点关于点对称

直线中的对称问题—4类对称题型

直线中的对称问题—4类对称题型 直线的对称问题是我们学习平面解析几何过程中的不可忽视的问题,我们可以把它主要归纳为,点关于点对称,点关于线对称,线关于点对称,线关于线对称问题,下面我们来一一探讨: 一、点关于点对称问题 解决点点对称问题的关键是利用中点坐标公式,同时也是其它对称问题的基础. 例1.求点(1)关于点的对称点的坐标, (2),关于点对称,求点坐标. 解:由题意知点是线段的中点, 所以易求(1) (2). 因此,平面内点关于对称点坐标为 平面内点,关于点对称 二、点关于线对称问题 求定点关于定直线的对称问题时,根据轴对称定义利用①两直线斜率互为负倒数,②中点坐标公式来求得. 例2.已知点直线:,求点关于直线的对称点的坐标 解:法(一)解:设,则中点坐标为且满足直线的方程 ① 又与垂直,且斜率都存在即有② 由①②解得, 法(二)求点点关于线对称问题,其实我们可以转化为求点关于点对称的问题,可先求出的直线方程进而求与的交点坐标,再利用中点坐标公式建立方程求坐标. 三、线关于点对称问题 求直线关于某一点的对称直线的问题,一般转化为直线上的点关于点的对称问题. 例3.求直线:关于点的对称直线的方程. 解:法(一)直线:与两坐标轴交点为, 点关于对称点 点关于对称点 过的直线方程为,故所求直线方程为. 法(二)由两直线关于点对称,易知两直线平行,则对称点到两直线的距离相等,可以建立等式,求出直线方程. 四、线关于线的对称问题 求直线关于直线的对称问题,一般转化为点关于直线对称问题:即在已知直线上任取两不同点,求出这两点关于直线的对称点再求出直线方程. 例4.求已知直线:关于直线对称的直线方程. 解:在:上任取一点 直线的斜率为3

关于原点对称

23.2.3关于原点对称的点的坐标 理解点P与点P′关于原点对称时它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用. 复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用. 重点 两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用. 难点 运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题. 一、复习引入 (学生活动)请同学们完成下面三题. 1.已知点A和直线l,如图,请画出点A关于l对称的点A′. 2.如图,△ABC是正三角形,以点A为中心,把△ABC顺时针旋转60°,画出旋转后的图形. 3.如图△ABO,绕点O旋转180°,画出旋转后的图形. 老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知 (学生活动)如图,在直角坐标系中,已知A(-3,1),B(-4,0),C(0,3),D(2,2),E(3,-3),F(-2,-2),作出A,B,C,D,E,F点关于原点O的中心对称点,并写出它们的坐标,并回答: 这些坐标与已知点的坐标有什么关系?

老师点评:画法:(1)连接AO并延长AO; (2)在射线AO上截取OA′=OA; (3)过A作AD′⊥x轴于点D′,过A′作A′D″⊥x轴于点D″. ∵△AD′O与△A′D″O全等, ∴AD′=A′D″,OA=OA′, ∴A′(3,-1), 同理可得B,C,D,E,F这些点关于原点的中心对称点的坐标. (学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点? 提问几个同学口述上面的问题. 老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即P(x,y)关于原点O的对称点P′(-x,-y). 两个点关于原点对称时,它们的坐标符号相反, 即点P(x,y)关于原点O的对称点为P′(-x,-y). 例1如图,利用关于原点对称的点的坐标的特点,作出与线段AB关于原点对称的图形. 分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′,B′即可. 解:点P(x,y)关于原点的对称点为P′(-x,-y),因此,线段AB的两个端点A(0,1),B(3,0)关于原点的对称点分别为A′(0,-1),B(-3,0). 连接A′B′. 则就可得到与线段AB关于原点对称的线段A′B′. (学生活动)例2已知△ABC,A(1,2),B(-1,3),C(-2,4),利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形. 老师点评分析:先在直角坐标系中画出A,B,C三点并连接组成△ABC,要作出△ABC 关于原点O的对称三角形,只需作出△ABC中的A,B,C三点关于原点的对称点,依次连接,便可得到所求作的△A′B′C′. 三、巩固练习 教材第69页练习.

正余弦函数图像的对称轴和对称中心

正余弦函数图像的对称轴和对称中心 【基本结论】: 正弦曲线x y sin =,R x ∈的对称轴方程是2ππ+=k x ,Z k ∈;对称中心坐标为 (πk ,0),Z k ∈。 余弦曲线x y cos =,R x ∈的对称轴方程是πk x =,Z k ∈;对称中心坐标为 (2 π π+k ,0),Z k ∈。 【典例分析】: 例1 求函数)3 2cos(3π--=x y 的对称中心和对称轴方程。 解: 由于函数 x y cos =的对称中心为(2ππ+k ,0),(Z k ∈)对称轴方程是πk x = 又由232πππ+=- k x ,得1252ππ+=k x (Z k ∈) 由ππ k x =-32,得62π π +=k x (Z k ∈) 故函数)32cos(3π--=x y 的对称中心为(1252 ππ +k ,3)(Z k ∈) 对称轴方程为62ππ+= k x (Z k ∈) 例2 已知函数)2sin()(?+=x x f 的图像关于直线8π =x 对称,求?的值。 解: 由于函数x x f sin )(=的图像的对称轴方程为ππ k x +=2(Z k ∈) 所以,函数)2sin()(?+=x x f 的图像的对称轴方程为 ππ ?k x += +22(Z k ∈) 即?ππ -+=k x 22(Z k ∈) 2 24?ππ -+=k x (Z k ∈) 又因为已知函数)2sin()(?+=x x f 的图像的对称轴方程为8π=x 则有2 248?ππ π-+=k (Z k ∈)

解之得:4ππ?+=k (Z k ∈); 当0=k 时,4π ?=

轴对称与中心对称

轴对称与中心对称 一、知识回顾 (一)、轴对称与轴对称图形: 1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。 2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。 注意:对称轴是直线而不是线段 3.轴对称的性质: (1)关于某条直线对称的两个图形是全等形; (2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线; (3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上; (4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。 (二)、中心对称与中心对称图形: 1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。 2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。 3.中心对称的性质: (1)关于中心对称的两个图形是全等形; (2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。 (四)、几种常见的轴对称图形和中心对称图形: 轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,

点 ,线关于直线对称问题

一 点关于直线的对称点的一种公式求法 结论:设直线:l 0=++c by ax ,(a 、b 至少有一个不为0),点),(00y x A 关于直线l 的 对称点的坐标是),(11y x B ,则??? ????+---=+---=22002 2122002 2122)(22)(b a bc abx y b a y b a ac aby x a b x ; 这个结论的证明方法是利用常见的斜率互为负倒数和中点坐标代入等做出。 因为一个点关于直线的对称点是求解很多问题的工具,因而这样总结的结论很有必要。 但这个公式形式的麻烦而使其运用的价值稍有逊色。 本文将以上公式做适当改进,体现出数学的对称美,而且有很明显的几何意义,因而便于记忆和运用。 将以上的2 2 02 2122)(b a ac aby x a b x +---= 变为: O 2 2 0202 2 1222)(b a ac aby x a x a b x +---+= 2 2000) (2b a c by ax a x +++- = 2 2 002 2 0) (2b a c by ax b a a x +++? +- = d b a a x '?+- =22 2 0, (其中2 2 00b a c by ax d +++= '的绝对值是点),(00y x 到直线l 的距离) 同理:d b a b y y '?+- =22 2 01,于是点),(00y x A 关于直线l 的对称点是 d b a a x B '?+- 2(2 2 0,)22 2 0d b a b y '?+- , 其中的向量), ( 2 22 2 b a b b a a e ++=是直线l 的法向量),(b a 的单位向量,如图,设点A O x y A B d d e 图一

三角函数图像的对称轴与对称中心

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点旋转 180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函y=sinx 的图像既是轴对称又是中心对称, 它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;y=sinx 的图象的对称轴是经过其图象的 “峰顶点” 或 “谷底点” , 且平行于y 轴的无数条直线; 它的图象关于x 轴的交点分别成中心对称图形。 三角函数图像的对称轴与对称中心 特级教师 王新敞 对于函数sin()y A x ωφ=+、cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.而tan()y A x ωφ=+的对称中心与零点和渐近线与x 轴的交点相联系,有渐近线但无对称轴.由于函数sin()y A x ωφ=+、cos()y A x ωφ=+和 tan()y A x ωφ=+的简图容易画错, 一般只要通过函数sin y x =、cos y x =、tan y x =图像的对称轴与对称中心就可以快速准确的求出对应的复合函数的对称轴与对称中心. 1.正弦函数sin y x =图像的对称轴与对称中心: 对称轴为2x k π π=+、对称中心为(,0) k k Z π∈. 对于函数sin()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即2x k π ωφπ+=+ ()k Z ∈,由此解出1 ()2x k π πφω=+- ()k Z ∈,这就是函数 sin()y A x ωφ=+的图象的对称轴方程. 对于函数sin()y A x ωφ=+的图象的对称中心只需令x k ωφπ+= ()k Z ∈,由此解出1 ()x k πφω=- ()k Z ∈, 这就是函数sin()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1 ((),0) k k Z πφω-∈. 2.余弦函数cos y x =图像的对称轴与对称中心: 对称轴为x k π=、对称中心为(,0)2k π π+ k Z ∈. 对于函数cos()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即x k ωφπ+= ()k Z ∈,由此解出1()x k πφω= - ()k Z ∈,这就是函数cos() y A x ωφ=+的图象的对称轴方程. 对于函数cos()y A x ωφ=+的图象的对称中心只需令2x k πωφπ+=+ ()k Z ∈,由此解出1 ()2x k π πφω=+- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z π πφω+-∈.

中心对称—两个点关于原点对称的点的坐标导学案

23.2.3 中心对称(3)—两个点关于原点对称的点的坐标 教学目标: 1、理解P 与点P ′点关于原点对称时,它们的横纵坐标的关系,掌握P (x ,y )关于原点的对称点为P ′(-x ,-y )的运用. 2、复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用. 教学重点: 两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )?关于原点的对称点P ′(-x ,-y )及其运用. 教学难点: 运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题. 教学过程 一、自主预习 1、两个点关于原点对称时,它们的坐标符号 ,即点P (x ,y )关于原点的对称点P ′___________ 2 二、复习引入 1、如图, ⑴画出点A 关于x 轴的对称点A ′; ⑵画出点B 关于x 轴的对称点B ′; ⑶画出点C 关于y 轴的对称点C ′; ⑷画出点A 关于y 轴的对称点D ′。 2、填空: ⑴点A (-2,1)关于x 轴的对称点为A ′( , ); ⑵点B (0,-3)关于x 轴的对称点为B ′( , ); ⑶点C (-4,-2)关于y 轴的对称点为C ′( , ); ⑷点D (5,0)关于y 轴的对称点为D ′( , )。

三、探究新知 如图,在直角坐标系中,已知A(-3,1)、B(-4,0)、C(0,3)、?D(2,2)、E(3,-3)、F(-2,-2),作出A、B、C、D、E、F点关于原点O的中心对称点,并写出它们的坐标,并回答: 这些坐标与已知点的坐标有什么关系? 归纳:两个点关于原点对称时,它们的坐标符号,即点P(x,y)关于原点的对称点P′___________ 例2如图,利用关于原点对称的点的坐标的特点,作出与△ABC关于原点对称的图形。

正弦函数图象的对称轴与对称中心

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 函数)sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为 2 π π+ =k y ,对称中心点为(0,πk ),其中 Z k ∈。 正弦型函数)sin(?ω+=x A y 是由正弦函数 x y sin =演变而成。 一般只要知道正弦函数x y sin =图象的对称轴与对称中心就可以快速准确的求出正弦型函数

关于原点对称

23.2.3关于原点对称的点的坐标 主备人:杨同娜 2012.10 学习目标:1、能运用中心对称的知识猜想并验证关于原点对称的点的坐标的性质。 2、 利用该对称性质在平面直角坐标系内关于原点对称的图形,形成观察、分析、 探究用合作交流的学习习惯,体验事物的变化之间是有联系的。 学习重点:平面直角坐标系中关于原点对称的点的坐标的关系及其应用 学习难点:关于原点对称的点的坐标性质及其运用它解决实际问题. 教学过程: 一、自主探究 如图23-74,在直角坐标系中,已知A (-3,1)、B (-4,0)、C (0,3)、?D (2,2)、E (3,-3)、F (-2,-2),作出A 、B 、C 、D 、E 、F 点关于原点O 的中心对称点,并写出它们的坐标,并 回答:这些坐标与已知点的坐标有什么关系? 例1图 讨论:关于原点作中心对称时,?①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点? 归纳: 二、尝试应用 例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB?关于原点对称的图形. 分析:要作出线段AB 关于原点的对称线段,只要作点A 、点B 关于原点的对称点A ′、B ′即可。 例2.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1. (1)在图中画出直线A 1B 1. (2)求出线段A 1B 1中点的反比例函数解析式. (3)是否存在另一条与直线AB 平行的直线y=kx+b (我们发现互相平行的两条直线斜率k

值相等)它与双曲线只有一个交点,若存在,求此直线的函数解析式;若不存在,请说明理由. 分析:(1)只需画出A 、B 两点绕点O 顺时针旋转90°得到的点A 1、B 1,连结A 1B 1. (2)先求出A 1B 1中点的坐标,设反比例函数解析式为y= k x 代入求k . (3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明.这一条直线是存在的,因此A 1B 1与双曲线是相切的,只要我们通过A 1B 1的线段作A 1、B 1关于原点的对称点A 2、B 2,连结A 2B 2的直线就是我们所求的直线. 三、归纳小结 这节课你的收获是什么? 四、当堂达标 1.下列函数中,图象一定关于原点对称的图象是( ) A .y= 1 x B .y=2x+1 C .y=-2x+1 D .以上三种都不可能 2.如图,已知矩形ABCD 周长为56cm ,O 是对称线交点,点O 到 矩形两条邻边的距离之差等于8cm ,则矩形边长中较长的一边等于( ) A .8cm B .22cm C .24cm D .11cm 3.如果点P (-3,1),那么点P (-3,1)关于原点的对称点P ′的坐标是P ′_______. 4.写出函数y=-3x 与y=3 x 具有的一个共同性质________(用对称 的观点写). 5.如图,在平面直角坐标系中,A (-3,1),B (-2,3),C (0,2),画出△ABC?关于x 轴对称的△A ′B ′C ′,再画出△A ′B ′C ′关于y 轴对称的△A ″B ″C ″,那么△A ″B ″C ″与△ABC 有什么关系,请说明理由. 6.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,且A (0,3),B (3,0),现将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1. (1)在图中画出直线A 1B 1; (2)求出过线段A 1B 1中点的反比例函数解析式; (3)是否存在另一条与直线A 1B 1平行的直线y=kx+b (我 们发现互相平行的两条直线斜率k 相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由. 教后反思: O B A C D

三角函数对称轴与对称中心

三角函数对称轴与对称中心 y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z) y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z) y=tanx 对称轴:无对称中心:(kπ,0)(k∈z) 两角和与差的三角函数 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 积化和差公式 sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 倍角公式 sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²α tan(2α)=2tanα/(1-tan²α) cot(2α)=(cot²α-1)/(2cotα) sec(2α)=sec²α/(1-tan²α) csc(2α)=1/2*secα·cscα 三倍角公式 sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α) cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α) tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot³α-3cotα)/(3cotα-1) n倍角公式

关于原点对称的点的坐标(说课稿)

23.3.3《关于原点对称的点的坐标》说课稿 海南澄迈思源实验学校 九(4)班罗海文 尊敬的各位老师,大家下午好! 今天我说课的内容是《关于原点对称的点的坐标》接下来将从一下几个方面进行阐述:说教材、说教学目标、说重点难点、说教学准备、说教法、说学法、说教学设计。 一、教材分析 《关于原点对称的点的坐标》是人教版九年级上册第二十三章第二节第三课时的内容。教材从观察和实验入手,归纳得出坐标平面上一个点关于原点对称的点的坐标的对应关系,并进一步探讨了如何利用这种关系在平面直角坐标系中作出一个图形关于原点对称的图形。本节课目的在于让学生感受图形中心对称变换之后的坐标的变化,把“形”和“数”紧密的结合在一起,把坐标思想和图形变换的思想联系起来。 本节课是在中心对称、中心对称图形和它们的性质的学习之后,并且在以往学习平移、轴对称在平面直角坐标系中坐标的特点的基础上,进一步研究中心对称在直角坐标系中的坐标的特点,并利用这一特点解决一些问题。掌握了这部分知识为以后平移、轴对称和中心对称在平面直角坐标系中的综合运用打下坚实的基础。 二、教学目标 1、知识与技能: (1)、掌握在直角坐标系中关于原点对称的点的坐标的关系。 (2)、能运用关于原点成中心对称的点的坐标间的关系进行中心对称图形的变换。 2、过程与方法:在复习轴对称、旋转,尤其是中心对称的知识的过程中,知识迁移到关于原 点对称的点的坐标的关系及其运用。 3、情感态度与价值观:培养学生自主探究的能力和归纳知识的能力,调动学生的学习兴趣。 三、重点、难点 重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点P′(-x,-y)及其运用。 难点:运用中心对称的知识导出关于原点对称的点的坐标的性质及运用它解决实际问题。 四、教学准备:1、知识准备:中心对称的性质 2、ppt课件、三角板、圆规等。 五、教法与学法 1、教学方法:根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生 的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,这节课我主要采用了猜想、创设情景,自主探究,直观演示,探索发现法,讨论式教学方法。

三角函数图像的对称轴对称中心

1 三角函数图像的对称轴对称中心 1、将函数)32sin()(π +=x x f 图象上各点向右平移)0(>??个单位,得到函数)(x g 的图象。 (1)若)(x g 的图象与原图象重合,求?的最小值; (2)若)(x g 的图象关于y 轴对称,求?的最小值; (3)若)(x g 的图象关于直线6π =x 对称,求?的最小值; (4)若)(x g 的图象一个对称中心为)0,12 (π- ,求?的最小值; (5)若)(x g 的图象关于原点对称,求?的最小值; (6)若)(x g 的图象经过点)2 1,4(π-M ,求?的最小值 2、函数??? ??+=324sin 2πx y 图像与x 轴交点中,离原点最近的点是 ; 3、函数y = sin2x +a cos2x 的图象关于直线x =- 8π 对称,则a 的值为 ( ) A .1 B .-2 C .-1 D .2 4、函数)62sin(3π +=x y 图象的一条对称轴方程是( ) (A )0=x (B )32π= x (C )6π-=x (D )3π=x 5、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 。 6、函数)62sin(4π- =x y 的图象的一个对称中心是( ) (A ))0,12(π (B ))0,3(π (C ))0,6(π- (D ))0,6(π 7、设函数)(x f = )2sin(?+x (0<<-?π),)(x f 图像的一条对称轴是直线8π=x ,求?的值。 8、若函数)sin(3)(?ω+=x x f 对任意的x 都有)3()3(x f x f -=+ππ,则=)3(π f ( ) A 3或0 B -3或0 C 0 D -3或3

高中数学中对称性问题总结.doc

对称性与周期性 函数对称性、周期性的判断 1. 函数()y f x =有()()f a x f b x +=-(若等式两端的两自变量相加为常数,如 ()()a x b x a b ++-=+),则()f x 的图像关于2 a b x += 轴对称;当a b =时,若()() (()(2))f a x f a x f x f a x +=-=-或,则()f x 关于x a =轴对称; 2. 函数()y f x =有()()f x a f x b +=-(若等式两端的两自变量相减为常数,如 ()()x a x b a b +--=+),则()f x 是周期函数,其周期T a b =+;当a b =时,若()()f x a f x a +=-,则()f x 是周期函数,其周期2T a =; 3. 函数()y f x =的图像关于点(,)P a b 对称?()(2)2 (()=2(2))f x f a x b f x b f a x +-=--或;函数()y f x =的图像关于点(,0)P a 对称? ()=(2) f x f a x --( ()=())f a x f a x +--或; 4. 奇函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且2T a =是函数的一个周期;偶函数()y f x =的图像关于点(,0)P a 对称?()y f x =是周期函数,且4T a =是函数的一个周期; 5. 奇函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且4T a =是函数的一个周期;偶函数()y f x =的图像关于直线x a =对称?()y f x =是周期函数,且2T a =是函数的一个周期; 6. 函数()y f x =的图像关于点(,0)M a 和点(,0)N b 对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期; 7. 函数()y f x =的图像关于直线x a =和直线x b =对称?函数()y f x =是周期函数,且 2()T a b =-是函数的一个周期。

正弦函数图象的对称轴与对称中心

正弦函数图象的对称轴 与对称中心 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

函数 )sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数 函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其 图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴 的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为2 π π+ =k y ,对称中心点为 (0,πk ),其中 Z k ∈。 正弦型函数 )sin(?ω+=x A y 是由正弦函数x y sin =演变而成。

图形对称轴对称面对称中心对称

图形对称轴对称面对称中心对称

————————————————————————————————作者:————————————————————————————————日期:

图形轴对称与轴对称图形、中心对称,镜面对称 【知识要点】 一、轴对称图形与图形轴对称 1.轴对称图形定义:如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,?这个图形就叫做轴对称图形,这条直线就是它的对称轴. 注意:有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴. 2.图形轴对称:有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称. 3. 轴对称图形的性质:如果两个图形成轴对称,?那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线 4.轴对称与轴对称图形的区别:轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称. 二、轴对称变换 1.定义:由一个平面图形得到它的轴对称图形叫做轴对称变换.? 成轴对称的两个图形中的任何一个可以看着由另一个图形经过轴对称变换后得到 2.轴对称变换的性质:(1)经过轴对称变换得到的图形与原图形的形状、大小完全一样 (2)?经过轴对称变换得到的图形上的每一点都是原图形上的某一点关于对称轴的对称点. (3)连接任意一对对应点的线段被对称轴垂直平分 3.作一个图形关于某条直线的轴对称图形:(1)作出一些关键点或特殊点的对称点. (2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形. 三、坐标系相关 1.点P(x,y)关于x轴对称的点的坐标是(x,-y) 2.点P(x,y)关于y轴对称的点的坐标是(-x,y) 3.点P(x,y)关于原点对称的点的坐标是(-x,-y) 4.点P(x,y)关于直线x=m对称的点的坐标是(2m-x,y); 5.点P(x,y)关于直线y=n对称的点的坐标是(x,2n-y); 四、镜面对称 1.镜面对称是关于关于面的对称 2..镜面对称的两个图形全等,并且两个图形到镜面的距离相等 五、中心对称 1.中心对称图形定义:一个图形绕着某点旋转180°后能与自身重合,这种图形叫做中心对称图形,该点叫做对称中心 2.中心对称:一个图形绕着某点旋转180°后能与另一个图形重合,这那么这两个图形成中心对称 3.性质:①成中心对称的两个图形全等 ②对应点的连线经过对称中心且被对称中心平分

关于原点对称的点的坐标教案

23.2.3 关于原点对称的点的坐标 【学习目标】 1、探究点(x,y)关于原点对称点的坐标,会运用发现的规律作关于原点对称的图形. 2、发展空间观念,渗透数形结合思想. 【学习重点】关于原点对称点的坐标. 【学习难点】探究关于原点对称点的坐标. 【学习过程】 一、基本训练,巩固旧知 1、如图,⑴画出点A关于x轴的对称点A′; ⑵画出点B关于x轴的对称点B′; ⑶画出点C关于y轴的对称点C′; ⑷画出点A关于y轴的对称点D′。 2、填空: ⑴点A(-2,1)关于x轴的对称点为A′(,); ⑵点B(0,-3)关于x轴的对称点为B′(,); ⑶点C(-4,-2)关于y轴的对称点为C′(,) ⑷点D(5,0)关于y轴的对称点为D′(,)。 小结: 二、创设情境,导入新课 归纳:点P(x,y)关于x轴的对称点为P′(,); 点P(x,y)关于y轴的对称点为P′(,); 三、合作探究 如图,A(3,2),B(-3 ,2),C(3,0), ⑴在直角坐标系中,画出点A,B,C关于原点 的对称点A′,B′,C′; ⑵点A(3,2)关于原点的对称点为A′(,) 点B(-3,2)关于原点的对称点为B′(,), 点C(3,0)关于原点的对称点为C′(,); 归纳:两个点关于原点对称时,它们的坐标符号,即点P(x,y)关于原点的对称点P′(,).

4 3 2 1 -1 -2 -3 -4 -6 -4 -2 2 4 6 B A O 四、解释应用 例:如图,利用关于原点对称的点的坐标的特点,作出与△ABC 关于原点对称的图形。 练习: 如图,在平面直角坐标系中A.B 坐标分别为(2,0),(-1,3),若△OAC 与△OAB 全等, ⑴试尽可能多的写出点C 的坐标; ⑴在⑴的结果中请找出与(1,0)成中心对称的两个点。

浅谈高中数学解析几何中的对称问题

浅谈高中数学解析几何中的对称问题 发表时间:2019-12-10T17:34:32.223Z 来源:《教育学文摘》2019年12期作者:龚杨熙 [导读] 新课标改革开展后,我国的教育事业也在不断发展 摘要:新课标改革开展后,我国的教育事业也在不断发展,其中高中数学也乘着改革开放的快车,发展迅猛。在高中数学中,数学解析几何中的对称问题受到了广泛的关注与讨论。研究对称问题不仅能增强我们解决问题的能力,同时可以培养发散思维,锻炼空间想象力等,而且还能提高在日常生活当中的审美能力,提高创新意识。下面我将结合自己的学习理解,对高中数学解析几何中对称问题进行简要分析,希望能在这方面为同学们的学习提供一些帮助。 关键字:高中数学解析几何对称问题 高中数学解析几何中的对称问题,是高中数学的一个重要内容,也是平时学习的难点,它的运用非常广泛,不仅体现在数学应用上,有时还会渗透到物理学科的应用方面。在对称问题中,主要研究的问题有:点关于点对称、点关于直线对称、直线关于点对称、直线关于直线对称、曲线关于点对称、曲线关于直线对称等问题。不过在对称问题中,最基础的问题为点关于点,点关于直线的对称问题,线(直线、曲线)关于点的对称问题可转化为点关于点对称。线(直线、曲线)关于直线对称的问题可转化为点关于直线对称。 一、关于点的对称问题 点与点之间的对称问题,在初步接触对称问题时,较为常见,也较为简单。在关于点的对称问题中,也有不同的类型,包括了点与点之间的关系、点与点关于直线对称的关系,线与线关于直线对称的关系,每种不同的关系之间,解题思路既有相同点,也有不同的点,均需要答题者,认真思考,得出答案。下面我将针对不同的种类进行分析。 (一)点关于定点对称问题 这类问题,一般是知道一个点A,知道A点的坐标,给出另外一个中心点Q,告诉Q点的位置坐标,最后让大家求出A点关于Q点对称的点B。这类题的求解办法较为单一统一。例如:已知点A(x1,y1),已知中心点Q(x0,y0),求出A点关于Q点对称的点B,在坐标中,这三个点的横纵坐标,应该满足怎么样的条件呢?根据条件可知,Q点为A、B点的中点,于是得2x0=x1+x2,2y0=y1+y2,由此可以得到x2,y2的值,得到B点位置坐标。关于定点对称问题,表面看上去是多个类型题中,最简单的一类题目,但是却是后续题目的基础,在许多不同类型、不一样表述的题目,表面上比较难也很有深度,但是随着理解领悟的加深,基础知识掌握牢固后,大家会发现,运用的知识,大部分仍然是定点对称问题的方法与策略,所以基础知识必须掌握牢固,才能解决其他难题。 (二)线关于点的对称问题 在线关于点的对称问题中,无论是曲线还是直线,都可以把每条线看作是满足某条件的动点的集合,看作是动点沿着一定的限制条件运动形成的轨迹,所以在遇到线关于点对称的问题时,我们不妨设对称曲线上任一点的坐标为A(x,y),点A关于中心点Q(x0,y0)的对称点为B,根据点与点对称之间的法则,求出对称点B的坐标,利用对称点B在已知曲线上坐标满足方程最终求得是对称曲线的轨迹方程。这样就成功的将线关于点的对称问题转化为点关于点的对称问题,将困难化解。在解决线的问题时,大家需要明白一个道理,就是所有的线都可以看作是满足某个条件的点的集合,无论是直线还是曲线,解题时将点关于点的对称问题掌握好即可。 二、点关于线的对称问题 在解决点关于线的对称问题中,相比较点,要复杂很多,需要利用更多几何性质,譬如轴对称的性质,在前面的学习中知道,两个图案在关于直线对称时,可以观察到,图案相应两点的连线会被该直线垂直平分,所以在解决关于线之间的对称问题时,要将此问题简化,回到线关于点,点关于点之间的对称问题中,在应用这个办法求解时,需要注意的问题是,点关于线的对称问题需要满足两个条件,第一是两个对称轴对称的点,连接起来,应该垂直于对称轴所在直线。第二是:两个对称点的中点应该在对称轴上。在解决线关于线的对称问题时,只要能将点关于线的问题处理好,线关于线的对称问题也可以迎刃而解,在高中数学对称问题中,关于曲线C,直线L的对称问题,最终都可以化归为点与点之间的对称问题,在解决此类问题时,需要打开思维,充分利用点关与点对称、点关与线对称的处理方法,融会贯通,举一反三,不断提升自己的解题能力。 三、实际应用 实践出真知,理论知识无论有多丰富,只有回归到实际问题中,才能体现其真正的价值,只有在解决问题的过程中,才能真正发现是否将理论知识熟练的掌握运用。应用举例:(线关于线对称问题)已知两直线L1,L2,两直线关于直线L0对称,L0方程为:2x-2y+1=0,其中L1的方程为3x-2y+1=0,求L2的方程?分析:在这道题目中,虽然是线关于线对称的问题,但是仍然可以转化为点关与点的对称问题,在解题过程中,可以在L1上,随意找出一点A(x1, y1)关于直线对称点设为B(x2,y2),利用A,B两点关于L0对称,求出对称点B的坐标,同理再求出一个对称点的坐标,就可以求出对称线的方程。如果是求曲线关于直线的对称曲线则可设对称曲线上任一点的坐标A(x, y), A(x, y)关于直线对称点设为B(x0,y0),利用A,B两点关于L0对称,求出对称点B的坐标,利用对称点B在已知曲线上代入曲线方程即可求得对称曲线的轨迹方程。除了这一类型题目以外,还有许多与这类题目相关的问题,但是万变不离其宗。 这篇文章主要是从点关与点对称,点关于线对称的角度出发,简要分析讨论了解析几何中对称问题。要想真正解决这类问题,首先要深刻理解基础知识,灵活把握线与点之间的对称关系,有的题目还存在图形,此时也不能忽视图形的重要性,在许多题型例如直线、圆、椭圆的对称问题中,图形均可以反映出大量的解题信息,解题时需要抓住图形中的细节,数形结合,解决难题。参考文献: [1]许悦. 高中数学解析几何中对称问题分析[J]. 2018(2). [2]苏明亮. 高三数学复习中要善于借“题”发挥——解析几何中与对称相关的试题分析[J]. 高中数学教与学, 2016(8).

三角函数对称轴与对称中心

三角函数对称轴与对称中心 y=sinx 对称轴:x=kπ+π/2(k∈z)对称中心:(kπ,0)(k∈z) y=cosx对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z) y=tanx 对称轴:无对称中心:(kπ,0)(k∈z) 两角与与差得三角函数 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 与差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 积化与差公式 sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 倍角公式 sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos²α-sin&sup2;α=2cos&sup2;α-1=1-2sin&sup2;α tan(2α)=2tanα/(1-tan&sup2;α) cot(2α)=(cot&sup2;α-1)/(2cotα) sec(2α)=sec&sup2;α/(1-tan&sup2;α) csc(2α)=1/2*secα·cscα 三倍角公式 sin(3α) = 3sinα-4sin&sup3;α = 4sinα·sin(60°+α)sin(60°-α) cos(3α) =4cos&sup3;α-3cosα= 4cosα·cos(60°+α)cos(60°-α)tan(3α) =(3tanα-tan&sup3;α)/(1-3tan²α)=tanαtan(π/3 +α)tan(π/3-α) cot(3α)=(cot&sup3;α-3cotα)/(3cotα-1)

相关文档
最新文档