动物淀粉酶和植物淀粉酶[1]。 其中,α-淀粉酶(α-amylase)属于葡萄糖水解酶家族13(GH13),国际酶学分类编号为 EC 3.2.1.1[2],能随机切开淀粉、糖原等大分子内部的α-1,4-葡萄糖苷键,将其水解成糊精、低聚糖和葡萄糖等一系列小分子[3,4],使淀粉黏度迅速下降。由于产物的末端残疾C原子为α 构型,故称α-淀粉酶[5]。不同来源的α-淀粉酶性质有一定的区别,工业上主要是应用真菌和细菌产生的α-淀粉酶。 2α-淀粉酶性质 由于α-淀粉酶来源广泛,其酶学和理化性质会有一定区别,为了满足不同工业生产需要,需要充分了解所使用α-淀粉酶的来源以及其性质,主要有以下三个方面:

2.1温度和pH值 不同温度和pH值条件下,α-淀粉酶的活力会有所不同,只有在最适温度和pH值条件下,酶的稳定性最好,其活力最强,才能更好地发挥作用[6,7]。 2.2底物 和其他酶类一样,α-淀粉酶也具有底物特异性,不同来源的淀粉酶反应底物各有不同,α-淀粉酶对淀粉及其衍生物具有高度的特异性。 2.3金属离子 α-淀粉酶中含有金属离子Ca2+,可以维持酶本身的特殊构象,保证酶的活性和稳定性,一旦被其他金属离子取代,酶活性将受到影响。但也有报道称Ca2+是否游离对酶的活性没有影响[8]。 3应用 各种酶制剂在食品工业中,已经有上百年的应用历史,已经广泛应用于食品、医药、酿造、纺织等工业生产中。而现代酶工程技术的快速发展,又使得酶制剂生产工艺不断改善、效率提高、成本降低,从而获得更大的经济效益;通过利用微生物和基因工程等技术,还可以根据实际需要,获得能在不同温度和不同酸碱性环境中工作的α-淀粉酶。 3.1 面粉烘烤 最近几十年,α-淀粉酶已经被广泛应用于焙烤工业中[9]。焙烤工业中使用的酶制剂有很多种,如淀粉酶、蛋白酶、脂肪氧化酶、乳糖酶、普鲁兰酶等,在面粉、蛋糕、饼干等焙烤食品制作过程中发挥着不同的重要作用。其中,尤其是α-淀粉酶,更是有着不可取代的地位。

萌发小麦种子中淀粉酶的提取

萌发小麦种子中淀粉酶的提取、酶活性的测定及PH、温度、激活剂、抑制剂对酶活性的影 响 (东北农业大学生命科学学院, 哈尔滨:150030) 摘要:从萌发的小麦种子中通过离心方法提取淀粉酶,采用分光光度计法绘制麦芽糖标准曲线,并在此基础上测定萌发小麦种子中淀粉酶的活性。温度、PH值、激活剂、抑制剂是影响酶活性的几个重要因素。本实验结果表明,在PH=5.6,T=40℃的条件下,小麦种子中淀粉酶总活性为2325.71mg/g·5min ,而α-淀粉酶的活性为246.33mg/g·5min;40℃左右时,酶的活性最高,室温下活性较高,0℃时淀粉酶活性明显下降,100℃时淀粉酶几乎已失活;PH为5.6时,酶的活性最大,PH=3.6时和PH=8.0时淀粉酶活性降至最低;Cl-使酶的活性增强,Cu2+使酶活性减弱。 关键词:淀粉酶酶活性温度PH 激活剂抑制剂 前言:生物体内的新陈代谢是一切生命活动的基础。新陈代谢是由许多复杂而有规律的化学反应组成,酶是生物体系中的催化剂,生物体内的各种化学反应包括物质转化和能量转化,都是在特定的酶催化下反应的,由于自然界中生物长期进化和组织功能分化的结果,酶在机体中受到严格的调控,使错综复杂的代谢过程有序进行。可以说,没有酶的参与,生命活动即告终止,所以酶学的深入研究在探讨生命现象的本质上使至关重要的[1]。 大多数酶的本质是蛋白质。酶的特性决定了其研究内容的特殊性。随着生物化学、分子生物学、基因工程、化学工程等相关学科的发展,酶学研究早已进入一个崭新的阶段。现代酶学的研究主要包括酶学理论、酶工程和酶应用3部分[2]。它们是现代生物技术的重要组成部分,应用范围包括医药,食品,化学工业,诊断分析和生物传感器,涉及的品种不少,如淀粉酶,其市场需求生产规模和产值均很乐观,并已产生巨大经济效益[3]。 生物体内的各种代谢变化都是由酶驱动的,酶有两种功能:其一,催化各种生化反应,是生物催化剂;其二,调节和控制代谢的速度、方向和途径,是新陈代谢的调节元件。酶对细胞代谢的调节主要有两种方式:一是通过激活或抑制以改变细胞内已有酶分子的催化活性;另一种是通过影响酶分子的合成和降解,以改变酶分子的含量。这种酶水平的调节机制是代谢的最关键的调节[4]。 按照淀粉酶水解淀粉的作用方式,可以分为α-淀粉酶、β-淀粉酶、异淀粉酶和麦芽糖酶四种类型。实验证明,当谷类种子萌发时,两类淀粉酶(α,β型)都存在,淀粉酶总酶活性随种子萌发将升高,有利于淀粉被降解为植物生长发育所需的葡萄糖。许多微生物包括细菌、真菌和酵母都能生产淀粉酶,这些廉价的淀粉酶来源,已广泛应用于食品、医药、饲料和环保等生产实践中[5]。在医学上测定淀粉酶活性的方法有:简易快速纸片测定法[6];苏木杰氏快速计时法[7];单一稳定液体试剂直接测定法[8]等。 池永焕,黄菱红等探究了温度对淀粉酶活性的影响[9];沈文英,胡洪国,潘雅娟研究了温度和PH值对南美白对虾(Penaeus vannmei)消化酶活性的影响[10];司红起,马传喜,董召荣,吴大鹏,高俊进行了小麦多酚氧化酶抑制和激活效应的研究[11]。本实验仅限于酶学研究的最

α-淀粉酶的应用及研究现状

α-淀粉酶的应用及研究现状 作者:来源:时间:2008-11-2 21:44:20 阅读:2064次本站提供与关于代写代发畜牧论文淀粉酶应用研究现状相关的论文服务,详细咨询客服。 α一淀粉酶分布十分广泛,遍及微生物至高等植物。其国际酶学分类编号为EC.3.2.1.1,作用于淀粉时从淀粉分子的内部随机切开α一1,4糖苷键,生成糊精和还原糖,由于产物的末端残基碳原子构型为Α构型,故称α一淀粉酶。现在α一淀粉酶泛指能够从淀粉分子内部随机切开α一1,4糖苷键,起液化作用的一类酶。 α一淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,它占了整个酶制剂市场份额的25%左右。目前工业生产上都以 微生物发酵法大规模生产α一淀粉酶。α一淀粉酶的工业应用 1.1面包焙烤工业,作为保鲜剂酶应用在焙烤工业中生产各种高品质的产品已经有几百年的历史。最近几十年,麦芽α一淀粉酶和微生物α一淀粉酶被广泛用于焙烤工业。这 些酶用于面包工业,使这些产品体积更大,颜色更好,颗粒更柔软。 直到今天,焙烤工业中的α一淀粉酶一直是从大麦麦芽和细菌、真菌叶提取的。自从1955年以及1963年在英国经过GRAS级验证后,真菌淀粉酶一直作为面包的添加剂。现在,它们应用于不同领域。现代化连续焙烤过程中,在面粉中添加α一淀粉酶不仅可以增加发酵率,降低生面团粘度(改进产品的体积和质地),增加生面团中糖的含量,改良面包的口感、外皮颜色和焙烤质量,还可以延长焙烤食品的保鲜时间。

在储存过程中,面包颗粒变得干燥,坚硬,表皮不再清脆,导致面包的口感变差。这些变化统称为变质。每年仅仅由于面包变质而造成的损失超过一亿美元。各种传统的添加剂 被用于防止食品变质,改善焙烤食品的质地和口味。最近,人们开始关注酶作为防腐剂、保鲜剂在生面团改良方面的作用,如支链淀粉酶和一淀粉酶配合可以有效的用于防腐。然而过量的一淀粉酶会导致面包过粘。因此,最近的趋势是使用中温稳定(ITS)α一淀粉酶,它们在淀粉液化后活性很高,但在焙烤过程完成前就失活。尽管已发现大量的微生物可以生产α一淀粉酶,但是具有中温稳定性质的α一淀粉酶仅仅在几种微生物中被发现。 1.2淀粉的液化作用和糖化作用α一淀粉酶的主要市场是淀粉水解的产物,如葡萄糖和果糖。淀粉被转化为高果糖玉米糖浆(HFCS)。由于他们的高甜度,被用于饮料工业中软 饮料的甜味剂。这个液化过程就用到在高温下热稳定性好的α一淀粉酶。α一淀粉酶在淀粉液化上的应用工艺已经相当成熟,而且有很多相关报道。 1.3纤维脱浆现代纤维制造工艺在编织过程中会在纱线中产生大量的细菌,为防止这些纱线断裂,往往会在纱线的表面加一层可去除的保护层。这些表面层的材料有很多种,淀粉是非常好的一个选择,因为它便宜,容易获取,并且可以很容易去除。淀粉脱浆可以利用α一淀粉酶,它能有选择性的去除淀粉浆而不伤害纱线纤维,还能随机的使淀粉降解为易溶于水的糊精,因而容易被洗掉。 1.4造纸工业淀粉酶在造纸工业中的用途主要是改良纸张涂层淀粉。纸张上的浆糊主要是保护纸张在处理过程中免于机械损伤,它同样也改良了成品纸的质量。浆糊提高了纸 张的硬度和强度,增强了纸张的可擦除性,是一种很好的纸张涂料。当纸张穿过两个轧辊时,淀粉浆被加入纸张。这个过程的温度控制在45~6O℃,需要淀粉有稳定的粘度。研磨同样可以根据不同纸张等级控制淀粉的粘度。自然界的淀粉浓度对于纸张上浆来说太高,可以利用α一淀粉酶部分降解淀粉来调节。

α- 淀粉酶

α- 淀粉酶 陈国威2011-11-13 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 Overview of α-amylase Abstract:α-amylases are well distributed throughout microorganisms and other biological. α-amylases are one of the most popular and important form of industrial enzymes,which are used extensively for grain processing,food processing, brewing, fermentation, textile industry and pharmaceutical industry. This article outlines the discovery of α-amylase and application history, purification and structure of history, catalytic mechanism and its research history, industrial production and application status and development trends. Keywords:α-amylases; discovery; application; purification; structure; catalytic mechanism; research history; development trends. α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。 另一个研究进展是由Payen和Persoz(1833年)发现。他们发现在发酵液的酒精析出物中含有一种对热不稳定的物质,它能使淀粉转化为糖。他们将其称为“diastase”,它就是现代所说的淀粉酶。 1886年,Lintner发现了两种淀粉酶-淀粉液化酶和淀粉糖化酶。1924年,Kuhn将淀粉水解酶归为两类。将发酵过程中能够将淀粉水解为β-淀粉酶,其能够将淀粉水解为β型麦芽糖。将能够液化和糊化淀粉的酶称为α-淀粉酶,其作用于淀粉的产物表现为低旋光性,这一点为α型麦芽糖和相关糖的特性[1]。

相关文档
最新文档