人教版图形的相似教案
人教版数学九年级下册教学设计27.1《图形的相似》

人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。
教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。
但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。
2.学会运用相似图形解决实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.运用相似图形解决实际问题。
五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。
2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。
3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。
4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。
2.练习题:准备相关的练习题,巩固学生的学习效果。
3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。
七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。
提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。
教师总结:这就是我们今天要学习的相似图形。
2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。
通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。
人教版九年级数学下册第二十七章相似数学活动优秀教学案例

本案例教学内容与过程设计系统、全面,涵盖了相似图形的定义、性质、判定方法、应用等方面。通过讲授新知、小组讨论、总结归纳等环节,突出重点,使学生深入理解相似图形的知识。
此外,本案例还注重以下方面的教学实践:
1. 结合课本知识,引导学生运用类比、归纳、演绎等数学思维方法,发现相似图形的性质和判定方法。
(二)讲授新知
1. 通过具体例子,引导学生观察、思考相似图形的特点,进而引出相似图形的定义和性质。
2. 结合课本,讲解相似图形的判定方法,如AA、SSS、SAS等,并通过实例进行解释。
3. 介绍相似变换的概念和性质,以及在实际中的应用。
(三)学生小组讨论
将学生分成小组,让他们探讨以下问题:
1. 生活中还有哪些相似图形的例子?
2. 鼓励学生运用信息技术手,提高学习效率。
3. 培养学生的探究精神,让他们在解决问题的过程中,体会成功带来的喜悦,树立自信心,形成积极向上的价值观。
(三)小组合作,提高团队协作能力
本案例重视小组合作,通过合理分组,确保每个学生在小组中发挥自己的优势。在小组合作过程中,学生共同探讨问题、分享经验,培养团队协作能力和沟通能力。
(四)注重反思与评价,提升自我认知
本案例强调学生的反思与评价,鼓励学生在课后总结学习经验,提高自我认知。同时,教师对学生的学习过程和结果进行全面评价,为学生提供有针对性的指导,帮助他们建立自信,激发学习动力。
二、教学目标
(一)知识与技能
1. 理解并掌握相似图形的定义、性质和判定方法,能运用相似知识解决实际问题。
2. 能够运用比例线段、相似多边形、相似三角形等知识,解决生活中的实际问题,如地图比例尺的计算、物体放大与缩小的比例等。
人教版九年级数学下册27.1图形的相似优秀教学案例

(一)情景创设
1.利用生活实例,创设有趣、富有挑战性的教学情境,激发学生的学习兴趣;
2.通过多媒体手段,展示相似图形的变化过程,增强学生的直观感受;
3.设计具有情境性的练习题,让学生在解决问题中体会数学与生活的紧密联系。
在教学过程中,我将注重情景创设,让学生在真实的情境中感受相似图形的意义。例如,通过展示建筑设计图纸、交通工具的图纸等实例,让学生认识到相似图形在实际生活中的应用,从而激发学生的学习兴趣。同时,利用多媒体教学手段,形象直观地展示相似图形的变化过程,帮助学生建立直观的认识,为后续的学习打下基础。
(二)过程与方法
1.通过观察、分析生活中的实例,引导学生发现相似图形的特征,培养学生从实际问题中抽象出数学模型的能力;
2.利用多媒体教学手段,形象直观地展示相似图形的变化过程,提高学生的空间想象能力和抽象思维能力;
3.设计具有梯度的练习题,让学生在实践中巩固相似图形的知识,提高解决问题的能力。
在教学过程中,我将采用情境教学法、启发式教学法和合作学习法等多种教学方法,引导学生主动参与课堂讨论,培养学生独立思考和团队协作的能力。同时,运用多媒体教学手段,为学生提供丰富的视觉、听觉信息,激发学生的学习兴趣,提高学生的学习效果。
5.多元化的评价方式:在教学过程中,注重学生的反思与评价。通过学生之间的互相评价、自我评价等,培养学生的自我监控和评价能力。同时,采用多元化的评价方式,关注学生的综合素质,进行全面评价。这种评价方式能够充分调动学生的积极性和主动性,促进学生的全面发展。
3.问题驱动的教学方法:通过设计具有启发性的问题,引导学生独立思考,发现相似图形的特征。同时,通过问题驱动,让学生在探究中掌握相似图形的性质和判定方法。这种教学方法能够培养学生的自主学习能力,提高学生的问题解决能力。
人教版数学九年级下册教案:27.1 图形的相似

第27章相似27.1 图形的相似一、教学目标1.核心素养通过图形相似的学习,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解并掌握两个图形相似的概念.(2)了解成比例线段的概念,会确定线段的比.(3)了解比例尺的概念.(4)记住相似多边形的性质,会辨别两个多边形是否相似,并会运用其性质进行相关的计算.3.学习重点相似图形的概念和与成比例线段的概念;相似多边形的性质与识别.4.学习难点线段成比例的意义;运用相似多边形的性质进行相关的计算.二、教学设计(一)课前设计1.预习任务任务1.阅读教材P24-25,思考:什么是相似图形?你能正确判断两个图形是否相似吗?任务2.阅读教材P26—P28,思考:什么是相似多边形?什么是相似比?相似多边形有怎样的性质?什么是成比例线段?2.预习自测(1)下列各组图形相似的是()答案:B解析:略(2)下列各组数中成比例的是()A. 2,3,4,1B. 3,5,13,9C. 6,8,9,10D. 10,20,20,40答案:D解析:略(3)如图,四边形EFGH 相似于四边形ABCD,则∠A=______度,∠C=______度,∠H=_____度,x=_____,y=_____,z=_____。
答案:70 120 60 40 45 75解析:∵四边形ABCD 和EFGH 相似,所以它们的对应角相等, 由此可得∠A=∠E=70°,∠C=∠G=120°,∠H=∠D=60°.∵四边形ABCD 和EFGH 相似,所以它们的对应边成比例, 由此可得05203018010===z y x , 解得x=40,y=45,z=75. (二)课堂设计1.知识回顾1.全等形的概念:能够完全重合的两个图形叫做全等形。
2.全等多边形的性质:全等多边形的对应角相等,对应边相等。
3.比的意义:两个数相除又叫做两个数的比。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
人教版数学九年级下册27.1《图形的相似》教案

(3)相似变换的性质:相似变换是本节课的另一个难点,教师需要详细讲解相似变换的性质,如对应点、对应线段的比等,并通过实例使学生理解这些性质。
举例:讲解旋转变换、平移变换等相似变换的性质,让学生在实际操作中体会相似变换的特点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个形状看起来很相似的物体?”(如两个相似的三角形装饰品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似图形相关的实际问题,如相似三角形的周长比、面积比等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形并比较它们的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
教学内容与课本紧密相关,旨在帮助学生掌握图形相似的相关知识,提高解决问题的能力。
二、核心素养目标
《图形的相似》章节的核心素养目标如下:
1.培养学生的空间观念,提高对图形相似性的认识,增强观察、分析图形的能力。
2.培养学生运用数学语言进行表达、交流、合作的能力,提高解决实际问题的能力。
3.培养学生逻辑思维和推理能力,能运用相似性质进行严密的论证。
举例:分析相似四边形的性质,解决面积、周长等与相似多边形相关的问题。
2.教学难点
(1)相似图形的识别:学生往往在识别相似图形时存在困难,需要教师通过丰富的实例和引导,帮助学生掌握识别相似图形的方法。
人教版初中数学相似图形教案2023

人教版初中数学相似图形教案2023一、教学目标通过本节课的学习,学生将达到以下目标:1. 理解相似图形的概念,掌握相似图形的判定方法;2. 掌握相似图形的性质,包括比例定理和角度相等定理;3. 能够运用相似图形的性质解决实际问题;4. 培养学生的逻辑思维和问题解决能力。
二、教学准备1. 教师准备:相似图形的教学素材、教学课件、教学黑板、尺子、直尺等;2. 学生准备:课本、练习册、尺子、直尺等。
三、教学过程本节课将分为三个部分进行教学:引入新知、知识讲解、练习巩固。
第一部分:引入新知1. 教师通过举例子引入相似图形的概念,让学生初步了解相似图形的特点和形式;2. 学生通过观察、思考,回答教师提出的问题,进一步加深对相似图形的理解。
第二部分:知识讲解1. 教师针对相似图形的判定方法进行详细的讲解,包括边比例相等和角度相等两种方法;2. 通过示例演示相似图形的判定过程,引导学生掌握相似图形的判定方法;3. 教师讲解相似图形的性质,重点讲解比例定理和角度相等定理的概念和应用。
第三部分:练习巩固1. 学生根据教师提供的练习题进行训练,包括基本运算和应用题;2. 学生自主解答,并互相讨论答案的正确性;3. 教师及时给予反馈和指导,引导学生巩固所学知识。
四、教学总结和展望1. 教师对本节课所学内容进行总结,并展望下节课的学习内容;2. 教师鼓励学生在课后进行更多的练习和思考,加深对相似图形的理解;3. 教师提供相关参考资料,供学生进一步拓展和深入学习。
五、作业布置布置适量的作业,让学生进行巩固和拓展训练,帮助学生进一步提高解决问题的能力。
通过本节课的教学和学习,相信学生们对相似图形有了更深入的认识和理解。
希望大家能够在课后继续进行相关练习和思考,以便更好地掌握和应用相似图形的知识。
人教版27章图形的相似-整章教案

课题:27.1图形的相似(第1课时)一、教学目标1.通过实例知道相似图形的意义.2.经历观察、猜想和分析过程,知道相似多边形对应角相等,对应边的比相等,反之亦然.二、教学重点和难点1.重点:相似图形和相似多边形的意义.2.难点:探索相似多边形对应角相等,对应边的比相等.三、教学过程(一)创设情境,导入新课师:(出示两张全等的图片)大家看这两个图形,(稍停)这两个图形形状相同,大小也相同,它们叫什么图形?生:(齐答)叫全等图形.师:(出示两张相似的图片)大家看这两个图形,(稍停)这两个图形只是形状相同,它们叫什么图形?(稍停)它们叫相似图形.也可以说,这两个图形相似(板书:相似).师:和全等一样,相似也是两个图形的一种关系.从今天开始我们要学习新的一章,这一章要学的内容就是相似(在“相似”前板书:第二十七章).(二)尝试指导,讲授新课师:相似图形在我们的生活中是很常见的,大家把课本翻到第34页,(稍停)34页上有几个图,左上方是用同一张底片洗出的不同尺寸的照片,它们是相似图形;还有大小不同的两个足球,它们也是相似图形;还有一辆汽车和它的模型,它们也是相似图形.师:看了这些相似图形,哪位同学能给相似图形下一个定义?生:……(让几名同学回答)(师出示下面的板书)形状相同的两个图形叫做相似图形.师:请大家一起把相似图形的概念读两遍.(生读)师:(出示两张全等的图片)全等图形,它们不仅形状相同,而且大小也相同;(出示两张相似的图片)而相似图形,它们只是形状相同,它们的大小可能相同,也可能不相同.师:明确了相似图形的概念,下面请同学们来举几个相似图形的例子,谁先来说?生:……(让几位同学说,如果学生说的题材不够广泛,师可以再举几个例子.譬如,放电影时,屏幕上的画面与胶片上的图形是相似图形;实际的建筑物与它的模型是相似图形;复印机把一个图形放大,放大后的图形和原来图形是相似图形)师:好了,下面请大家做一个练习.(三)试探练习,回授调节1.下列各组图形哪些是相似图形?(1) (2) (3)(4) (5)(6)2.如图,图中是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?(四)尝试指导,讲授新课(师出示下图)师:(指准图)这个三角形和这个三角形形状相同,所以它们是相似三角形.从图上看,这两个相似三角形的角有什么关系?生:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′.(生答师板书:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′)师:(指图)这两个相似三角形的边有什么关系?(让生思考一会儿)师:(指准图)AB 与A ′B ′的比是AB A B ⅱ(板书:AB A B ⅱ),BC 与B ′C ′的比是BC B C ⅱ(板书:BC B C ⅱ),CA 与C ′A ′的比是CA C A ⅱ(板书:CA C Aⅱ),这三个比相等吗? 生:(齐答)相等.师:为什么相等?(稍停后指准图)△A ′B ′C ′可以看成是△ABC 缩小得到的,假如AB 是A ′B ′的2倍,那么可以想象,BC 也是B ′C ′的2倍,CA 也是C ′A ′的2倍,所以这三个比相等(在式子中间写上两个等号).师:我们再来看一个例子. (师出示下图)///B AC CB A ////A B C D D A C师:(指准图)这个四边形和这个四边形形状相同,所以它们是相似四边形.从图上看,这两个相似四边形的角有什么关系?生:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′,∠D=∠D ′.(生答师板书:∠A=∠A ′,∠B=∠B ′,∠C=∠C ′,∠D=∠D ′)师:(指图)这两个相似四边形的边有什么关系? 生:AB A B ⅱ=BC B C ⅱ=CA C A ⅱ=DA D A ⅱ.(生答师板书:AB A B ⅱ=BC B C ⅱ=CA C A ⅱ=DA D Aⅱ) 师:(指式子)这四个比为什么相等?(稍停后指准图)四边形A ′B ′C ′D ′可以看成是四边形ABCD 放大得到的,假如AB 是A ′B ′的一半,那么可以想象,BC 也是B ′C ′的一半,CD 也是C ′D ′的一半,DA 也是D ′A ′的一半,所以这四个比相等. 师:从这两个例子,大家想一想,你能得出一个什么结论?(等到有一部分同学举手再叫学生)生:……(多让几名学生发表看法)(师出示下面的板书)相似多边形对应角相等,对应边的比也相等.师:请大家把这个结论一起来读两遍.(生读)师:相似多边形对应角相等,对应边的比也相等.实际上,这个结论反过来也是成立的,反过来怎么说?生:……(让几名学生说)(师出示下面的板书)对应角相等,对应边的比也相等的多边形是相似多边形.师:请大家把反过来的结论一起来读两遍.(生读)师:我们知道,形状相同的多边形是相似多边形.但是,什么样才算形状相同呢?(稍停)从这两个结论我们可以看到,对多边形来说,所谓形状相同,实际上指的就是对应角相等,对应边的比也相等.对应角相等,对应边的比也相等的多边形是相似多边形.所以,现在我们可以给相似多边形下一个更明确的定义. (师出示下面的板书)对应角相等,对应边的比也相等的两个多边形叫做相似多边形.师:下面我们利用相似多边形的概念来做两个练习.(五)试探练习,回授调节3.如图,△ABC 与△A ′B ′C ′相似,则∠C ′= °,B ′C ′= .4.判断正误:对的画“√”,错的画“×”.(1)两个等边三角形一定相似; ( )(2)两个正方形一定相似; ( )(3)两个矩形一定相似; ( )(4)两个菱形一定相似. ( )(六)归纳小结,布置作业C /110 53//B A A B C师:(指准板书)本节课我们学习了相似图形和相似多边形的概念.什么叫做相似图形?形状相同的两个图形叫做相似图形.从这两个结论,我们进一步发现,对多边形来说,所谓形状相同指的就是对应角相等,对应边的比也相等.所以我们又给相似多边形下了一个更明确定义:对应角相等,对应边也相等的两个多边形叫做相似多边形.(作业:P35练习1.P38习题1.4.)课题:27.1图形的相似(第2课时)一、教学目标1.会运用相似多边形的概念进行计算和证明,知道相似比的意义.2.培养推理论证能力,发展空间观念.二、教学重点和难点1.重点:运用相似多边形的概念进行计算和证明.2.难点:运用相似多边形的概念进行证明.三、教学过程(一)基本训练,巩固旧知1.填空:(1) 相同的两个图形叫做相似图形.(2)相似多边形对应相等,对应的比也相等;反过来,对应相等,对应的比也相等的多边形是相似多边形.(二)创设情境,导入新课师:上节课我们学习了相似图形的概念,还通过观察图形得出了相似多边形的两个结论.(师出示下面板书)相似多边形的对应角相等,对应边的比也相等;对应角相等,对应边的比也相等的多边形是相似多边形.师:本节课我们将利用这两个结论来做两个题目,先请看例1.(三)尝试指导,讲授新课(师出示例1)例1 如图,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x.(先让生尝试,然后师边讲解边板书,解题过程如课本第37页所示)(四)试探练习,回授调节2.填空:如图所示的两个五边形相似,则a= ,b= , c= ,d= .(五)尝试指导,讲授新课(师出示例2)例2 如图,证明△ABC 和△A ′B ′C ′相似.(先让生尝试,然后师分析证明思路,最后边讲解边板书,证明过程如下) 证明:在等腰直角△ABC 和△A ′B ′C ′中,∠A=∠A ′=45°,∠B=∠B ′=45°,∠C=∠C ′=90°.而,A ′B∴AB 1A B 2==ⅱ,BC 51B C 102==ⅱ,CA 51C A 102==ⅱ. ∴AB BC CA A B B C C A==ⅱⅱⅱ. ∴△ABC 与△A ′B ′C ′相似.(六)试探练习,回授调节3.如图,证明△ABC 与△A ′B ′C ′相似.(七)归纳小结,布置作业师:在课的最后,我们还要介绍一个概念.(指准例1图)我们知道,这两个四边形相似,它们对应边的比相等,那么对应边的比等于多少?(稍停)等于1824(板书:1824),约分后等于34(边讲边板书:=34).34叫什么?叫相似比.一般来说,相似多边形对应边的比叫做相似比(板书:相似多边形对应边的比叫做相似比). 1010///A B C 55B C A 21///A C B A C B 30︒30︒师:好了,两个例题一个概念,这些就是本节课所学的内容.(作业:P 38习题3.5.)课题:27.2.1相似三角形的判定(第1课时)一、教学目标1.经历观察、类比、猜想过程,得出相似三角形的三个判定定理,会简单运用这三个定理.2.培养合情推理能力,发展空间观念.二、教学重点和难点1.重点:相似三角形的三个判定定理.2.难点:得出相似三角形的三个判定定理.三、教学过程(一)基本训练,巩固旧知1.填空: 全等三角形的四个判定定理:(1)如果两个三角形三 对应相等,那么这两个三角形全等(简写成:边边边或SSS ).(2)如果两个三角形两 对应相等,并且相应的夹角相等,那么这两个三角形全等(简写成:边角边或 ).(3)如果两个三角形两 对应相等,并且相应的夹边相等,那么这两个三角形全等(简写成:角边角或 ).(4)如果两个三角形两 对应相等,并且其中一个角的对边对应相等,那么这两个三角形全等(简写成:角角边或 ).(本课时教学时间比较紧张,建议把本题提前留作作业)(二)创设情境,导入新课师:我们知道,形状相同的两个图形叫做相似图形.那么什么叫相似三角形?(稍停)形状相同的两个三角形叫做相似三角形.师:对两个三角形来说,形状相同是什么意思?(稍停)就是对应角相等,对应边的比也相等.所以相似三角形还有一个更明确的定义.对应角相等,对应边的比也相等的两个三角形叫做相似三角形.(师出示下图)师:譬如△ABC 和△A ′B ′C ′,如果∠A=∠A ′,∠B=∠B ′,∠C=∠C ′(边讲边板书:A /B /B C A /C如果∠A=∠A ′,∠B=∠B ′,∠C=∠C ′),A B B C C A A B B C C A ==ⅱⅱⅱ(边讲边板书:AB BC CA A B B C C A==ⅱⅱⅱ),我们就说△ABC 与△A ′B ′C ′相似(边讲边板书:就说△ABC 与△A ′B ′C ′相似),记作△ABC ∽△A ′B ′C ′(边讲边板书:记作△ABC ∽△A ′B ′C ′).师:(指准板书)相似三角形的这个定义,可以用来判定两个三角形相似,但利用定义判定,既要证明三组对应角相等,又要证明三组对应边的比相等,所以比较麻烦.怎么解决这个问题呢?(稍停)(三)尝试指导,讲授新课师:学习三角形全等时,我们知道,除了可以利用全等三角形定义来判定两个三角形全等,还有四个简便的判定方法.哪四个简便的判定方法?(稍停)就是SSS 、SAS 、ASA 、AAS.同样,判定两个三角形相似,有没有简便的判定方法?请大家先自己想一想.(生思考,要给学生充足的思考时间)师:好了,下面我们一起来考虑这个问题.师:全等三角形判定定理SSS 是怎么说的?(稍停)如果两个三角形三边对应相等,那么这两个三角形全等.类似的,也有一个相似三角形的判定定理. (师出示下面的板书)如果两个三角形的三组对应边的比相等,那么这两个三角形相似.师:请大家把这个结论一起来读一遍.(生读)师:(指板书)如果两个三角形的三组对应边的比相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果AB BC CA A B B C C A==ⅱⅱⅱ,那么△ABC ∽△A ′B ′C ′(边讲边作如下板书). AB BC CA A B B C C A==ⅱⅱⅱ ß△ABC ∽△A ′B ′C ′师:这是相似三角形的一个判定定理,下面我们来看第二个判定定理.师:全等三角形判定定理SAS 是怎么说的?(稍停)如果两个三角形两边对应相等,并且相应的夹角相等,那么这两个三角形全等.类似的,也有一个相似三角形的判定定理.(师出示下面的板书)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.师:请大家把这个结论一起来读一遍.(生读)师:(指板书)如要两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果AB AC A B A C=ⅱⅱ,夹角∠A=∠A ′,那么△ABC ∽△A ′B ′C ′(边讲边作如下板书). AB AC A B A C=ⅱⅱ,∠A=∠A ′ß△ABC∽△A′B′C′师:这是相似三角形的又一个判定定理,下面我们来看第三个判定定理.师:全等三角形判定定理ASA、AAS都有两个角对应相等的条件,对相似三角形来说,具备两个角对应相等的条件,有这样一个判定定理.(师出示下面的板书)如果两个三角形的两个角对应相等,那么这两个三角形相似.师:(指板书)如要两个三角形的两个角对应相等,那么这两个三角形相似.(指图)结合这个图,这个结论的意思是说,如果∠A=∠A′,∠B=∠B′,那么△ABC~△A′B′C′(边讲边作如下板书).∠A=∠A′,∠B=∠B′ß△ABC∽△A′B′C′师:(指板书)这就是相似三角形的三个判定定理,之所以称它们为定理,是因为它们都是可以证明的.证明的过程比较复杂,有兴趣的同学可以看课本,课堂上我们就不证明了,只要求大家能够理解这三个判定定理,并能运用它们.下面我们就来运用判定定理.(师出示例题)例根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由:(1)∠A=120°,AB=7,AC=14,∠A′=120°,A′B′=3,A′C′=6;(2)AB=4,BC=6,AC=8,A′B′=12,B′C′=18,A′C′=21;(3)∠A=70°,∠B=60°,∠A′=70°,∠C′=50°.(先让生尝试,然后师边讲解边板书,(1)(2)题解题过程如课本第44页所示,(3)题解题过程如下)(3)∠C=180°-∠A-∠B=180°-70°-60°=50°.∵∠A=∠A′=70°,∠C=∠C′=50°,∴△ABC∽△A′B′C′.(四)试探练习,回授调节2.根据下列条件,判断△ABC与△A′B′C′是否相似.(1)∠B=100°,∠C=30°,∠A′=50°,∠B′=100°;(2)∠A=40°,AB=8,AC=15,∠A=40°,A′B′=16,A′C′=20;(3)AB=4,BC=2,CA=3,A′B′=6,B′C′=3,C′A′=4.5.(五)归纳小结,布置作业师:(指板书)本节课我们学习了相似三角形的三个判定定理,希望大家能够理解这三个定理,并记住它们.(作业:P习题2)54四、板书设计课题:27.2.1相似三角形的判定(第2课时)一、教学目标1.会利用判定定理证明简单图形中的两个三角形相似,进而得出边角关系.2.培养推理论证能力,发展空间观念.二、教学重点和难点1.重点:利用判定定理证明简单图形中的两个三角形相似.2.难点:找相似三角形的对应边.三、教学过程(一)基本训练,巩固旧知1.填空:(1)如果两个三角形的三组对应边的 相等,那么这两个三角形相似.(2)如果两个三角形的两组对应边的 相等,并且相应的 相等,那么这两个三角形相似.(3)如果两个三角形的两个 对应相等,那么这两个三角形相似.2.判断图中的两个三角形是否相似:(1) △ABC 与△DEF ;(2) △OAB 与△ODC ;(3) △ABC 与△ADE .(二)创设情境,导入新课(出示下面的板书)F E D C B A 2.52547 3.636305445O A BC D 110︒40︒30︒EA B C如果两个三角形的三组对应边的比相等,那么这两个三角形相似.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.如果两个三角形的两个角对应相等,那么这两个三角形相似.师:(指板书)上节课我们学习了相似三角形的三个判定定理,请大家一起把这三个定理读一遍.(生读)师:本节课我们要学习什么?本节课我们要利用相似三角形的判定定理做几个题目,请看例题.(三)尝试指导,讲授新课(师出示例题)例 已知:如图,AB ∥DC. 求证:(1)△AOB ∽△COD ;(2)OA ·OD=OB ·OC. (先让生尝试,然后师分析证明思路,最后师生共同完成证明过程,证明过程如下)证明:∵AB ∥DC ,∴∠A=∠C ,∠B=∠D.∴△AOB ∽△COD.∴OA OB OC OD=. ∴OA ·OD=OB ·OC.(列OA OB OC OD =时,要让学生自己找OA ,OB 的对应边,并告诉找对应边的方法) (四)试探练习,回授调节3.已知:如图,DE ∥BC ,求证:(1)△ABC ∽△ADE ;(2)AB ·AE=AC ·AD.4.完成下面的证明过程: 已知:如图,∠B=∠ACD. 求证:AC 2=AB ·AD.证明:∵∠B=∠ACD ,∠A=∠A , ∴△ ∽△ .∴AB AC ()()=. ∴AC 2=AB ·AD. 5.选做题:已知:如图,AD=2DB ,AE=2EC.求证:(1)DE 2BC 3=; (2)DE ∥BC.(五)归纳小结,布置作业师:本节课我们利用相似三角形的判定定理做了几个题目,通过做这几个题目,你有什么体会?生:……(让几名学生说) A B C D O E A B C D AD B CE A B C D(作业:P 54习题3(2).4.5.)课题:27.2.1相似三角形的判定(第3课时) 一、教学目标1.会利用判定定理证明简单图形中的两个直角三角形相似,进而得出边角关系.2.培养推理论证能力,发展空间观念. 二、教学重点和难点1.重点:利用判定定理证明简单图形中的两个直角三角形相似.2.难点:找相似三角形的对应边. 三、教学过程(一)基本训练,巩固旧知 1.判断正误:对的画“√”,错的画“×”.(1)两个全等三角形一定相似; ( ) (2)两个相似三角形一定全等; ( ) (3)两个等腰三角形一定相似; ( ) (4)顶角相等的两个等腰三角形一定相似; ( ) (5)两个直角三角形一定相似; ( ) (6)有一个锐角对应相等的两个直角三角形一定相似; ( ) (7)两个等腰直角三角形一定相似; ( ) (8)两个等边三角形一定相似. ( )2.填空:(1)如图,BE ∥CD ,则△ ∽△ ,AB AE BE ()()()==;(2)如图,AB ∥DE ,则△ ∽△ ,AB BC CA ()()()==;(3)如图,∠B=∠ADE ,则△ ∽△ ,AB BC CA ()()()==.(二)创设情境,导入新课师:上节课我们利用相似三角形的判定定理做了几个题目,这节课我们再来做几个题目,先看一道例题. (三)尝试指导,讲授新课 (师出示例题)例 已知:如图,在Rt △ABC 中,CD 是斜边上的高.A D BCE ABCDA BCED ABC求证:(1)△ACD ∽△CBD ; (2)CD 2=AD ·BD.(先让生尝试,然后师分析证明思路,最后师生共同完成证明过程,证明过程如下)证明:在Rt △ABC 中,∠A=90°-∠B , 在Rt △CBD 中,∠BCD=90°-∠B ,∴∠A=∠BCD.而∠ADC=∠CDB=90°, ∴△ACD ∽△CBD.∴CD ADBD CD =. ∴CD 2=AD ·BD.(列CD ADBD CD =时,要让学生自己找CD ,AD 的对应边,并强调找对应边的方法) (四)试探练习,回授调节3.已知:如图,在Rt △ABC 中,CD ⊥AB 于D. 求证:(1)△CBD ∽△ABC ;(2)BC 2=AB ·BD.4.已知,如图,△ABC ∽△A ′B ′C ′,AD 和A ′D ′分别是BC 和B ′C ′上的高.求证:AD ABA D A B=ⅱⅱ.(五)归纳小结,布置作业 师:(指准图)本节课我们学习了证明两个直角三角形相似.两个直角三角形已经有一个直角对应相等,所以只要证明一个锐角对应相等就能得出这两个直角三角形相似.课外补充作业:5.已知:如图,在Rt △ABC 中,DE ⊥AB 于E 点, AE=3,AD=4,AB=6,求AC.6.已知:如图,在△ABC 中,CD 是AB 上的高,CD 2=AD ·BD. 求证:(1)△CBD ∽△ACD ; (2)∠ACB=90°. /D C //B /A B A C E AB C D DC B AC AD B四、板书设计(略)课题:27.2.1相似三角形的判定(第4课时) 一、教学目标1.会利用判定定理证明与圆有关的两个三角形相似,进而得出边角关系.2.培养推理论证能力,发展空间观念. 二、教学重点和难点1.重点:利用判定定理证明与圆有关的两个三角形相似.2.难点:画辅助线,运用圆的知识. 三、教学过程(一)基本训练,巩固旧知1.填空: (1)如图,AB ∥CD ,则△ ∽△ ,OA OB AB()()()==; (2)如图,在Rt △ABC 中,CD 是斜边上的高,则△ ∽△ ∽△ . 2.填空:(1)如图∠A=∠ ,∠D=∠ ;(2)如图∠PAD=∠ ,∠B=∠ .(二)创设情境,导入新课师:上节课我们利用相似三角形的判定定理做了几个题目,这节课我们再来做几个题目,先看一道例题. (三)尝试指导,讲授新课 (师出示例题)例 已知:如图,弦AB 和CD 相交于⊙O 内一点P.求证:PA ·PB=PC ·PD.(先让生尝试,然后师分析证明思路,最后师生共同完成证明过程,证明过程如下)证明:连结AC 、BD.∵∠A 和∠D 都是 CB 所对的圆周角, ∴∠A=∠D.同理∠C=∠B.OA BC D P A D C B D B AA C BD O .PA DC B∴△PAC ∽△PDB.∴PA PCPD PB=. 即PA ·PB=PC ·PD.(列PA PCPD PB=时,要让学生自己找PA ,PC 的对应边) (四)试探练习,回授调节 3.填空:如图,PA=3,PC=2,点P 是AB 的中点,则PD= .4.已知:如图,弦BA 和DC 的延长线相交于⊙O 外一点P.求证:PA ·PB=PC ·PD. (提示:连结AC )5.填空:在上题中,如果PA=3,AB=2,PC=2.5,则PD= . (五)归纳小结,布置作业师:本节课我们做了几个题目,做这几个题目不仅用到了相似三角形的判定定理,还用到了一些圆的知识.譬如用到了同弧所对的圆周角相等,用到了圆内接四边形的一个外角等于它的内对角.在有关圆的图形中,因为相等的角比较多,所以常常会有相似三角形,利用相似三角形对应边的比相等,就能得出线段的关系.(指例题)这是解决和这个例题类似问题的一般思路. 课外补充作业: 6.已知:如图,AB 是直径,PB 是过点B 的切线.求证:PB 2=PA ·PC. 四、板书设计(略)课题:27.2.2相似三角形应用举例(第1课时) 一、教学目标1.经历对实际问题的思考和讨论过程,会利用相似三角形解决高度测量问题.2.培养把实际问题转化为数学问题的能力,发展应用意识. 二、教学重点和难点1.重点:利用相似三角形解决高度测量问题.2.难点:探索如何利用相似三角形解决高度测量问题. 三、教学过程(一)创设情境,导入新课师:从初一到现在,我们已经学了不少图形的知识,我们学过相交线平行线,我们学过三角形四边形,我们学过圆,这些天我们又学了相似三角形.这些关于图形的知识是怎么形成的呢?(稍停)据说在很久很久以前,埃及的尼罗河水每年都会泛滥,两岸的田地就被淹没,水退后人们要重新划定田界,这便促使人们学会了计算简单图形边长、面积的方法,逐步形成了图形的知识.可见,图形知识是由于测量的实际需要而形成的.本节课我们要学的也与测量有关,我们要利用相似三角形的知识来解决一个测量问题,先来看这样一个实际问题.P A C B D .O A P D CB.PCA B O(二)尝试指导,讲授新课 (师出示下图) 师:(指图)这是旗杆,旗杆很高,怎么测量出旗杆的高度?请大家想出一个可行的测量办法.(让生思考一会儿,等到有一部分学生举手)师:有些同学已经有了办法,大家还是把自己的想法先在小组里交流交流. (生小组交流,师巡视倾听)师:哪位同学来说说你们小组讨论的情况?生:……(让几名同学说,师作适当评价,譬如有些想法只是一种想法不具有可行性)师:测量旗杆的高度有很多办法,其中有一种比较好的办法是利用相似三角形来测量,怎么利用相似三角形来测量?师:旗杆在地上会有影子,假如这条线是旗杆的影子(边讲边画图).我们在旗杆影子的顶端立一根木杆(边讲边画图),木杆在地上也会影子,这条线是木杆的影子(边讲边画图).现在连结这两条线段(边讲边连结),就构成了两个三角形,我们把三角形的顶点都标上字母(标字母,画好的图如下所示).师:(指准图)△ABC 与△DEA 相似吗? 生:(齐答)相似.师:为什么相似?(让生思考一会儿再叫学生) 生:……(让一两名学生回答) 师:(指准图)因为旗杆和木杆都垂直立在地上,所以∠C 、∠DAE 都是直角(边讲边在图中作直角符号). 师:(指准图)而DE ∥AB ,为什么?(稍停)因为DE 是太阳光线,AB 也是太阳光线,太阳光线是平行的,所以DE ∥AB. 师:(指准图)因为DE ∥AB ,所以∠BAC=∠D (边讲边在图中作角的符号),所以△ABC ∽△DEA.B C师:假如我们量出旗杆影子AC 的长度为8米(边讲边在图中标:8m ),木杆的高度为2米(边讲边在图中标:2m ),木杆影子的长度为1.6米(边讲边在图中标:1.6m ),那么旗杆高度是多少米?(边讲边在图中标:?)大家算一算.(生计算)师:旗杆的高度是多少米? 生:(齐答)10米.师:好了,下面我们把求旗杆高度的过程完整地写出来. (以下师边讲解边板书,解答过程如下) 解:∵DE ,AB 是太阳光线, ∴DE ∥AB.∴∠BAC=∠D.而∠C=∠DAE=90°, ∴△ABC ∽△DEA.∴BC AC EA DA =,即BC 82 1.6=. ∴BC=10(米).因此,旗杆的高度为10米. (三)试探练习,回授调节 1.填空:如图,在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋高楼的影长为90m ,则这栋高楼的高度是 m.2.填空:如图,测得BD=120m ,DC=60m ,EC=50m , 则河宽AB= m.(四)归纳小结,布置作业师:本节课我们利用相似三角形解决了测量旗杆高度的问题,通过解决这个问题,不知道大家有没有意识到,其实测量可以分成两种,一种是可以直接测量的,譬如,我们的身高,教室的长度,马路的宽度,这些都可以直接测量.另一种是不能直接测量的,譬如,旗杆的高度,珠峰的高度,地球和月亮的距离,这些1.8m90m都不能直接测量.不能直接测量的问题怎么解决?(稍停)解决不能直接测量的问题,实质上是把不能直接测量的问题转化为可以直接测量的问题.(指准图)譬如,旗杆的高度是不能直接测量的,但它的影子,还有木杆及影子的长度都是可以直接测量,利用相似三角形可以求出旗杆的高度.师:不能直接测量就利用相似三角形间接地测量,这种想法很巧妙很高明,从中我们可以看到数学知识在解决实际问题中的作用,看到数学的价值,看到人的聪明才智.(作业:P习题10.11.)55四、板书设计(略)。
图形的相似教案 人教版

图形的相似教案人教版
图形的相似教案人教版
教学设计思想
本节课主要培养学生观察能力和自己动脑、动手的能力,以及培养创造精神和探究意识。
教学中,给予学生充足的时间参与学习活动,进行多向、充分的探索交流,关注学生学习兴趣的养成,让学生在课堂活动中感悟知识的生成、发展与变化,形成良好的情感、态度和价值观。
教学目标
知识与技能:
1.学会相似的概念。
2.能够准确判断是不是相似图形。
3.熟记相似多边形的特征。
过程与方法:
通过观察丰富实例,让学生体会相似图形的概念,进一步得出相似多边形的特征。
情感态度价值观:
主动进行观察、操作、比较、归纳以及相互交流,进一步增强探索精神和与他人合作的意识,发展数学思维能力。
教学重难点
重点:理解相似图形的概念;
难点:相似多边形特征的得出。
教学方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版图形的相似教案
人教版图形的相似教案
篇一:人教版,新课标,九年级,第27章,图形的相似,教案
第二十七章相似
27.1 图形的相似(一)
一、教学目标
1( 理解并掌握两个图形相似的概念(
2( 了解成比例线段的概念,会确定线段的比(
二、重点、难点
1( 重点:相似图形的概念与成比例线段的概念(
2( 难点:成比例线段概念(
3( 难点的突破方法
(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:?相似形一定(((
要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);?相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;?两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到
的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形(
(2)对于成比例线段:
?我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;?两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;?线段的比是一个没有单位的正数;?四条线段a,b,c,d成比例,记作
段满足ac?或a:b=c:d;?若四条线bdac则有ad=bc(为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc,?,bd
ac则有?,或其它七种表达形式)( bd
三、例题的意图
本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过分别采用m、cm、mm三种不同的长度单位,求得的a的值相等,使学生明确:b
两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求
图上距离图距?线段的比的题,要使学生对比例尺有进一步的认
识:比例尺=,而求图上实际距离实距
距离与实际距离的比就是求两条线段的比(
四、课堂引入
1((1
)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与
小五角星他们的形状、大小有什么关系,再如下图的两个画面,他们的形状、大小有什么关系((还可以再举几个例子)
(2)教材P36引入(
(3)相似图形概念:把形状相同的图形说成是相似图形((强调:见前面)
(4)让学生再举几个相似图形的例子(
(5)讲解例1(
2(问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少,
归纳:两条线段的比,就是两条线段长度的比(
3(成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如ac,我们就说这四条线段是成比例线段,简称比例线段( ?(即ad=bc)bd
【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;
(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作
(4)若四条线段满足
五、例题讲解 ac?或a:b=c:d;bdac?,则有ad=bc( bd
例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( )
分析:因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180o后,再按一定比例缩小得到的,因此图C与左图相似,故此题应选C.
例2(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少,
(1)如果a=125cm,b=75cm,那么长与宽的比是多少,
(2)如果a=1250mm,b=750mm,那么长与宽的比是多少,
解:略((a5?)
b3
小结:上面分别采用m、cm、mm三种不同的长度单位,求得的a的值是相等的,所b
以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致(
例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km,
图上距离分析:根据比例尺=,可求出北京到上海的实际距离( 实际距离
解: 略
答:北京到上海的实际距离大约是1120 km(
六、课堂练习
1(教材P37的观察(
2(下列说法正确的是( )
A(小明上幼儿园时的照片和初中毕业时的照片相似.
B(商店新买来的一副三角板是相似的.
C(所有的课本都是相似的.
D(国旗的五角星都是相似的.
3(如图,请测量出右图中两个形似的长方形的长和宽,
(1)(小)长是_______cm,宽是_______cm; (大)长是_______cm,宽是_______cm;
宽宽??( (2)(小)(大)长长
(3)你由上述的计算,能得到什么结论吗,
(答:相似的长方形的宽与长之比相等)
4(在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少,
5(AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少,
七、课后练习
1(观察下列图形,指出哪些是相似图形:
(答:相似图形分别是:(1)和(8);(2)和(6);(3)和(7) )
2(教材P37练习1、2(
3(教材P40 练习1与习题1 (
27.1 图形的相似(二)
一、教学目标
1(知道相似多边形的主要特征,即:相似多边形的对应角相等,对应边的比相等(
2(会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算(
二、重点、难点
1(重点:相似多边形的主要特征与识别(
2(难点:运用相似多边形的特征进行相关的计算(
3(难点的突破方法
(1)判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;可以以矩形、菱形为例说明:仅有对应角相等,或仅有对应边的比相等的两个多边形不一定相似(见例1),也可以借助电脑直观演示,增加效果,从而纠正学生的错误认识(
(2)由相似多边形的特征可知,如果已知两个多边形相似,就等于知道它们的对应角相等,对应边的比相等(对应边成比例),
在计算时要能灵活运用(
(3)相似比是一个很重要的概念,它实质是把一个图形放大或缩小的倍数(即相似多边形的对应边的长放大或缩小的倍数)(
三、例题的意图
本节课安排了3个例题,例1与例3都是补充的题目,其中通过例1的学习,要让学生了解判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;而若说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或举出合适的反例,在解决这个问题上,依靠直觉观察是不可靠的;例2是教材P39的例题,它主要考查的是相似多边形的特征,运用相似多边形的对应角相等,对应边的比相等即可求解;例3是相似多边形特征的灵活运用(使用方程思想)的题目,在教学中还可根据自己的学生学习的程度,适当增加一些题目用以巩固相似多边形的性质(
四、课堂引入
1( 如图的左边格点图中有一个四边
形,请在右边的格点图中画出一个
与该四边形相似的图形(
2( 问题:对于图中两个相似的四边
形,它们的对应角,对应边的比是
否相等(
3(【结论】:
(1)相似多边形的特征:相似多边形的对应角相等,对应边的比相等(
反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似(
(2)相似比:相似多边形对应边的比称为相似比(
问题:相似比为1时,相似的两个图形有什么关系,
结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形(
五、例题讲解
例1(补充)(选择题)下列说法正确的是( )
A(所有的平行四边形都相似 B(所有的矩形都相似
C(所有的菱形都相似 D(所有的正方形都相似
分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D(
例2(教材P39例题)(
分析:求相似多边形中的某些角的度数和某些线段的长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找
准对应角与对应边,从而列出正确的比例式( 解:略
例3(补充)。