红霉素的发酵及提取工艺演示课件
合集下载
红霉素的发酵工艺及提取工艺

注射用红霉素
最新编辑ppt
11
谢谢!
最新编辑ppt
12
• (5)发酵黏度的控制:发酵液的黏度一定程度上反映 了菌丝生长浓度,并对红霉素A.B.C组分的比例有直接 的影响
最新编辑ppt
7
红霉素的提取工艺
在碱性条件下,红霉素一游离碱的形式存在,可容于有 机溶剂中。在碱性的条件下,可与一些酸形成盐。目前, 国内外主要采用有机溶剂萃取或大孔树脂吸附进行提取。
最新编辑ppt
5
红霉素的发酵工艺
(3) 培养条件: (1) 温度:红霉素发酵采用31℃恒温培养。温度过 高时,会产生红霉素C,红霉素C与红霉素A结构相似, 但毒性却是红霉素A的两倍, (2)pH:整个发酵过程中pH维持在6.6~7.2,菌丝生 长良好,发酵水平稳定。红色糖多孢菌最适生长pH为 6.7~7.0,而红霉素合成的最适 pH为6.7 ~6.9。
红霉素的发酵工艺及提取工艺
最新编辑ppt
1
红霉素的产生菌及育种
• 1950年,Lily研究室首次从菲律宾的一个土样 中筛选到了一株产红霉素的红色链霉素〈现称 为红色糖多胞菌〉。该菌在合成培养基上生长 时,气生菌丝为白色,孢子丝呈不紧密的螺旋 状,3~5圈,孢子呈球状
• 我国20世纪60年代以红色糖多胞菌P32– 103为菌种开始红霉素的工业生产,该菌发酵 效价低,且易染噬菌体。随后,国内学者不断 以该菌为原始菌进行了传统的诱变育种,获得 许多生产性能良好的菌株。
丙酸是红霉内脂〈合成红霉素的三中产物之一〉合成的前体 物质,但丙酸对菌丝生长有抑制作用,所以发酵时以丙醇为发酵 前体物质,丙醇在发酵时对菌丝的毒性作用相对较小,对pH的 影响也较小,代谢稳定,发酵单位和产品质量都较高。此外,正 丙醇除了起前体作用外,还对红色糖多孢菌中乙酰CoA合成的诱 导物。
红霉素的发酵生产工艺

精品课件
红霉素的几个代表药品
红霉素肠 溶胶囊
琥乙红霉素
红霉素
罗红霉素
红霉素眼药 膏
精品课件
红霉素软膏
红霉素生产工艺
1 空气净化 2 原料配比→种子罐 → 发酵 罐 →发酵
精品课件
原料: 碳源:玉米淀粉、食用葡萄糖 氮源:硫酸 铵、氨水C/N=1:2 • 豆饼粉 碳酸钙、磷酸二氢钾、硫酸镁 丙 酮、水(工业用水2.85元/吨) 干酵母、 淀粉酶、糖化酶 • 菌种及活化菌种: 红色链霉菌 红色链霉 菌的菌丝体 红色链霉菌的孢子 菌种活化
适用于支原体肺炎、沙眼衣原体引起的新 生儿结膜炎、婴儿肺炎、生殖泌尿道感染(包括 非淋病性尿道炎)、军团菌病、白喉(辅助治疗) 及白喉带菌者、皮肤软组织感染、百日咳、敏感 菌(流感杆菌、肺炎球菌、溶血性链球菌、葡萄 球菌等)引起的呼吸道感染(包括肺炎)、链球 菌咽峡炎、李斯德菌感染、风湿热的长期预防及 心内膜炎的预防、空肠弯曲菌肠炎,以及淋病、 梅毒、痤疮等。
精品课件
药理作用
本品为大环内酯类抗生素,抗菌谱与青霉 素近似,对革兰阳性菌,如葡萄球菌、化脓性链球 菌、绿色链球菌、肺炎链球菌、粪链球菌、溶血性 链球菌、梭状芽孢杆菌 、白喉杆菌、炭疽杆菌等 有强的抑制作用。
对革兰阴性菌,如淋球菌、螺旋杆菌、百日 咳杆菌、布氏杆菌、军团菌、脑膜炎双球菌以及流 感嗜血杆菌、拟杆菌、部分痢疾杆菌及大肠杆菌等 也有一定的抑制作用。
精品课件
此外,对支原体、放线菌、螺旋体、 立克次体、衣原体、奴卡菌、少数分枝杆 菌和阿米巴原虫有抑制作用。金黄色葡萄 球菌对本品易耐药。
作用机制主要是与核糖核蛋白体的50S 亚单位相结合,抑制肽酰基转移酶,影响 核糖核蛋白体的移位过程,妨碍肽链增长, 抑制细菌蛋白质的合成,系抑菌剂
红霉素的几个代表药品
红霉素肠 溶胶囊
琥乙红霉素
红霉素
罗红霉素
红霉素眼药 膏
精品课件
红霉素软膏
红霉素生产工艺
1 空气净化 2 原料配比→种子罐 → 发酵 罐 →发酵
精品课件
原料: 碳源:玉米淀粉、食用葡萄糖 氮源:硫酸 铵、氨水C/N=1:2 • 豆饼粉 碳酸钙、磷酸二氢钾、硫酸镁 丙 酮、水(工业用水2.85元/吨) 干酵母、 淀粉酶、糖化酶 • 菌种及活化菌种: 红色链霉菌 红色链霉 菌的菌丝体 红色链霉菌的孢子 菌种活化
适用于支原体肺炎、沙眼衣原体引起的新 生儿结膜炎、婴儿肺炎、生殖泌尿道感染(包括 非淋病性尿道炎)、军团菌病、白喉(辅助治疗) 及白喉带菌者、皮肤软组织感染、百日咳、敏感 菌(流感杆菌、肺炎球菌、溶血性链球菌、葡萄 球菌等)引起的呼吸道感染(包括肺炎)、链球 菌咽峡炎、李斯德菌感染、风湿热的长期预防及 心内膜炎的预防、空肠弯曲菌肠炎,以及淋病、 梅毒、痤疮等。
精品课件
药理作用
本品为大环内酯类抗生素,抗菌谱与青霉 素近似,对革兰阳性菌,如葡萄球菌、化脓性链球 菌、绿色链球菌、肺炎链球菌、粪链球菌、溶血性 链球菌、梭状芽孢杆菌 、白喉杆菌、炭疽杆菌等 有强的抑制作用。
对革兰阴性菌,如淋球菌、螺旋杆菌、百日 咳杆菌、布氏杆菌、军团菌、脑膜炎双球菌以及流 感嗜血杆菌、拟杆菌、部分痢疾杆菌及大肠杆菌等 也有一定的抑制作用。
精品课件
此外,对支原体、放线菌、螺旋体、 立克次体、衣原体、奴卡菌、少数分枝杆 菌和阿米巴原虫有抑制作用。金黄色葡萄 球菌对本品易耐药。
作用机制主要是与核糖核蛋白体的50S 亚单位相结合,抑制肽酰基转移酶,影响 核糖核蛋白体的移位过程,妨碍肽链增长, 抑制细菌蛋白质的合成,系抑菌剂
红霉素链霉菌发酵液中提取红霉素

会破坏红霉素的结构
用途
直接作为医药用品
提纯的特点:
1、目标产物低; 2、杂质多,黏度大; 3、红霉素是多组分抗生素; 4、性质不稳定;
5、(药品)符合特殊的质量和安全要求;
传统的提取工艺:
1、溶媒萃取法。碱性条件下,红霉素可以由水相转移到有 机相——萃取;酸性条件下,红霉素由有机相转移到水相——反 萃取;反复的相转移中实现浓缩和除杂。 当pH>10.0时红霉素基本以游离碱的形式存在,能溶于乙酸 丁酯中,当pH<6.0时,红霉素以盐的形式存在,其在水中的溶解 度随pH降低而迅速增大。 提取采用在乙酸丁酯及在醋酸缓冲液中反复萃取。
(4)中间补料
• 发酵过程中还原糖控制在1.2%一1.6%范围内,每隔6h加入 葡萄糖,直至故罐前12—18h停止加糖。有机氮源一般每B4r 3— 4次。根据发酵液浓度的大小决定补入量的多少,若浓度低可增 加补料量;反之,则减少补料量,甚至适量补水,故罐前24h停 止补料。前体一般在24h,当发酵液变浓,pH高于6.5时开始补 入,每隔24hAR一次,全程共加4至5次,总量为o.7%一o.8%。
• (7)消泡
• 因发酵培养基有黄豆饼粉,故在培养基消毒及通争气时泡沫较多。一般 以植物油(豆油或菜油)做消沫剂,不宜一次多量加入。
目录
3
三、提取红霉素的方法选择
发酵液成分 仅有约4%~8%的红霉素,其余为
菌体、蛋白质、色素、油脂等
3 分离提纯
三、提取红霉素的方法选择 性质不稳定,pH过高、过低均 产品性质
2、红霉素的作用及应用范围:
• 红霉素是广谱抗生素,对格兰阳性菌作用强,临床上主要用于呼吸道感 染、皮肤与软组织感染 、泌尿生殖系统感染及胃肠道感染等。用于治 疗腹泻、菌痢、胆结石、胆囊炎、绿脓杆菌继发感染、支气管炎、哮喘 和脓毒性心内膜炎皆有效。红霉素还起到预防心脏病的作用,用于辅助 治疗肺癌和节段性回肠炎。亦可用于预防风湿季节性发作。红霉素得多 副作用小。主要副作用为恶心和呕吐等胃肠道反应,适用于青霉素过敏 者。 • 其作用机理是:核糖体是细胞中蛋白合成场所,无论原核或真核细胞内 核糖体的含量都与细胞蛋白合成活性直接相关。一旦核糖体功能受到破 坏,细胞会由于不能合成蛋白而死亡。红霉素在细胞中的作用对象就是 核糖体,其作用方式有两种:一是抑制50S核糖体大亚基的形成,另一 个是抑制核糖体的翻译作用。 • 目前市场上的主要红霉素商品有:红霉素软膏、罗红霉素、红霉素眼 膏、红霉素肠溶胶囊、红霉素肠溶片、红霉素片、罗红霉素片、红霉素 分散片等等。
用途
直接作为医药用品
提纯的特点:
1、目标产物低; 2、杂质多,黏度大; 3、红霉素是多组分抗生素; 4、性质不稳定;
5、(药品)符合特殊的质量和安全要求;
传统的提取工艺:
1、溶媒萃取法。碱性条件下,红霉素可以由水相转移到有 机相——萃取;酸性条件下,红霉素由有机相转移到水相——反 萃取;反复的相转移中实现浓缩和除杂。 当pH>10.0时红霉素基本以游离碱的形式存在,能溶于乙酸 丁酯中,当pH<6.0时,红霉素以盐的形式存在,其在水中的溶解 度随pH降低而迅速增大。 提取采用在乙酸丁酯及在醋酸缓冲液中反复萃取。
(4)中间补料
• 发酵过程中还原糖控制在1.2%一1.6%范围内,每隔6h加入 葡萄糖,直至故罐前12—18h停止加糖。有机氮源一般每B4r 3— 4次。根据发酵液浓度的大小决定补入量的多少,若浓度低可增 加补料量;反之,则减少补料量,甚至适量补水,故罐前24h停 止补料。前体一般在24h,当发酵液变浓,pH高于6.5时开始补 入,每隔24hAR一次,全程共加4至5次,总量为o.7%一o.8%。
• (7)消泡
• 因发酵培养基有黄豆饼粉,故在培养基消毒及通争气时泡沫较多。一般 以植物油(豆油或菜油)做消沫剂,不宜一次多量加入。
目录
3
三、提取红霉素的方法选择
发酵液成分 仅有约4%~8%的红霉素,其余为
菌体、蛋白质、色素、油脂等
3 分离提纯
三、提取红霉素的方法选择 性质不稳定,pH过高、过低均 产品性质
2、红霉素的作用及应用范围:
• 红霉素是广谱抗生素,对格兰阳性菌作用强,临床上主要用于呼吸道感 染、皮肤与软组织感染 、泌尿生殖系统感染及胃肠道感染等。用于治 疗腹泻、菌痢、胆结石、胆囊炎、绿脓杆菌继发感染、支气管炎、哮喘 和脓毒性心内膜炎皆有效。红霉素还起到预防心脏病的作用,用于辅助 治疗肺癌和节段性回肠炎。亦可用于预防风湿季节性发作。红霉素得多 副作用小。主要副作用为恶心和呕吐等胃肠道反应,适用于青霉素过敏 者。 • 其作用机理是:核糖体是细胞中蛋白合成场所,无论原核或真核细胞内 核糖体的含量都与细胞蛋白合成活性直接相关。一旦核糖体功能受到破 坏,细胞会由于不能合成蛋白而死亡。红霉素在细胞中的作用对象就是 核糖体,其作用方式有两种:一是抑制50S核糖体大亚基的形成,另一 个是抑制核糖体的翻译作用。 • 目前市场上的主要红霉素商品有:红霉素软膏、罗红霉素、红霉素眼 膏、红霉素肠溶胶囊、红霉素肠溶片、红霉素片、罗红霉素片、红霉素 分散片等等。
红霉素的发酵生产工艺

精选2021版课件
6
临床上主要用于耐青霉素的金黄色葡萄 球菌感染及对青霉素过敏的金黄色葡萄球 菌感染。亦用于溶血性链球菌及肺炎球菌 所致的呼吸道、军团菌肺炎、支原体肺炎、 皮肤软组织等感染,此外,对白喉病人, 以本品及白喉抗毒素联用则疗效显著。
精选2021版课件
7
副作用
1、胃肠道反应,可有恶心、呕吐、腹痛及 腹泻,反应与剂量大小有关。
公司立足自身资源,整合了膜技术、连续 离交技术以及EA(有机溶媒萃取吸收)技 术,开发出了一套全新的红霉素提取新技 术,新工艺采用超滤膜、树脂以及纳滤膜 技术来浓缩和纯化红霉素料液,替代了原 有的板框+萃取来浓缩料液的工艺,可以 明显的降低红霉素生产成本,再结合新工 艺的后续纯化措施,可有效的提高红霉素 产品的质量,提高产品的竞争力。
或丙酮中易溶,在水中极微溶解。
精选2021版课件
3
药理作用
本品为大环内酯类抗生素,抗菌谱与青霉素近 似,对革兰阳性菌,如葡萄球菌、化脓性链球菌、 绿色链球菌、肺炎链球菌、粪链球菌、溶血性链球 菌、梭状芽孢杆菌 、白喉杆菌、炭疽杆菌等有强 的抑制作用。
对革兰阴性菌,如淋球菌、螺旋杆菌、百日咳 杆菌、布氏杆菌、军团菌、脑膜炎双球菌以及流感 嗜血杆菌、拟杆菌、部分痢疾杆菌及大肠杆菌等也 有一定的抑制作用。
5
适应症
适用于支原体肺炎、沙眼衣原体引起的新生儿
结膜炎、婴儿肺炎、生殖泌尿道感染(包括非淋 病性尿道炎)、军团菌病、白喉(辅助治疗)及 白喉带菌者、皮肤软组织感染、百日咳、敏感菌 (流感杆菌、肺炎球菌、溶血性链球菌、葡萄球 菌等)引起的呼吸道感染(包括肺炎)、链球菌 咽峡炎、李斯德菌感染、风湿热的长期预防及心 内膜炎的预防、空肠弯曲菌肠炎,以及淋病、梅 毒、痤疮等。
红霉素提取工艺

,废液可用于其他工业生产过程,减少废弃物排放。
03
清洁生产技术应用
采用清洁生产技术,如绿色溶剂替代、酶法提取等,减少对环境的影响
。
未来发展趋势预测
连续化、自动化生产
随着科技的不断进步,红霉素提取工艺将向连续化、自动化方向 发展,提高生产效率和质量稳定性。
智能化技术应用
利用人工智能、大数据等技术手段对红霉素提取过程进行智能化 控制和管理,实现精准化生产。
利用超临界流体(如CO2)对红霉素进行萃取。优点是提取效率高,且操作条 件温和,避免了对红霉素结构的破坏。缺点是设备投资大,操作技术要求高。
微波辅助提取法
利用微波加热原理,加速红霉素在溶剂中的溶解和扩散。优点是提取时间短, 效率高,且节能环保。缺点是可能对红霉素结构造成一定影响,且需要进一步 优化提取条件。
中间条件试验
03
在加速试验和长期试验之间设定一组中间条件,进一步了解红
霉素产品在不同条件下的稳定性变化。
06
红霉素提取工艺优化与改 进方向
提高原料利用率途径探讨
原料预处理
通过物理或化学方法对 原料进行预处理,如破 碎、浸泡、酶解等,以 提高有效成分的提取率 。
提取溶剂选择
针对不同原料特性,选 择适宜的提取溶剂,如 乙醇、丙酮、乙酸乙酯 等,以提高目标成分的 溶解度和提取效率。
红霉素提取工艺
演讲人:
日期:
目 录
• 红霉素概述 • 红霉素提取原料与预处理 • 红霉素提取方法与工艺流程 • 红霉素纯化与分离技术 • 红霉素产品质量控制与分析方法 • 红霉素提取工艺优化与改进方向
01
红霉素概述
红霉素结构及性质
化学结构
红霉素是一种大环内酯类抗生素 ,具有内酯环结构,通过糖苷键
红霉素的发酵生产工艺

产酸塔:通过酸化菌分解成挥发性脂肪酸、醇类、 乳酸、 二氧化碳、氢气、氨、硫化氢等。
厌氧塔:甲烷细菌利用乙酸或氢气和二氧化碳形成CH4。
曝气沉淀池:将空气中的氧强制溶解到混合液中的过程。
废水中有机物的回收处理工段:主要是丙 酮的回收,初馏和精馏两道工序。
废液贮罐→粗馏再沸器→粗馏塔→冷却 器→精馏塔→精馏再沸器→精贮藏罐→冷 凝器→冷却塔→冷凝器→贮罐→装桶
发 酵 液
碱 化
加4% 硫酸锌
板
框
调节
过
PH
滤
溶媒 萃取
溶媒 再生 套用
废水 排放
离心 机分
离
晶体 烘干
过
加入
溶媒
滤
NaSCN
相
主要缺点为:
a.需要大量絮凝剂 红霉素过滤时消耗的絮凝剂主要是硫酸锌,并且硫
酸锌作为重金属,过滤菌渣不容易处理。 b.萃取工艺成本较高 红霉素萃取工艺需要消耗大量的复合溶媒,溶媒需
此外,对支原体、放线菌、螺旋体、立 克次体、衣原体、奴卡菌、少数分枝杆菌 和阿米巴原虫有抑制作用。金黄色葡萄球 菌对本品易耐药。
作用机制主要是与 糖核蛋白体的移位过程,妨碍肽链增长, 抑制细菌蛋白质的合成,系抑菌剂
适应症
适用于支原体肺炎、沙眼衣原体引起的新生儿 结膜炎、婴儿肺炎、生殖泌尿道感染(包括非淋 病性尿道炎)、军团菌病、白喉(辅助治疗)及 白喉带菌者、皮肤软组织感染、百日咳、敏感菌 (流感杆菌、肺炎球菌、溶血性链球菌、葡萄球 菌等)引起的呼吸道感染(包括肺炎)、链球菌 咽峡炎、李斯德菌感染、风湿热的长期预防及心 内膜炎的预防、空肠弯曲菌肠炎,以及淋病、梅 毒、痤疮等。
红霉素的发酵 生产工艺
主要内容
1、红霉素的简介 2、红霉素的发酵工艺流程 3、红霉素发酵工艺中的废水及废渣的处理
厌氧塔:甲烷细菌利用乙酸或氢气和二氧化碳形成CH4。
曝气沉淀池:将空气中的氧强制溶解到混合液中的过程。
废水中有机物的回收处理工段:主要是丙 酮的回收,初馏和精馏两道工序。
废液贮罐→粗馏再沸器→粗馏塔→冷却 器→精馏塔→精馏再沸器→精贮藏罐→冷 凝器→冷却塔→冷凝器→贮罐→装桶
发 酵 液
碱 化
加4% 硫酸锌
板
框
调节
过
PH
滤
溶媒 萃取
溶媒 再生 套用
废水 排放
离心 机分
离
晶体 烘干
过
加入
溶媒
滤
NaSCN
相
主要缺点为:
a.需要大量絮凝剂 红霉素过滤时消耗的絮凝剂主要是硫酸锌,并且硫
酸锌作为重金属,过滤菌渣不容易处理。 b.萃取工艺成本较高 红霉素萃取工艺需要消耗大量的复合溶媒,溶媒需
此外,对支原体、放线菌、螺旋体、立 克次体、衣原体、奴卡菌、少数分枝杆菌 和阿米巴原虫有抑制作用。金黄色葡萄球 菌对本品易耐药。
作用机制主要是与 糖核蛋白体的移位过程,妨碍肽链增长, 抑制细菌蛋白质的合成,系抑菌剂
适应症
适用于支原体肺炎、沙眼衣原体引起的新生儿 结膜炎、婴儿肺炎、生殖泌尿道感染(包括非淋 病性尿道炎)、军团菌病、白喉(辅助治疗)及 白喉带菌者、皮肤软组织感染、百日咳、敏感菌 (流感杆菌、肺炎球菌、溶血性链球菌、葡萄球 菌等)引起的呼吸道感染(包括肺炎)、链球菌 咽峡炎、李斯德菌感染、风湿热的长期预防及心 内膜炎的预防、空肠弯曲菌肠炎,以及淋病、梅 毒、痤疮等。
红霉素的发酵 生产工艺
主要内容
1、红霉素的简介 2、红霉素的发酵工艺流程 3、红霉素发酵工艺中的废水及废渣的处理
红霉素生产工艺课件

1 2
全球销售量
红霉素是全球抗生素市场的重要品种,年销售量 较大。
国内市场
我国是红霉素生产大国,国内市场供应充足。
3
价格趋势
随着生产技术的改进和市场竞争的加剧,红霉素 的价格呈现下降趋势。
02
红霉素生产工艺流程
菌种准备
菌种来源
01
从土壤、动植物等天然环境中分离得到红霉素产生菌。
菌种选育
02
通过紫外线、化学诱变等方法对菌种进行诱变,提高红霉素产
竞争力。
感谢观看
THANKS
发酵参数控制
控制温度、压力、搅拌速度、通气量等发酵参数,以 获得高产的红霉素。
产物检测
在发酵过程中,定期检测红霉素浓度,了解发酵进程 。
提取和精制
提取
采用有机溶剂萃取、离子交换等方法,从发酵液中提取红霉素。
精制
通过结晶、重结晶等方法,去除杂质,提高红霉素纯度。
干燥与包装
将红霉素进行干燥处理,并进行包装,以便运输和销售。
应急预案制定
根据生产工艺特点和潜在事故类型,制定科学、合理、可行的应急 预案。
应急物资储备
建立应急物资储备制度,确保应急物资的充足和有效性。
应急演练与培训
定期组织应急演练和培训,提高员工应对突发事件的能力和自救互救 能力。
06
未来红霉素生产工艺的发 展趋势
新技术的研发和应用
生物技术
利用基因工程和酶工程 等生物技术手段,提高 红霉素的产量和纯度, 降低生产成本。
03
红霉素生产过程中的问题 与对策
杂菌污染的预防和处理
杂菌污染的预防
在红霉素发酵过程中,应严格控制环境卫生,定期对发酵罐 、管道、阀门等进行彻底清洗和消毒,避免交叉污染。同时 ,加强空气过滤和灭菌,防止空气中的杂菌进入发酵液。
生化制药四班红霉素的制备工艺课件

在红霉素的合成过程中,某些代谢物 可能会对关键酶产生反馈抑制作用, 从而调节红霉素的合成速率和产量。
03 红霉素的制备工艺流程
菌种选育和种子扩大培养
菌种选育
选择高产红霉素的菌种,通过突 变、诱变等方法提高菌种的产量 。
种子扩大培养
将选育好的菌种在种子罐中进行 扩大培养,为发酵生产提供足够 的菌体量。
红霉素在临床上的广泛应用,为抗生素的研发和应用奠定了基础,推动了医药行业 的发展。
红霉素的生产现状和挑战
目前,红霉素主要通过微生物发酵法生产,使用的菌种是弗氏链霉菌。
随着全球抗生素市场的不断扩大,红霉素的需求量也在逐年增加。为了 满足市场需求,需要不断提高生产效率和产品质量。
面临的挑战包括如何提高发酵产率、降低生产成本、减少环境污染等。 同时,随着抗生素耐药性的增加,开发新型抗生素也成为了迫切的需求 。
根据不同应用领域,如口服 制剂、注射剂等,进行市场细
分。
客户需求
客户对红霉素的质量、价格 、供货稳定性等方面有不同需
求。
红霉素的发展趋势和未来展望
发展趋势
红霉素的制备技术不断 改进,新剂型不断涌现
。
未来展望
随着抗生素耐药性的问 题日益严重,红霉素作 为经典抗生素仍将发挥
重要作用。
政策影响
相关政策法规对红霉素 的生产和市场销售有重
稳定性评价
应对红霉素的稳定性进行评价,包括对其在温度、湿度、光 照等条件下的稳定性进行考察,以便确定其有效期和储存条 件。同时,应定期对留样进行检测,以确保其质量符合标准 。
05 红霉素的生产成本和市场 前景
红霉素的生产成本分析
直接生产成本
主要包括原材料、能源、设备折旧、劳动力 等费用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
菌体浓度对发酵的影响及控制
发酵接种量较大且保持在合适的浓度,则缩短细菌生长期,使 产物合成时间提前;但是如果接种量过大,超出适宜值,则生长 过快,物料黏度增加,导致溶氧不足,最终影响产物合成
碳源对发酵的影响及其控制 按菌体利用快慢而言,分为迅速利用 的碳源和缓慢利用的碳源。前者(如葡萄糖)能较迅速地参与代谢、 合成菌体和产生能量,并产生分解代谢产物,因此有利于菌体生 长,但有的分解代谢产物对产物的合成可能产生阻遏作用;后者 (如乳糖)为菌体缓慢利用,有利于延长代谢产物的合成,特别有 利于延长抗生素的生产期,也为许多微生物药物的发酵所采用。
丙酸是红霉内脂〈合成红霉素的三中产物之一〉合成的前 体物质,但丙酸对菌丝生长有抑制作用,所以发酵时以 丙醇为发酵前体物质,丙醇在发酵时对菌丝的毒性作用 相对较小,对pH的影响也较小,代谢稳定,发酵单位 和产品质量都较高。此外,正丙醇除了起前体作用外, 还对红色糖多孢菌中乙酰CoA合成的诱导物。
在无机元素中,铁离子抑制红霉素的合成。
红霉素的发酵工艺
3)培养条件: (1) 温度:红霉素发酵采用31℃恒温培养。温度过 高时,会产生红霉素C,红霉素C与红霉素A结构相似, 但毒性却是红霉素A的两倍,
(2)pH:整个发酵过程中pH维持在6.6~7.2,菌丝生 长良好,发酵水平稳定。红色糖多孢菌最适生长pH为 6.7~7.0,而红霉素合成的最适 pH为6.7 ~6.9。
氮源对发酵的影响及其控制 氮源有无机氮源和有机 氮源两类。 如谷氨酸发酵,当NH4+供应不足时, 就促使形成α-酮戊二酸;过量的NH4+,反而促使谷氨 酸转变成谷氨酰胺。 发酵培养基一般是选用含有快 速利用和慢速利用的混合氮源。 如氨基酸发酵用铵 盐(硫酸铵或醋酸铵)和麸皮水解液、玉米浆。
补加有机氮源 根据产生菌的代谢情况,可在发酵过 程中添加某些具有调节生长代谢作用的有机氮源,如酵 母粉、玉米浆、尿素等。
(5)发酵黏度的控制:发酵液的黏度一定程度上反 映了菌丝生长浓度,并对红霉素A.B.C组分的比例有 直接的影响
接种
发酵菌种接种菌龄必须掌握恰当时机,接种过早或过晚都将不 利于发酵的进行。发酵接入菌种太年轻,前期生长缓慢,产物开 始形成时间推迟,整个发酵周期延长;如果太老,菌量虽多,却 导致生产能力下降,菌体过早自溶。
代谢产物所必需的,磷酸盐浓度的控制,对于初级代谢 来说,要求不如次级代谢那么严格。对抗生素发酵来说, 常常是采用生长亚适量(对菌体生长不是最适合但又不 影响生长的量)的磷酸盐浓度,其最适浓度取决于菌种 特性、培养条件、培养基组成和来源等因素。 工艺控制
比如溶氧控制结合,发酵时,在数1之前我们控制 比较小的通气量(目前我们的发酵控制点在发酵6小时 为延迟期),一来节约成本,二来适应地衣芽孢杆菌的 发酵需要;而到了数1-3的时期我们采取高通气量来配 合地衣的生产,数3以后又要降低通风量。 在发酵 地衣芽孢杆菌时,形成芽孢期对整个的发酵生产至关重 要,很大程度上决定了产量和收率,经过多次 实验和 总结我们找出了依pH为指标的关键控制点。应该说这 个小小的细节对我们整个产品的提高起到了很好的保障 作用
〈1〉生产孢子的制备:红色糖多胞菌斜面孢子培养 基由淀粉、玉米浆、硫酸铵等组成,孢子培养的温度为 37℃,湿度50﹪左右。母瓶斜面培养9d,子瓶斜面培 养7d。成熟的孢子呈深米黄色,色泽鲜艳、均匀、无黑 点,孢子瓶背面有红色色素。
〈2〉生产种子的制备:种子罐及繁殖罐的培养基由 淀粉、葡萄糖、花生饼粉、蛋白胨、硫酸铵和碳酸钙等 组成,灭菌后将子瓶斜面孢子制成孢子悬液,用微控注 射的方式接 入种子罐。种子培养温度为35℃,培养时 间为65h,繁殖罐培养温度为33℃,培养时间为30~ 32h左右。种子培养成熟并经检验合格后以10﹪的接种 量移入发酵罐。
红霉素的发酵工艺及提取工艺
报告人
赵训平
小组成员:
陈云、杜婧文,李安、陈哲
红霉素的产生菌及育种
1950年,Lily研究室首次从菲律宾的一个土 样中筛选到了一株产~ 红霉素的红色链霉素 〈现称为红色糖多胞菌〉。该菌在合成培养 基上生长时,气生菌丝为白色,孢子丝呈不
紧密的螺旋状,3~5圈,孢子呈球状 我国20世纪60年代以红色糖多胞菌P32– 103为菌种开始红霉素的工业生产,该菌发 酵效价低,且易染噬菌体。随后,国内学者 不断以该菌为原始菌进行了传统的诱变育种,
红霉素的发酵工艺
2>培养基 发酵培养基最适合的碳源为蔗糖、其次为葡萄糖、
淀粉、糊精。生产上常用葡萄糖和淀粉为混合碳源,效 果与使用葡萄糖相似。
氮源的代谢对红霉素合成影响很大,当适于菌体生 长的氮源耗尽时,菌体才停止生长并迅速合成红霉素。 红霉素生产中一般都用有机氮源,其中以黄豆饼粉、玉 米浆为最佳。由于黄豆饼粉菌时泡沫较多,故一、二级 种子罐及后期补料用部分花生饼粉代替,但全用花生饼 粉则最终产品会出现带会现象。在发酵培养基中加少量 硫酸铵,可促进菌丝生长。
补加无机氮源 补加氨水或硫酸铵是工业上的常用方 法。氨水既可作为无机氮源,又可调节pH值。在抗生 素发酵工业中,通氨是提高发酵产量的有效措施。当 pH值偏高而又需补氮时,就可补加生理酸性物质的硫 酸铵,以达到提高氮含量和调节pH值的双重目的。
磷酸盐对发酵的影响及其控制 磷是微生物菌体生长繁殖所必需的成分,也是合成
获得许多生产性能良好的菌株。
红霉素的发酵工艺
孢子培养
沙土孢子
孢子培养
母瓶斜面培养
37℃ 7 ~ 10 h
37℃ 7 ~ 10 h源自种子罐培养子瓶斜面培
34 ~ 35℃ 60 ~ 70h 种子罐培养
发酵
一级种子液
二级种子液
32 ~35 ℃ 30~32h
发酵液
31℃ 150~160h
红霉素的发酵工艺
1〉种子培养:
(3)通气和搅拌:红霉素发酵为好氧发酵。一般地, 发酵最初12h,通气量保持在0.4vvm(每分钟通气量与 罐体实际料液体积的比值),12h后到放罐可控制在 0.8~1.0vvm。搅拌速度不宜太快,容易损伤菌丝,不 利于发酵
红霉素的发酵工艺
(4)补料:发酵过程中还原糖浓度控制在1.0%~1.4 %范围内,每隔6补加葡萄糖一次,直到放罐前1218 停止补糖。40后补加有机氮源,每日34次,若发酵罐 的黏度上升则增加补料量,反之则减少,放罐前24停 止补氮。发酵后期添加氨水可以提高发酵单位,减少 脱水红霉素的形成,改善产品质量,补加硫酸镁可以 改善菌丝生长状况,提高发酵单位。前提一般在24后 补加
发酵接种量较大且保持在合适的浓度,则缩短细菌生长期,使 产物合成时间提前;但是如果接种量过大,超出适宜值,则生长 过快,物料黏度增加,导致溶氧不足,最终影响产物合成
碳源对发酵的影响及其控制 按菌体利用快慢而言,分为迅速利用 的碳源和缓慢利用的碳源。前者(如葡萄糖)能较迅速地参与代谢、 合成菌体和产生能量,并产生分解代谢产物,因此有利于菌体生 长,但有的分解代谢产物对产物的合成可能产生阻遏作用;后者 (如乳糖)为菌体缓慢利用,有利于延长代谢产物的合成,特别有 利于延长抗生素的生产期,也为许多微生物药物的发酵所采用。
丙酸是红霉内脂〈合成红霉素的三中产物之一〉合成的前 体物质,但丙酸对菌丝生长有抑制作用,所以发酵时以 丙醇为发酵前体物质,丙醇在发酵时对菌丝的毒性作用 相对较小,对pH的影响也较小,代谢稳定,发酵单位 和产品质量都较高。此外,正丙醇除了起前体作用外, 还对红色糖多孢菌中乙酰CoA合成的诱导物。
在无机元素中,铁离子抑制红霉素的合成。
红霉素的发酵工艺
3)培养条件: (1) 温度:红霉素发酵采用31℃恒温培养。温度过 高时,会产生红霉素C,红霉素C与红霉素A结构相似, 但毒性却是红霉素A的两倍,
(2)pH:整个发酵过程中pH维持在6.6~7.2,菌丝生 长良好,发酵水平稳定。红色糖多孢菌最适生长pH为 6.7~7.0,而红霉素合成的最适 pH为6.7 ~6.9。
氮源对发酵的影响及其控制 氮源有无机氮源和有机 氮源两类。 如谷氨酸发酵,当NH4+供应不足时, 就促使形成α-酮戊二酸;过量的NH4+,反而促使谷氨 酸转变成谷氨酰胺。 发酵培养基一般是选用含有快 速利用和慢速利用的混合氮源。 如氨基酸发酵用铵 盐(硫酸铵或醋酸铵)和麸皮水解液、玉米浆。
补加有机氮源 根据产生菌的代谢情况,可在发酵过 程中添加某些具有调节生长代谢作用的有机氮源,如酵 母粉、玉米浆、尿素等。
(5)发酵黏度的控制:发酵液的黏度一定程度上反 映了菌丝生长浓度,并对红霉素A.B.C组分的比例有 直接的影响
接种
发酵菌种接种菌龄必须掌握恰当时机,接种过早或过晚都将不 利于发酵的进行。发酵接入菌种太年轻,前期生长缓慢,产物开 始形成时间推迟,整个发酵周期延长;如果太老,菌量虽多,却 导致生产能力下降,菌体过早自溶。
代谢产物所必需的,磷酸盐浓度的控制,对于初级代谢 来说,要求不如次级代谢那么严格。对抗生素发酵来说, 常常是采用生长亚适量(对菌体生长不是最适合但又不 影响生长的量)的磷酸盐浓度,其最适浓度取决于菌种 特性、培养条件、培养基组成和来源等因素。 工艺控制
比如溶氧控制结合,发酵时,在数1之前我们控制 比较小的通气量(目前我们的发酵控制点在发酵6小时 为延迟期),一来节约成本,二来适应地衣芽孢杆菌的 发酵需要;而到了数1-3的时期我们采取高通气量来配 合地衣的生产,数3以后又要降低通风量。 在发酵 地衣芽孢杆菌时,形成芽孢期对整个的发酵生产至关重 要,很大程度上决定了产量和收率,经过多次 实验和 总结我们找出了依pH为指标的关键控制点。应该说这 个小小的细节对我们整个产品的提高起到了很好的保障 作用
〈1〉生产孢子的制备:红色糖多胞菌斜面孢子培养 基由淀粉、玉米浆、硫酸铵等组成,孢子培养的温度为 37℃,湿度50﹪左右。母瓶斜面培养9d,子瓶斜面培 养7d。成熟的孢子呈深米黄色,色泽鲜艳、均匀、无黑 点,孢子瓶背面有红色色素。
〈2〉生产种子的制备:种子罐及繁殖罐的培养基由 淀粉、葡萄糖、花生饼粉、蛋白胨、硫酸铵和碳酸钙等 组成,灭菌后将子瓶斜面孢子制成孢子悬液,用微控注 射的方式接 入种子罐。种子培养温度为35℃,培养时 间为65h,繁殖罐培养温度为33℃,培养时间为30~ 32h左右。种子培养成熟并经检验合格后以10﹪的接种 量移入发酵罐。
红霉素的发酵工艺及提取工艺
报告人
赵训平
小组成员:
陈云、杜婧文,李安、陈哲
红霉素的产生菌及育种
1950年,Lily研究室首次从菲律宾的一个土 样中筛选到了一株产~ 红霉素的红色链霉素 〈现称为红色糖多胞菌〉。该菌在合成培养 基上生长时,气生菌丝为白色,孢子丝呈不
紧密的螺旋状,3~5圈,孢子呈球状 我国20世纪60年代以红色糖多胞菌P32– 103为菌种开始红霉素的工业生产,该菌发 酵效价低,且易染噬菌体。随后,国内学者 不断以该菌为原始菌进行了传统的诱变育种,
红霉素的发酵工艺
2>培养基 发酵培养基最适合的碳源为蔗糖、其次为葡萄糖、
淀粉、糊精。生产上常用葡萄糖和淀粉为混合碳源,效 果与使用葡萄糖相似。
氮源的代谢对红霉素合成影响很大,当适于菌体生 长的氮源耗尽时,菌体才停止生长并迅速合成红霉素。 红霉素生产中一般都用有机氮源,其中以黄豆饼粉、玉 米浆为最佳。由于黄豆饼粉菌时泡沫较多,故一、二级 种子罐及后期补料用部分花生饼粉代替,但全用花生饼 粉则最终产品会出现带会现象。在发酵培养基中加少量 硫酸铵,可促进菌丝生长。
补加无机氮源 补加氨水或硫酸铵是工业上的常用方 法。氨水既可作为无机氮源,又可调节pH值。在抗生 素发酵工业中,通氨是提高发酵产量的有效措施。当 pH值偏高而又需补氮时,就可补加生理酸性物质的硫 酸铵,以达到提高氮含量和调节pH值的双重目的。
磷酸盐对发酵的影响及其控制 磷是微生物菌体生长繁殖所必需的成分,也是合成
获得许多生产性能良好的菌株。
红霉素的发酵工艺
孢子培养
沙土孢子
孢子培养
母瓶斜面培养
37℃ 7 ~ 10 h
37℃ 7 ~ 10 h源自种子罐培养子瓶斜面培
34 ~ 35℃ 60 ~ 70h 种子罐培养
发酵
一级种子液
二级种子液
32 ~35 ℃ 30~32h
发酵液
31℃ 150~160h
红霉素的发酵工艺
1〉种子培养:
(3)通气和搅拌:红霉素发酵为好氧发酵。一般地, 发酵最初12h,通气量保持在0.4vvm(每分钟通气量与 罐体实际料液体积的比值),12h后到放罐可控制在 0.8~1.0vvm。搅拌速度不宜太快,容易损伤菌丝,不 利于发酵
红霉素的发酵工艺
(4)补料:发酵过程中还原糖浓度控制在1.0%~1.4 %范围内,每隔6补加葡萄糖一次,直到放罐前1218 停止补糖。40后补加有机氮源,每日34次,若发酵罐 的黏度上升则增加补料量,反之则减少,放罐前24停 止补氮。发酵后期添加氨水可以提高发酵单位,减少 脱水红霉素的形成,改善产品质量,补加硫酸镁可以 改善菌丝生长状况,提高发酵单位。前提一般在24后 补加