概率论 第一章 随机事件与概率

合集下载

概率论与数理统计 第一章1.1随机事件

概率论与数理统计 第一章1.1随机事件

事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:

随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象

概率第一章

概率第一章
1.2.1 基本事件空间与事件
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行。
1-4
概率论与数理统计
E
随机试验:不能事先准确地预见它的
结果,而且在相同条件下可以重复进行用 符号 E 表示。 随机事件 :在条件下事件可能发生也 可能不发生的事件用大写字母 A , B , C ,表
指出
件,并表示事件 1-9
事件中哪些是基本事 B, C, D
。 概率论与数理统计
E
1.2.2 事件间的关系与运算
1.事件的包含与相等 若事件 A 中的每个基本事件都包含在 B
A
事件 B 之中,即 A 的发生必然导致 B 的发
生,则称事件 A 包含于事件 B ,或事件 B
包含事件 A ,也称是的特款 ,记为 A B 。
1-19
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.2.4 化简下列各事件:
(1) ( A B)( A B) ; (2) AB AB BC; (3) ( A B)( A B)(B C ).
(2) AB AB BC;
(3) ( A B)( A B)(B C ).
例1.3.1 设事件A, B 的概率分别为 和
,试求下列三种情况下的值: (1) B 互不相容; A, (2) A B ; (3) ( AB ) 1 . P
8
1 3
1 2
1-27
概率论与数理统计
E 与B B)( A与 A与B 如果事件A与事件B A A (1) (B 的和 A B) ;

概率论第一章

概率论第一章
例如:在检查某些圆柱形产品时, 例如:在检查某些圆柱形产品时,如果规定只有它的长度及直径 都合格时才算产品合格,那么“产品合格” 直径合格” 都合格时才算产品合格,那么“产品合格”与“直径合格”、 长度合格”等事件有着密切联系。 “长度合格”等事件有着密切联系。
下面我们讨论事件之间的关系与运算
1、包含关系
⑶ 两个特殊事件
必然事件U ★ 必然事件U ★ 不可能事φ 不可能事φ
3、随机试验
如果一个试验可能的结果不止一个, 如果一个试验可能的结果不止一个,且事先不能肯定 会出现哪一个结果,这样的试验称为随机试验。 会出现哪一个结果,这样的试验称为随机试验。
例如, 掷硬币试验 例如, 寿命试验 测试在同一工艺条件下生产 掷骰子试验 掷一枚硬币,观察出正还是反. 掷一枚硬币,观察出正还是反 出的灯泡的寿命. 出的灯泡的寿命 掷一颗骰子, 掷一颗骰子,观察出现的点数
第一章 随机事件及其概率
随机事件及样本空间 频率与概率 条件概率及贝努利概型
§1 随机事件及样本空间
一、随机事件及其有关概念
1、随机事件的定义
试验中可能出现或可能不出现的情况叫“随机事件” 试验中可能出现或可能不出现的情况叫“随机事件”, 简称“事件” 记作A 简称“事件”。记作A、B、C等任何事件均可表示为样本空 间的某个子集。称事件A发生当且仅当试验的结果是子集A 间的某个子集。称事件A发生当且仅当试验的结果是子集A中 的元素。 的元素。
例如,一个袋子中装有10个大小、形状完全相同的球。 例如,一个袋子中装有10个大小、形状完全相同的球。 10个大小 将球编号为1 10。把球搅匀,蒙上眼睛,从中任取一球。 将球编号为1-10。把球搅匀,蒙上眼睛,从中任取一球。
因为抽取时这些球是完全平等的, 因为抽取时这些球是完全平等的, 我们没有理由认为10个球中的某一个会 我们没有理由认为10个球中的某一个会 10 比另一个更容易取得。也就是说,10个 比另一个更容易取得。也就是说,10个 球中的任一个被取出的机会是相等的, 球中的任一个被取出的机会是相等的, 均为1/10 1/10。 均为1/10。

第一章--随机事件及其概率PPT课件

第一章--随机事件及其概率PPT课件

.
目录
上一页 下一页
返回
结8束
§1.1 随机事件及其频率·概率的统计定义
随机事件(简称事件) 随机试验中的某种结果(它在一次试验中可能发生
也可能不发生,而且在大量重复试验中具有某种统计规 律性).
或:随机试验结果的一种描述 或:关于试验结果的一个命题 用大写 A,字 B,C母 ,表.示
随机事件 事件 必然事件 (记作U)
概率论与数理统计
主编:刘韶跃 李以泉 丁碧文 杨湘桃
湘潭大学出版社
概率论与数理统计教程(第四版)
.
目录
上一页 下一页
返回
结1束
美国报纸检阅(Parade)的专栏内提出了一个有趣的 概率问题:电视主持人指着三扇关着的门说,其中一 扇后是汽车,另两扇后各有一只山羊,你可以随意打 开一扇,后面的东西就归你了,你当然想得到一辆汽 车!当你选定一扇门后,比方说选定1号门(但未打 开),主持人知道哪扇门后是汽车,哪扇门后是山羊, 他打开另一扇中有山羊的一个,比方说他打开了3号 门让你看到里边是山羊,并对你说:我现在再给你一 个机会,允许你改变原来的选择,为了得到汽车,你 是坚持1号门还是改选2号门?
个使他苦恼了很久的问题:“两个赌徒相约赌
若干局,谁先赢m局就算获胜,全部赌本就归
胜者,但是当其中一个人甲赢了a(a<m)局的
时候,赌博中止,问赌本应当如何分配才算合
理?” 概率论在物理、化学、生物、生态、
天文、地质、医学等学科中,在控制论、信息
论、电子技术、预报、运筹等工程技术中的应
用都非常广泛。
概率论与数理统计教程(第四版)
设随机 A在 n次 事试 件验m 中 次 ,则 发比 生
m称为随机事 A的件 相对频率(简称频率). n

第1章 概率论的基本概念.

第1章 概率论的基本概念.
, B不可能同时发生 概率论表述:事件 A .. A不能都不发生, 概率论表述:事件 A 不发生 . 事件 A 和 概率论表述:事件 A 发生,而事件 B 发生 . , , 概率论表述:事件 概率论表述:事件 概率论表述:事件 A A A , B B B 相等意味着它们是同一个集合 中至少有一个发生 同时发生 . . 概率论表述:事件A发生必然导致事件B发生. 也不能都发生,只能恰好发生其中一个.
注意事项
可能结果——样本点——基本事件
(1) (2)在概率论中常用一个长方形来 (3) 由中的单个元素组成的子集称为基本事件,常用表示. 判定一个事件是否发生的标准是看它所包含的样本点是否 表示概率空间,用椭圆或者其它的 A 出现 ① .事件发生当且仅当该事件包含的某个样本点出现 样本空间的最大子集称为必然事件,常用 表示; . ● 1 几何图形来表示事件.这类图形被称 ● ② 样本空间的最小子集称为不可能事件,常用 表示 .2 为维恩(Venn)图,又叫文氏图.
例1.1.2 一天内进入某商场的人数的样本空间为 ={0,1, 2, …}. 例1.1.3 电视机寿命的样本空间为 ={t|t0} . 在以后的数学处理上,我们往往把有限个或可列个 样本点的情况归为一类,称为离散样本空间;而将不可 列无限个样本点的情况归为另一类,称为连续样本空间.
随机事件 (random event) 随机试验的某些子集称为随机事件, 简称事件.它在随机试验中可能出现也可能不出现,而在大量重复试 验中具有某种规律性. 常用符号 (1)大写的英文字母:A,B,C. (2)大写的英文字母加下标:A1, A2, A3, … .
例1.1.7 设A, B, C是某个随机现象的三个事件,则 (1)事件“A与B发生,C不发生”:ABC (2)事件“A, B, C中至少有一个发生”:A B C (3)事件“A, B, C中至少有两个发生”:AB AC BC

概率论第一章 随机事件及其概率

概率论第一章 随机事件及其概率

A B A B, A B A B
A ,B ,C 都不发生— A B C
A B C
A ,B ,C 不都发生— ABC A B C
概率统计B
宁波工程学院
例:某人连续购买体育彩票,令事件 A、B、C 分别 表示其第一、二、三次所买的彩票中奖,试用 A,B, C 及其运算表示下列事件:
A
差化积
A B AB A ( AB)
概率统计B
宁波工程学院
随机事件的运算规律
交换律: A B B A, 结合律: 分配律:
A B B A
A B C A B C A B C A B C
A B C A B A C A B C A B A C De Morgan定律:
A1 “ : 至少有一人命中目标” : A2 “ : 恰有一人命中目标” : A3 “ : 恰有两人命中目标 ” : A4 “ : 最多有一人命中目标 ” : A5 “ : 三人均命中目标” : A6 “ : 三人均未命中目标” :
A
B
C
ABC ABC BC
ABC ABC AC
ABC ABC
AB
ABC
B
A S
性质2 (减法公式)
特别地
P( B A) P( B) P( AB)
A B P( B A) P( B) P( A) P( B) P( A)
A
B S
概率统计B
宁波工程学院
性质 3 P( A) 1 ;
性质 4 P( A ) 1 P( A) ;
性质 5 (加法公式)
在大量重复试验中,随机事件的频率具有稳定性.

1随机事件和概率

1随机事件和概率

解 :令A={第一次取到次品},B={第二次取到次品}, 需求P(B│A).
(1)在缩减的样本空间中计算.因第一次已经取得了次品, 剩下的产品共19件其中3件次品,从而
P(B│A)=3/19 (2)在原样本空间中计算,由于
二 、乘法公式
设P(B)>0,则有 P(AB)=P(B)P(A│B) 同样,当P(A)>0时,有: P(AB)=P(A)P(B│A) 上述乘法公式可推广至任意有限个事件的情形:
三、样本空间
试验E的所有基本结果构成的集合称为样本空间, 记为S。 S中的元素即E的每个基本结果称为样本点,记为 ω,即S={ω}。 基本事件是样本空间的单点集。 复合事件是由多个样本点组成的集合。 必然事件包含一切样本点,它就是样本空间S。 不可能事件不含任何样本点,它就是空集φ。
四、事件间的关系及其运算 例1 : 从一批产品中任取8件,观察其中的正品件数, 则这一试验的样本空间为:
可列个事件A1 , A2 , … , An的积记为A1 ∩ A2 ∩ … ∩ An
或A1A2 … An ,也可简记为 在可列无穷的场合,用 件同时发生。” 。 表示事件“A1、A2 …诸事
4.互不相容事件
事件A与事件B不能同时发生,即AB=φ,则称A 和B是互不相容的或互斥的。 基本事件是两两互不相容的。 5.对立事件 若A,B互不相容,且它们的和事件为必然事件,即
例2: 设A,B,C为三个事件,试用A,B,C表
示下列事件: (1)A发生且B与C至少有一个发生; (2)A与B都发生而C不发生; (3)A,B,C恰有一个发生; (4)A,B,C中不多于一个发生; (5)A,B,C不都发生;
(6)A,B,C中至少有两个发生。
1.2 事件的概率

第一章 事件与概率

第一章 事件与概率
概率论与数理统计
事件的和(A∪B) : 事件A和事 件B中至少有一个发生的这 一事件称为事件A和事件B 的和, 记为A∪B. 事件的积(A∩B) : 事件A和事 件B同时发生这一事件称为 事件A和事件B的积, 记为 A∩B. 如果A∩B= Φ, 则称A和B不相 容, 即事件A和B不能同时发 生.
概率论与数理统计
概率论与数理统计
样本空间的分割
设B1, B2, · · · Bn是样本空间Ω中的两两不相 容的一组事件, 即BiBj = Φ, i ≠ j, 且满足 n i =1 Bi =Ω, 则称B1, B2, · · · , Bn 是样本空间Ω 的一 个分割(又称为完备事件群,英文为partition).
Ac
对立事件: A不发生这一 事件称为事件A的对立 事件(或余事件) .
事件A和事件B的差A−B: 事件A发生而事件B不发 生这一事件称为事件A 和事件B的差, 记为A−B.
概率论与数理统计
De Morgan对偶法则
De Morgan对偶法则
上面公式可以推广到n个事件:
概率论与数理统计
什么是概率
概率论与数理统计
随机现象和随机试验
随机现象:自然界中的客观现象, 当人们观测它时, 所得结果不能预先确定, 而仅仅是多种可能结果 之一.
随机试验: 随机现象的实现和对它某特征的观测.
随机试验的要求: 结果至少有两个;每次只得到其 中一种结果且之前不能预知;在相同条件下能重复 试验. 举例说明随机现象和随机试验.
概率论与数理统计
(三)主观概率
人们常谈论种种事件出现机会的大小, 如某人有80% 的可能性办成某事. 而另一人则可能认为仅有50%的 可能性. 即我们常常会拿一个数字去估计这类事件发 生的可能性, 而心目中并不把它与频率挂钩.

《概率论与数理统计》电子教案第一章随机事件与概率

《概率论与数理统计》电子教案第一章随机事件与概率

《概率论与数理统计教程》教案第一章随机事件与概率教材:《概率论与数理统计教程》总安排学时:90本章学时:14第一讲:随机事件及其运算教学内容:引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。

教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。

(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。

教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。

例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。

随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。

例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。

(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。

(iii)概率论发展的历史:概率论起源于赌博问题。

大约在17世纪中叶,法国数学家帕斯卡(B•Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。

随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。

《概率论与数理统计》电子教案第一章随机事件与概率

《概率论与数理统计》电子教案第一章随机事件与概率

《概率论与数理统计教程》教案第一章随机事件与概率教材:《概率论与数理统计教程》总安排学时:90本章学时:14第一讲:随机事件及其运算教学内容:引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。

教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。

(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。

教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。

例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。

随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。

例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。

(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。

(iii)概率论发展的历史:概率论起源于赌博问题。

大约在17世纪中叶,法国数学家帕斯卡(B•Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。

随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。

概率论第一章随机事件及其概率答案

概率论第一章随机事件及其概率答案

概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )A B (D )A B4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ](A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A ](A )C A Y C B ; (B )C AB ;(C )C AB Y C B A Y BC A ; (D )A Y B Y C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互斥或互不相容 。

《概率论与统计原理》第1章

《概率论与统计原理》第1章
P (B) =
P (A ) P ( B A )
i
i 1
i
n
例13 两台车床加工同样的零件,第一台的废品率为 0.04,第二台的废品率为0.07,加工出来的零件混 放,并设第一台加工的零件是第二台加工零件的2 倍。现任取一零件,求它是的合格品的概率。
1.5.4 贝叶斯公式
设 Ai ( i =1,2,…,n)是样本空间的一个划分,且 P( Ai )>0,则对任意事件 B,有
例10 已知P(A)=P(B)=P(C)=1/4,P(AC) =P(BC)=1/16,P(AB)=0,求事件A,B,C都 不发生的概率。
§1.5
条件概率和事件的独立性
1.5.1 条件概率 在事件 B 发生的条件下,事件 A的条件概率为
P( AB) P( B A) P( A) 理解条件概率的意义
第一章 事件的概率
§1.1 随机事件和样本空间
1.1.1 随机现象与随机试验 1、确定性现象和随机现象
确定性现象是指在一定条件下必然会发生的现象
随机现象是指在一定条件可能发生也可能不发生的 现象,其出现的结果不确定 概率论研究的主要问题就是随机现象的规律性
2、随机试验
对随机现象的观察称为随机试验,简称为试验,用 字母E来表示 随机试验的特点: (1)可重复性 试验在相同的条件下可以重复进行
(2)可观测性 每次试验的可能结果不止一个,而且 事先能明确试验的所有可能结果
(3)随机性 在每次试验之前不能准确预知将会出现 的结果 一些随机试验的例子: E1:掷一颗均匀对称的骰子,观察出现的点数
E2:记录一段时间内某城市110报警次数 E3:从含有三件次品a1,a2,a3和三件正品b1,b2, b3的六件产品中,任取两件,观察出现正品和次品 的情况 E4:从一批电脑中任取一台,观察无故障运行的时 间 E5:设平面上有一簇间距为a的平行线,现反复用一 枚长度为l(l<a)的针投掷下去,投掷n次后,观察 针与平行线相交的数目 E6:向坐标平面区域D:x2 +y2≤100内随机投掷一点 (假设点必落在D内),观察落点M的坐标

概率论第一章随机事件及其概率答案

概率论第一章随机事件及其概率答案

概率论第一章随机事件及其概率答案2(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )AB (D )AB4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C ](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ]3(A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为[ A ](A )C A C B ; (B )C AB ;(C )C AB C B A BC A ; (D )A B C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互斥或互不相容 。

2020考研概率论第一章考试重点回顾:随机事件与概率

2020考研概率论第一章考试重点回顾:随机事件与概率

2020考研概率论第一章考试重点回顾:随机
事件与概率
第一章随机事件与概率
本章需要掌握概率统计的基本概念,公式。

其主要内容是概率的基本计算,以及五大公式的熟练应用,加法公式、乘法公式、条件概率公式、全概率公式以及贝叶斯公式。

1.本章的重点内容:
四个关系:包含,相等,互斥,对立﹔五个运算:并,交,差﹔四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔·条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。

近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。

2.常见典型题型:
随机事件的关系运算﹔求随机事件的概率﹔综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。

作业题 第一章 随机事件及其概率

作业题 第一章 随机事件及其概率
1、设 P( A) = 0.5 , P( B) = 0.4 , P( A | B ) = 0.6 , 求 P( AB ) , P ( A | A B ) .
2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过 两次而接通所需电话的概率. 若已知最后一个数字是奇数,那么此概率是多少?
3、两台车床加工同样的零件,第一台出现废品的概率是 0.03,第二台出现废品 的概率是 0.02. 加工出来的零件放在一起,并且已知第一台加工的零件比第二台 加工的零件多一倍. (1)求任意取出的零件是合格品的概率; (2)如果任意取出的零件是废品,求它是第二台车床加工的概率.
概率论与数理统计作业纸
班级:
学号:
姓名:
第一章 随机事件及其概率 一、 随机事件及其概率·样本空间·事件的关系及运算
1、任意抛掷一颗骰子,观察出现的点数。设事件 A 表示“出现偶数点” ,事件 B 表示“出现的点数能被 3 整除” . (1)写出试验的样本点及样本空间; (2)把事件 A 及 B 分别表示为样本点的集合; (3)事件 A , B , A B , AB , A B 分别表示什么事件?并把它们表示为样本 点的集合.
概率论与数理统计作业纸
~5~
班级:
学号:
姓名:
4、 甲、 乙、 丙三人同时对飞机进行射击, 三人的命中概率分别为 0.4 , 0.5 , 0.7 . 飞 机被一人击中而被击落的概率为 0.2 ,被两人击中而被击落的概率为 0.6 ,若三 人都击中,则飞机必被击落.求飞机被击落的概率.
5、 某机构有一个 9 人组成的顾问小组, 若每个顾问贡献正确意见的概率都是 0.7, 现在该机构内就某事可行与否个别征求每个顾问的意见, 并按多数人意见作出决 策,求作出正确决策的概率.

概率论与数理统计第一章习题参考答案

概率论与数理统计第一章习题参考答案

1第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P\)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-= 87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB Ì 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1” 2518900998900)(191918=´´==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330330””(1)455443)(2515141413´´´´==A C C C C A P =0.482)455421452)(251514122512´´´´+´´=+=A C C C A C B P =0.485、解:用A 表示事件“表示事件“44只中恰有2只白球,只白球,11只红球,只红球,11只黑球”, 用B 表示事件“表示事件“44只中至少有2只红球”, 用C 表示事件“表示事件“44只中没有只白球”只中没有只白球” (1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P(3)99749535)(41247===CC C P6.解:用A 表示事件“某一特定的销售点得到k 张提货单”张提货单” nkn k n MM C A P --=)1()(7、解:用A 表示事件“表示事件“33只球至少有1只配对”,用B 表示事件“没有配对”表示事件“没有配对” (1)3212313)(=´´+=A P 或321231121)(=´´´´-=A P(2)31123112)(=´´´´=B P8、解、解 1.0)(,3.0)(,5.0)(===AB P B P A P(1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P)()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0==717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==´´´=9、解: 用A 表示事件表示事件“取到的两只球中至少有“取到的两只球中至少有1只红球”,用B 表示事件表示事件“两只都是红球”“两只都是红球”方法1651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算在减缩样本空间中计算在减缩样本空间中计算 51)(=A B P1010、解:、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症”表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥互斥5.045.005.0)()()()(=+=+==\B A P AB P B A AB P A P同理同理15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P1111、解:用、解:用A 表示事件“任取6张,排列结果为ginger ginger””92401)(61113131222==A A A A A A P1212、、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状”由已知2.0)(=B A P3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S=且B A AB B A B A ,,,互斥互斥()6.01.03.02.0)()()(=++=++=\AB P B A P B A P B A P4.06.01)(1)()(=-=-==B A P B A P B A P ()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P(3)B A AB B =, B A AB ,互斥互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P )()()(])[()(B P AB P B P B AB P B AB P ==414.01.0==1313、解:用、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受”接受”;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41´+´+´+´==å=ii iA B P A P B P99978.0=1414、、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知由已知1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得由贝叶斯公式得 017.096.09.015.01.015.01.0)()()()()()()(=´+´´=+=A B P A P A B P A P A B P A P B A P1515、解:用、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”, C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”坏”由已知得由已知得6.0)(=A P ,3.0)(=B P ,1.0)(=C P ; 01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得由贝叶斯公式得)()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005030==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==´+´+´´=1616、解:用、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”表示事件“由密码钥匙传送讯息”由已知得由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(»´+´´=+=A B P A P A B P A P A B P A P B A P1717、解:用、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”, C 表示事件“两次得同一面”表示事件“两次得同一面”则,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P )()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===\C B A ,,\两两独立两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ¹C B A ,,\不是相互独立的不是相互独立的1818、解:用、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”, C 表示事件“运动员C 进球”,由已知得由已知得5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则5.0)(=A P ,3.0)(=B P ,4.0)(=C P (1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=相互独立)C B A ,,(29.06.03.05.04.07.05.04.03.05.0=´´+´´+´´=(2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,(44.06.03.05.06.07.05.04.07.05.0=´´+´´+´´= (3){})(C B A P P =至少有一人进球)(1C B A P -= )(1C B A P -=)()()(1C P B P A P -=相互独立)C B A ,,( 4.03.05.01´´-=94.0= 1919、解:用、解:用i A 表示事件“第i 个供血者具有+-RHA 血型”, ,3,2,1=iB 表示事件“病人得救”表示事件“病人得救”,4321321211A A A A A A A A A A B=4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立)相互独立 ()()(1P A P B P +=\+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=´+´+´+=2020、解:设、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立相互独立法1:54321A A A A A B =)()(54321A A A A A P B P =\()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----=()相互独立54321,,,,A A A A A()()()221111pp p----=543222p p p p p +--+=2121、解:令、解:令A :“产品真含杂质”,A :“产品真不含杂质”“产品真不含杂质” 则4.0)(=A P ,6.0)(=A P2.08.0)|(223´´=C A B P 9.01.0)|(223´´=C A B P \)()|()()|()(A P A B P A P A B P B P +=6.09.01.04.02.08.0223223´´´+´´´=C C\)()|()()|()()|()()()|(A P A B P A P A B P A P A B P B P AB P B A P +==905.028325660901********.02.08.0223223223»=´´´+´´´´´´=C C C第二章习题答案 1、{}()4.04.011´-==-k k Y Pk=1,2,… 2、用个阀门开表示第i A i))()()()()(())((}0{32321321A P A P A P A P A P A A A P X P -+=== 072.0)2.02.02.02.0(2.0=´-+=23213218.02.0)04.02.02.0(8.0])([}1{´+-+===A A A A A A P X P416.0=512.08.0)(}2{3321====A A A P X P 3、()2.0,15~b X{}kkk C k X P -´==15158.02.0 k=0,1,2,……,15(1){}2501.08.02.03123315=´==C X P(2){}8329.08.02.08.02.01214115150015=´-´-=³C C X P(3){}6129.08.02.08.02.08.02.031123315132215141115=´+´+´=££C C C X P(4){}0611.08.02.01551515=´-=>å=-k kkk C X P4、用X 表示5个元件中正常工作的个数个元件中正常工作的个数9914.09.01.09.01.09.0)3(54452335=+´+´=³C C X P5、设X={}件产品的次品数8000 则X~b(8000,0.001)由于n 很大,P 很小,所以利用)8(p 近似地~X {}3134.0!8768==<å=-k k k eX P6、(1)X~p (10){}{}0487.09513.01!101151151510=-=-=£-=>\å=-k k k eX P X P (2)∵ X~p ( l ) {}{}!01010210ll --==-=>=\e X P X P{}210==\X P21=\-le7.02ln ==\l {}{}1558.08442.01!7.0111217.0=-=-=£-=³\å=-k k k eX P X P或{}{}{}2ln 2121!12ln 21110122ln -=--==-=-=³-e X P X P X P 7、)1( )2(~p X 1353.0!02}0{22====--e e X P )2( 00145.0)1()(24245=-=--eeC p)3( 52)!2(å¥=-=k kk e p8、(1) 由33)(11312k x k dx kx dx x f ====òò¥+¥- 3=\k(2){}()2713331331231====£òò¥-xdx x dx x f X P(3)64764181321412141321412=-===þýüîí죣òxdx x X P(4)271927813)(321323132232=-====þýüîíì>òò¥+xdx x dx x f X P9、方程有实根04522=-++X Xt t ,则,则 0)45(4)2(2³--=D X X 得.14£³X X 或 有实根的概率有实根的概率937.0003.0003.0}14{104212=+=£³òòdx x dx x X X P10、)1( 005.01|100}1{200110200200122»-=-==<---òeedx ex X P x x)2(=>}52{X P 0|100200525220020052222»-=-=-¥--¥òeedx exx x)3( 25158.0}20{}26{}20|26{200202002622==>>=>>--ee X P X P X X P 11、解:、解: (1){}()275271942789827194491)(12132121=+--=÷øöçèæ-=-==>òò¥+x x dx x dx x f X P(2)Y~b(10,275){}kk kC k Y P -÷øöçèæ´÷øöçèæ==10102722275k=0,1,2,……,10(3){}2998.027*******2210=÷øöçèæ´÷øöçèæ==C Y P{}{}{}1012=-=-=³Y P Y P Y P 5778.027222752722275191110100210=÷øöçèæ÷øöçèæ-÷øöçèæ´÷øöçèæ-=C C 12(1)由()()òòò++==-+¥¥-10012.02.01dy cy dy dy y f24.0)22.0(2.01201c y c y y +=++=-2.1=\c ()ïîïíì£<+£<-=\其它102.12.0012.0y yy y f ()()ïïïïîïïïïíì³+<£++<£--<==òòòòòò--¥-¥-12.12.0102.12.02.0012.010)()(100011y dyy y dy y dy y dt y dtdt t f y F y yyyYïïîïïíì³<£++<£-+-<=11102.02.06.0012.02.0102y y y y y y y{}()()25.02.05.06.05.02.02.005.05.002=-´+´+=-=££F F Y P {}()774.01.06.01.02.02.011.011.02=´-´--=-=>F Y P {}()55.05.06.05.02.02.015.015.02=´-´+-=-=>F Y P{}{}{}{}{}7106.0774.055.01.05.01.01.0,5.01.05.0==>>=>>>=>>\Y P Y P Y P Y Y P Y Y P(2) ()()ïïïîïïïíì³<£+<£<==òòòò¥-41428812081002200x x dtt dt x dt x dt t f x F xxxïïïîïïïíì³<£<£<=4142162081002x x x x xx{}()()167811691331=-=-=££F F X P{}()16933==£F X P{}{}{}9716916733131==£££=£³\X P X P X X P 13、解:{}111,-´===n nj Y i X Pn j i j i ,¼¼=¹,2,1,,{}0,===i Y i X P 当n=3时,(X ,Y )联合分布律为)联合分布律为14、)1(2.0}1,1{===Y X P ,}1,1{}0,1{}1,0{}0,0{}1,1{==+==+==+===££Y X P Y X P Y X P Y X P Y X P42.020.004.008.010.0=+++= )2( 90.010.01}0,0{1=-===-Y X P)3(}2,2{}1,1{}0,0{}{==+==+====Y X P Y X P Y X P Y X P60.030.020.010.0=++= }0,2{}1,1{}2,0{}2{==+==+====+Y X P Y X P Y X P Y X P28.002.020.006.0=++= 15、()()()88104242c ee cdxdy ce dx x f yx y x =-×-===+¥-+¥-+¥+¥+-+¥¥-òòò8=\c{}()()()4402042228,2-+¥-+¥-+¥+-+¥>=-×-===>òòòòe ee dy edxdxdy y x f X P yyxx y x xY X 1 2 31 0 1/6 1/62 1/6 0 1/6 31/6 1/6 0D :xy x ££¥<£00{}()òò>=>yx dxdy y x f Y X P ,()()dx e e dy edxx yx xy x 0402042028-+¥-+-+¥-×==òòò()ò¥++¥----=÷øöçèæ-=+-=2626323122x x xxe e dx eeD :xy x -££££101{}()dy edxY X P xyx òò-+-=<+10421081 ()()òò------=-=1422101042222dx eedx eex xx yx()()22104221----=--=e e ex x16、(1)61)2(122=-=òdx x x s , îíìÎ=其他,0),(,6),(G y x y x f(2)îíì<<==ò其他,010,36)(2222x x dy x f x xXïïïîïïíì<£-=<<-==òò其他,0121),1(66210),2(66),(12y y yY y y dx y y y dx y x f17、(1)Y X0 1 2 P{X=x i } 0 0.10 0.08 0.06 0.24 1 0.04 0.20 0.14 0.38 20.02 0.06 0.300.38 P{Y=y i } 0.16 0.34 0.501(2)D :+¥<£+¥<£y x x 0或:yx y <£+¥<£00()()ïîïíì£>==\òò+¥-¥+¥-00,x x dye dy y xf x f xy Xîíì£>=-00x x e x()()ïîïíì£>==òò-¥+¥-00,0y y dxe dx y xf y f yy Yîíì£>=--00y y ye y22、(1)Y 1 Y 2 -11-14222qq q =×()q q-124222qq q =×()q q-12()21q -()q q-1214222qq q =×()q q-124222qq q =×且{}{}{}{}1,10,01,121212121==+==+-=-===Y Y P Y Y P Y Y P Y YP()12234142222+-=+-+=q qqqq(2){}10.00,0===Y X P{}{}0384.000==×=Y P X P 又 {}0,0==Y X P {}{}00=×=¹Y P X P∴X 与Y 不相互独立不相互独立23、()1,0~U X ()ïîïíì<<=其它2108y yy f Y且X 与Y 相互独立相互独立则()()()ïîïíì<<<<=×=其它0210,108,y x yy f x f y x f Y XD :1210<£<£x y y32|)384()8(8}{21032212=-=-==>òòò>y y dy y y ydxdy Y X P yx24X-2-11 3 k p51 61 51151301112+=X Y 52 1 2 10Y 12 510k p5115161+513011即Y 12 5 10 k p5130751301125、U=|X|,当0)|(|)()(0=£=£=<y X P y Y P y F y U时,1)(2)()()()|(|)()(0-F =--=££-=£=£=³y y F y F y X y P y X P y Y P y F y X X U 时,当故ïîïíì<³==-0,00,2)(||22y y e y f X U y U p的概率概率密度函数为26、(1)X Y =,当0)()()(0=£=£=<y X P y Y P y F y Y 时,)()()()()(022y F y X P y X P y Y P y F y X Y =£=£=£=³时,当故 ïîïíì<³==-0,00,2)(2y y ye y f X Y y Y 的概率概率密度函数为(2))21(+=X Y ,当0)21()()(0=£+=£=£y X P y Y P y F y Y 时,1)(1)12()12()21()()(01=³-=-£=£+=£=>>y F y y F y X P y X P y Y P y F y Y X Y 时,当时,当故 ïîïíì>>=+=其他的概率概率密度函数为,001,21)(21y y f X Y Y(3)2X Y =,当0)()()(02=£=£=£y X P y Y P y F y Y 时,)()()()()()(02y F y F y X y P y XP y Y P y F y X X Y --=££-=£=£=>时,当故 ïîïíì£>==-0,00,21)(22y y e yy f X Y y Y p 的概率概率密度函数为27、()()ïîïíì<<+=其它201381x x x f X()()p p 4,02,02Î=ÞÎx y x 当y 0£时,()0=y F Yp 40<<y (){}þýüîí죣-=£=p p p y X yP y X P y F Y2()()òò+==-pppyyyx dx x dx x f 01381p 4³y()()113812=+=þýüîí죣-=òdx x y X yP y F Y p p时当p 4,0¹¹\y y ()()ïîïíì><<<×÷÷øöççèæ+×==pp p p 4,0040211381'y y y y yy F y f Y Y()ïîïíì<<+=\其它40161163p p p y yy f Y28、因为X 与 Y 相互独立,且服从正态分布),0(2s N2222221)()(),(sp sy x Y X ey f x f y x f +-==由知,22Y XZ+=0)(0=£z f z Z 时,当时,当0>z òò----=xxx z x z Z z F 2222)(2222221spsy x e+-dydx=2222220202121sspq p sz r zedr rd e---=òòïîïíì³=-其他,0,)()2(222z ez z f z Z ss29、ïîïíì<<-=其他,011,21)(x x f X))1arctan()1(arctan(21)1(21)()()(112--+=+=-=òò+-¥¥-z z dy y dy y f y z f z f z z Y X Z pp30、0)(0=£z f z Z时,当时当0>z2)()()(2302)(z e dy ye edy y f y z f z f zyzyz YX Zll l l l l ----¥¥-==-=òò31、îíì<<=其他,010,1)(x x f X , íì<<=其他,010,1)(y y f Y ,ïïîïïí죣-=<£==-=òòò-¥¥-其他,021,210,)()()(110z zY X Z z z dy z z dy dy y f y z f z f32 解(1)()()îíì£>=ïîïíì£>==---¥+¥-òò00030023,3203x x e x x dye dy y xf x fxxX()()ïîïí죣=ïîïí죣==òò¥+-¥+¥-其它其它20212023,03y y dx e dx y x f y f xY(2)()()îíì>-£=ïîïíì>£==--¥-òò100030303x e x x dt e x dt t f x F xx txX X()()ïïîïïíì³<£<=ïïîïïíì³<£<==òò¥-21202121202100y y yy y y dt y dt t f y F y yY Y ()(){}()()Z F Z F Z Y X P Z FY X ×=£=\,max max ()ïïîïïíì³-<£-<=--21201210033z e z z ez Z z(3)()÷øöçèæ-=þýüîíìì£<211121max max F F Z P ()21121121233×÷÷øöççèæ---=--e e 233412141--+-=ee33、(1)ïîïíì<<=其他率密度为)上服从均匀分布,概,在(,00,1)(10l x lx f X X(2)两个小段均服从上的均匀分布),0(l ,ïîïíì<<=其他,010,1)(1x lx f X),m i n (21X X Y =, 2)1(1)(ly y F Y --=ïîïíì<<-=其他,00,)(2)(2l y l y l y f Y 34、(1)U 的可能取值是0,1,2,31201}2,3{}1,3{}0,3{}3{12029}2,1{}2,0{}2,2{}1,2{}0,2{}2{32}1,1{}0,1{}1,0{}1{121}0,0{}0{===+==+=======+==+==+==+=======+==+=========Y X P Y X P Y X P U P Y X P Y X P Y X P Y X P Y X P U P Y X P Y X P y X P U P Y X P U P U 0 1 2 3 P12132120291201(2) V 的可能取值为0,1,2}2{4013}1,3{}1,2{}2,1{}1,1{}1{4027}0,3{}0,2{}0,1{}2,0{}1,0{}0,0{}0{=====+==+==+=======+==+==+==+==+====V P Y X P Y X P Y X P Y X P V P Y X P Y X P Y X P Y X P Y X P Y X P V PV 0 1 2 P40274013(3) W 的可能取值是0,1,2,3,4,5 0}5{}4{121}2,1{}1,2{}0,3{}3{125}2,0{}1,1{}0,2{}2{125}1,0{}0,1{}1{121}0,0{}0{=======+==+=======+==+=======+=========W P W P Y X P Y X P Y X P W P Y X P Y X P Y X P W P Y X P Y X P W P Y X P W PW 0 1 2 3 P121125125121概率统计第三章习题解答1、52}7{,51}6{}5{}4{========X P X P X P X P529)(=X E2、2914}7{,296}6{,295}5{,294}4{========Y P Y P Y P Y P29175)(=Y E 3、设X 为取到的电视机中包含的次品数,为取到的电视机中包含的次品数, 2,1,0,}{3123102===-k CC C k X P kkX 0 1 2 p k 221222922121)(=X E4、设X 为所得分数为所得分数 5,4,3,2,1,61}{===k k X P 12,11,10,9,8,7,361}{===k k X P1249)(=X E5、(1)由}6{}5{===X P X P ,则,则l l l l --=e e !6!565 解出6=l ,故6)(==l X E(2)由于åå¥=-¥=--=-11212211)1(66)1(k k k k kkkpp 不是绝对收敛,则)(X E 不存在。

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计第一章随机事件及其概率

概率论与数理统计第一章随机事件及其概率

概率论与数理统计配套教材:苏德矿等,概率论与数理统计,高等教育出版社概率论产生于17世纪,本来是由保险事业发展而产生的,但是来自赌博者的请求,却是数学家们思考概率论问题的源泉1>. 早在1654年,有一个赌徒梅勒向当时的数学家帕斯卡提出了一个使他苦恼了很久的问题:“两个赌徒相约赌若干局,谁先赢m局就算获胜,全部赌本就归胜者,但是当其中一个人甲赢了a(a&lt;m)局的时候,赌博中止,问赌本应当如何分配才算合理?”概率论在物理、化学、生物、生态、天文、地质、医学等学科中,在控制论、信息论、电子技术、预报、运筹等工程技术中的应用都非常广泛。

序言自然界和社会上发生的现象是多种多样的.在观察、分析、研究各种现象时,通常我们将它们分为两类:(1)可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或者根据它过去的状况,在相同条件下完全可以预言将来的发展,例如,在标准大气压下,纯水加热到100℃必然沸腾;向空中抛掷一颗骰子,骰子必然会下落;在没有外力作用下,物体必然静止或作匀速直线运动;太阳每天必然从东边升起,西边落下等等,称这一类现象为确定性现象或必然现象.第一章随机事件及其概率人们经过长期实践和深入研究之后,发现随机现象在个别试验中,偶然性起着支配作用,呈现出不确定性,但在相同条件下的大量重复试验中,却呈现出某种规律性.随机现象的这种规律性我们称之为统计规律性.概率论与数理统计是研究和揭示随机现象的统计规律性的一门数学学科.(2)在个别试验中呈现不确定的结果,而在相同条件下大量重复试验中呈现规律性的现象称为随机现象(或偶然现象).例如,在相同条件下,抛掷一枚硬币,其结果可能是正面朝上,也可能是反面朝上,并且在每次抛掷之前无法确定抛掷的结果是什么.§1 随机事件在一定条件下,并不总是出现相同结果的现象称为随机现象.§1.1 随机试验与样本空间(1)抛一枚硬币,有可能正面H朝上,也有可能反面T朝上.(2)抛一粒骰子,出现的点数.(3)一只灯泡使用的寿命.在相同条件下可以重复的随机现象称为随机试验(Random experiment).随机试验具有以下特点:(1)可以在相同条件下重复进行;(2)每次试验的可能结果不止一个,并且事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.试验的样本空间的实例E1:抛一枚硬币,观察正面H、反面T出现的情况.则样本空间为Ω1 ={H,T}E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.则样本空间为Ω 2={HHH,HHT,HTH,THH,HTT,THT,TTH,TTT}E3:将一枚硬币抛掷三次,观察正面H出现的次数.则样本空间为Ω 3={0,1,2,3}E7:记录某地一昼夜的最高温度和最低温度.则样本空间为Ω 7={(x,y)|T0≤x≤y≤T1}这里x表示最低温度,y表示最高温度;并设这一地区的温度不会小于T0,不会大于T1.E4:抛一粒骰子,观察出现的点数.则样本空间为Ω 4={1,2,3,4,5,6}E5:记录电话交换台一分钟内接到的呼唤次数.则样本空间为Ω5={0,1,2,3,…}E6:在一批灯泡中任意抽取一只,测试它的寿命.则样本空间为Ω 6={t|t≥0}于是样本空间是由三个样本点构成的集合这个例子表明:试验的样本点与样本空间是根据试验的内容而确定的.例:抛二粒骰子的样本空间为:§1.2 随机事件(random event)(6)空集?? 称为不可能事件(Impossible event ).(5)样本空间Ω称为必然事件(Certain event) .(4)由样本空间中的单个元素组成的子集称为基本事件(Basic events) . 随机现象的某些样本点组成的集合称为随机事件,简称事件.(2)事件A发生当且仅当A中的某个样本点出现.(1)任一事件A是相应样本空间的一个子集.(3)事件可用集合A表示,也可用语言描述.例:对于试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况. A2={HHH,TTT}(2)事件A2:“三次出现同一面”,则A1={HHH,HHT,HTH,HTT}(1)事件A1:“第一次出现的是正面H”,则A2={HHT,HTH,THH}(3)事件A3:“出现二次正面”,则例:对于试验E6:在一批灯泡中任意抽取一只,测试它的寿命.B={t|0≤t&lt;1000}事件B:“寿命小于1000小时”,则例:对于试验E7:记录某地一昼夜的最高温度和最低温度.C={(x,y)|y-x=10, T0≤x≤y≤T1}事件C:“最高温度与最低温度相差10度”,则§1.3 事件的关系(Relation of events )设试验E的样本空间为Ω ,而A,B,Ak(k=1,2,…)是Ω的子集.事件是一个集合,因而事件间的关系与事件的运算自然按照集合论中集合之间的关系和集合运算来处理.根据“事件发生”的含义,下面给出事件的关系和运算在概率论中的提法.§1.3.1 包含关系(Inclusion relation)定义:若属于A的样本点必属于B,则称事件B包含事件A,记为A ?? B .即事件A发生必然导致事件B发生.例:抛一粒骰子,事件A=“出现4点”,B=“出现偶数点” .则事件A发生必然导致B发生,所以A ?? B .§1.3.2 相等关系(equivalent relation)定义:若属于A的样本点必属于B,且属于B的样本点必属于A,则称事件A 与事件B相等,记为A= B .A=B ?? A??B且B??A例:抛二粒骰子,A=“二粒骰子点数之和为奇数”,B=“二粒骰子的点数为一奇一偶” .则事件A发生必然导致B发生,而且B发生必然导致A发生,所以A = B .§1.3.3 互不相容(Incompatible events)定义:若事件A与事件B没有相同的样本点,则称事件A与B互不相容 .A与B互不相容,即事件A与事件B不可能同时发生.A与B互不相容?? AB=??§1.4.1 事件的并(Union of events)定义:由事件A与B中所有样本点(相同的样本点只计入一次)组成的新事件称为事件A与B的并.§1.4 事件的运算(operation of events )(1)A∪B={x|x∈A或x∈B}(2)当且仅当A,B中至少有一个发生时,事件A∪B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∪B={1,2,3,4,6}§1.4.2 事件的交(Product of events)定义:由事件A与B中公共的样本点组成的新事件称为事件A与B的交.(2)当且仅当A与B同时发生时,事件AB发生.(1)A∩B=AB={x|x∈A且x∈B}例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” .则A={1,2,3}, B={2,4,6} .所以,A∩B={2}§1.4.3 事件的差(Difference of events)定义:由事件A中而不B中的样本点组成的新事件称为事件A对B的差.(1)A-B={x|x∈A且x∈B}(2)当且仅当A发生,而B不发生时,事件A-B发生.例:抛一粒骰子,事件A=“出现点数不超过3”,B=“出现偶数点” . 则A={1,2,3}, B={2,4,6} .所以,A-B={1,3}问:B-A=?§1.4.4 对立事件(Opposite events)定义:由在Ω中而不在A中的样本点组成的新事件称为A的对立事件. (1)事件A与B互为对立事件?? A∪B= Ω且AB=?? .(2)A的对立事件记作B=? .例:抛一粒骰子,事件A=“出现点数不超过3”.则A={1,2,3},而Ω={1,2,3,4,5,6,}.所以, ? ={4,5,6}§1.4.5 事件运算的规则1、交换律(Exchange law) :A??B=B??A,AB=BA2、结合律(Combination law) :(A??B)??C=A??(B??C),(AB)C=A(BC)3、分配律(Distributive law) :(A??B)C=(AC)??(BC),(AB)??C=(A??C)(B??C)4、 7>De Morgan对偶律(Dual law) :(1)第三次未中奖(2)第三次才中奖(3)恰有一次中奖(4)至少有一次中奖(5)不止一次中奖(6)至多中奖二次§2 随机事件的概率定义:随机事件A发生可能性大小的度量(数值),称为A发生的概率,记作P(A).对于一个随机事件(必然事件和不可能事件除外)来说,它在一次试验中可能发生,也可能不发生.我们希望知道某些事件在一次试验中发生的可能性究竟有多大,找到一个合适的数来表示事件在一次试验中发生的可能性大小.§2.1 概率的公理化定义定义:设Ω为一个样本空间,如果对任一事件A,赋予一个实数P(A).如果集合函数P(.)满足下列条件:(1)非负性公理:对于每一事件A,有P(A)≥0;(2)正则性公理:P(Ω)=1;(3)可列可加性公理:设A1,A2,…是互不相容的事件,即对于i≠j,AiAj=??,i,j=1,2,…,则有则称P(A)为事件A的概率(Probability).§2.2 概率的统计定义(The statistic definition of probability)定义:在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数nA称为事件A发生的频数.比值nA/n称为事件A发生的频率,并记为fn(A).频率具有下述性质:(1)0≤fn(A)≤1;(2)fn(Ω )=1;(3)若A1,A2,…,Ak是两两互不相容的事件,则§2.2.1 频率(Frequency)历史上抛掷匀质硬币的若干结果§2.2.2 概率的统计定义0.49981499430000维尼0.50051201224000皮尔逊0.5016601912000皮尔逊0.506920484040蒲丰0.51810612048德.摩尔根正面出现频率m/n正面出现次数m抛掷次数n试验者定义:在相同的条件下,进行了n次重复试验,在这n次试验中,事件A发生了nA次,当试验的次数n很大时,如果事件A发生的频率fn(A)=nA/n稳定在某一数值p的附近摆动,而且随着试验次数的增大,这种摆动的幅度越变越小,则称数值p为事件A在这组条件下发生的概率,记作P(A)=p.这样定义的概率称为统计概率.性质1:P(??)=0.§2.3 概率的性质于是由可列可加性得又由P(??)≥0得, P(??)=0证明: 令An+1=An+2=…=??,则由可列可加性及P(??)=0得即性质3:对于任一事件A,有证明:由A ?? B知B=A∪(B-A),且A(B-A)=??,性质4:设A,B是两个事件,若A ?? B,则有P(B-A)=P(B)-P(A)推论:若A ?? B,则P(B)≥P(A)证明:由P(B)=P(A)+P(B-A)又由概率的定义知P(B-A)≥0因此有P(B)≥P(A)因此由概率的有限可加性得P(B)=P(A)+P(B-A)从而有 P(B-A)=P(B)-P(A)证明:因为A-B=A-AB,且AB ?? A性质6:对于任意两事件A,B,有P(A-B)=P(A)-P(AB)故 P(A-B)=P(A-AB)=P(A)-P(AB)证明:因为A ?? Ω,因此有P(A)≤P(Ω)=1性质5:对于任一事件A,有P(A)≤1证明:因为A∪B=A∪(B-AB),且A(B-AB)=??,AB?? B故 P(A∪ B)=P(A)+P(B-AB)=P(A)+P(B)-P(AB)性质7:对于任意两事件A,B,有P(A∪B)=P(A)+P(B)-P(AB)上式称为概率的加法公式.概率的加法公式可推广到多个事件的情况.设A,B,C是任意三个事件,则有P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC)一般,对于任意n个事件A1,A2,…,An,有§3 古典概型与几何概率具有以上两个特点的随机试验称为古典概型,也称为等可能概型. 在概率论发展的初期主要研究具有如下两个特点的随机试验: (1)试验的样本空间的元素只有有限个;(2)试验中每个基本事件发生的可能性相同.§3.1 古典概型古典概型的计算公式因此,若事件A={ei1}∪{ei2}∪…∪{eik}包含k个基本事件,则有P(A)=k/n.设随机试验的样本空间为Ω ={e1,e2,…,en},由于在试验中每个基本事件发生的可能性相同,即有P({e1})=P({e2})=…=P({en})又由于基本事件是两两不相容的,于是有1=P(Ω )=P({e1}∪{e2}∪…∪{en})=P({e1})+ P({e2})+…+P({en})=nP({ei}) i=1,2,…,n所以 P({ei})=1/n i=1,2,…,n即样本空间有4个样本点,而随机事件A1包含2个样本点,随机事件A2包含3个样本点,故P(A1)=2/4=1/2P(A2)=3/4例:将一枚硬币抛掷二次,设事件A1为“恰有一次出现正面”; 事件A2为“至少有一次出现正面”.求P(A1)和P(A2).解:正面记为H,反面记为T,则随机试验的样本空间为Ω ={HH,HT,TH,TT}而 A1={HT,TH}A2={HH,HT,TH}例: 抛掷一颗匀质骰子,观察出现的点数,求出现的点数是不小于3的偶数的概率.解设A表示出现的点数是大小于3的偶数,则基本事件总数n=6,A包含的基本事件是“出现4点”和“出现6点”即m=2,故§3.2 排列与组合公式乘法原理:设完成一件事需分两步,第一步有n1种方法,第二步有n2种方法,则完成这件事共有n1n2种方法A B C加法原理:设完成一件事可有两种途径,第一种途径有n1种方法,第二种途径有n2种方法,则完成这件事共有n1+n2种方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 随机事件及其概率自然界和社会上发生的现象可以分为两大类: 一类是,事先可以预言其必然会发生某种结果,即在保持条件不变的情况下重复实验或观察,它的结果总是确定的。

这类现象称为确定性现象。

另一类是,事先不能预言其会出现哪种结果,即在保持条件不变的情况下重复实验或观察,或出现这种结果或出现那种结果。

这类现象称为随机现象。

随机现象虽然对某次实验或观察来说,无法预言其会出现哪种结果,但在相同条件下重复进行大量的实验或观察,其结果却又呈现出某种规律性。

随机现象所呈现出的这种规律性,称为随机现象的统计规律性。

概率论与数理统计就是研究随机现象统计规律性的一门数学学科。

§1 随机事件一、随机试验与样本空间我们把对随机现象进行的一次实验或观察统称为一次随机试验,简称试验,通常用大写字母E 表示。

举例如下:E 1:抛一枚硬币,观察正面H 、反面T 出现的情况;E 2:将一枚硬币抛掷两次,观察正面H 、反面T 出现的情况; E 3:将一枚硬币抛掷两次,观察正面H 出现的次数; E 4:投掷一颗骰子,观察它出现的点数; E 5:记录某超市一天内进入的顾客人数;E 6:在一批灯泡里,任取一只,测试它的寿命。

随机试验具有以下三个特点:(1)每次试验的结果具有多种可能性,并且能事先明确知道试验的所有可能结果; (2)每次试验前,不能确定哪种结果会出现; (3)试验可以在相同的条件下重复进行。

随机试验E 的所有可能结果的集合称为E 的样本空间,记作Ω。

样本空间的元素,即E 的每个结果,称为样本点,一般用ω表示,可记{}ω=Ω。

上面试验对应的样本空间:{}T H ,1=Ω;{}TT TH HT HH ,,,2=Ω; {}2,1,03=Ω;{}6,5,4,3,2,14=Ω; {} ,4,3,2,1,05=Ω;{}06≥=Ωt t 。

注意,试验的目的决定试验所对应的样本空间。

二、随机事件试验E 样本空间Ω的子集称为E 的随机事件,简称事件,通常用大写字母A ,B ,C ,…表示。

设A 是一个事件,当且仅当试验中出现的样本点A ∈ω时,称事件在该次试验中发生。

由一个样本点组成的单点集称为基本事件。

样本空间Ω称为E 的必然事件,每次试验中它都发生。

空集∅称为E 的不可能事件,每次试验中它都不发生。

例如,E 4中“出现偶数点”、“出现奇数点”都是随机事件,“出现点数不超过6”是必然事件,“出现点数超过7”是不可能事件。

【例】一个袋中装有大小相同的3个白球和2个黑球,现从中任意取出一球,试写出样本空间及下列事件是由哪些基本事件组成的。

(1)事件A :“摸出的是白球”; (2)事件B :“摸出的是黑球”。

解 先对球编号,令1、2、3号球为白球,4、5号球为黑球,并设i ω=“取得第i 号球”其中(15i ≤≤)。

则样本空间}{ωωωωωΩ=12345,,,,, 和(1)事件{}A ωωω=123,,; (2)事件}{B ωω=45,。

三、事件的关系与运算事件间的关系和运算按照集合间的关系和运算来处理。

1.事件的包含与相等 在试验中,若事件A 发生必然导致事件B 发生, 则称事件B 包含事件A 或称事件A 包 含于事件B ,记为B A ⊃或A B ⊂。

此时,事件A 中的基本事件必属于事件B ,即A 是B 的一个子集。

例如,4E 中,若记{}1,3,5A =表示“出现奇数点”,{}1,2,3,4,5B =表示“出现点数不超过5”,显然A B ⊂,即事件B 包含事件A 。

事件的包含关系有以下性质: (1)A A ⊂;(2)若A B ⊂,B C ⊂,则A C ⊂; (3)∅A ⊂⊂Ω。

若A B ⊃,且B A ⊃,则称事件A 和事件B 相等,记为A B =。

此时,A 与B 拥有完全相同的基本事件。

2.事件的并(和运算)在试验中,事件A 与事件B 至少有一个发生的事件,称为事件A 与事件B 的并(或和事件),记为A B 。

此时,A B 就是由属于事件A 或属于事件B 的全部基本事件组成的集合。

例如,4E 中,若记{}1,3,5A =表示 “出现奇数点”,{}1,2,3,4B =表示“出现点数不超过4”,则{}5,4,3,2,1=B A 表示“出现点数不超过5”。

易知,若A B ⊂,则B B A = 。

类似地,称“n 个事件12,,,n A A A 中至少有一个发生”的事件为n 个事件1A ,2A ,…,n A 的并,记为121nn i i A A A A ==。

3.事件的交(积运算)在试验中,事件A 与事件B 同时发生的事件,称为事件A 与事件B 的交(或积事件),记为A B (或AB )。

此时,A B 就是由既属于事件A 又属于事件B 的全部基本事件组成的集合。

例如,4E 中,若记{}1,3,5A =表示 “出现奇数点”,{}1,2B =表示“出现点数不超过2”, 则{}1AB =表示“出现点数为1”。

易知,若A B ⊂,则AB A =。

类似地,称“n 个事件12,,,n A A A 同时发生”的事件为n 个事件1A ,2A ,…,n A 的交,记作121nn i i A A A A ==或 121nn i i A A A A ==∏4.事件的差(差运算)在试验中,事件A 发生而事件B 不发生的事件称为事件A 与事件B 的差(或差事件),记为A B -。

此时,A B -就是由属于事件A 而不属于事件B 的全部基本事件组成的集合。

例如,4E 中,若记{}1,3,5A =表示 “出现奇数点”,{}1,2,3,4B =表示“出现点数不超过4”,则{}5A B -=表示“出现点数为5”。

5.互不相容事件在试验中,若事件A 与事件B 不能同时发生,则称事件A 与事件B 是互不相容的 (或互斥的),记为A B =∅ (或AB =∅)。

此时,事件A 与事件B 不相交,或它们的交是空集,即事件A 与事件B 没有公共的基本事件。

例如,2E 中,若记{}1,3,5A =表示 “出现奇数点”,{}2,4B =表示“出现小于5的偶数点”,则AB =∅,即,A B 是互不相容事件,不可能同时“出现奇数点”和“出现偶数点”。

在一次试验中,任意两个基本事件都不能同时发生,所以基本事件是互不相容的。

对于n 个事件12,,,n A A A ,如果其中任取两个,()i j A A i j ≠,均有i j A A =∅,则称此n 个事件12,,,n A A A 是两两互不相容的。

6.对立事件(逆事件)在试验中,若事件A 与事件B 必有一个发生且仅有一个发生,即事件A 和事件B 满足条件:Ω=B A 且 AB =∅ 则称事件A 和事件B 是对立事件(或互逆事件),记为B A =,A B =。

因此,事件A 的逆事件A 就是由属于Ω而不属于A 的全部基本事件组成的集合,即A 是A 的补集。

例如,4E 中,若记{}1,3,5A =表示“出现奇数点”,则{}2,4,6A =表示“出现偶数点”。

易知有以下性质:(1) A A = (2) A A =Ω- (3) A B AB -=注意:互逆事件与互不相容事件是两种不同的关系。

在一次试验中,两个互不相容事件仅仅是不能同时发生,并不能排除它们同时都不发生;而两个互逆的事件不仅不能同时发生,而且同时不发生也是不可能的。

所以有结论:互逆事件一定是互不相容的,但互不相容事件却不一定是互逆的。

常见的事件的关系与运算的规则归纳如下: 1.有关包含∅A ⊂⊂Ω,B A A ⊂, A B A -⊂, AB A ⊂2.有关并A ∅A =, Ω=Ω A , Ω=A A ,A A A = ,A B B A =, )()(C B A C B A =3.有关交AA A =, AA =∅, A ∅=∅,A A Ω=, AB BA =,()()AB C A BC =4.分配律)()()(C A B A C B A =, )()()(C B C A C B A =, ()()()A B C A C B C =, ()()()A B C A B A C =5.德·摩根律B A B A =, B A B A =6.有关逆与差Ω=∅,∅=Ω,A A =, A A =Ω-,A B AB -=,A AB A =- )(,B A B B A =-)(【例1】 一名射手连续向某个目标射击三次,令A =“第1次击中目标”,B =“第2次击中目标”,C =“第3次击中目标”,试用,,A B C 表示以下各事件:(1)3次都击中目标;(2)3次均未击中目标;(3)第2次击中目标,而第1、3次都没击中;(4)第2次击中目标而第3次没击中;(5)恰好有1次击中目标;(6)至少有1次击中目标(其逆事件为3次均未击中目标);(7)至多有1次击中目标。

解 (1)ABC ; (2)A B C ; (3)ABC ;(4)BC ; (5)C B A C B A C B A ; (6)C B A 或 C B A ; (7)C B A C B A C B A C B A 。

【例2】 吴书p.6.例2。

某城市的供水系统由甲、乙两个水源与三部分管道1,2,3组成,试用事件=i A {第i 号管道正常工作} )3,2,1(=i表示事件“城市能正常供水”和“城市断水”。

【例3】 已知随机事件A 与B 是互逆事件,求证:A 与B 也是互逆事件。

证明:由于A 与B 是互逆事件,有Ω=B A , AB =∅于是==AB B A ∅=Ω 且有 =Ω==B A B A ∅所以A 与B 也是互逆事件。

【例4】对随机事件A 、B ,求证:AB A B A -=-。

证明:====-B A A A B A A AB A AB A )(∅B A B A B A -==§2 事件的概率与等可能概型(古典概型)一、频率与概率定义1 若事件A 在n 次相同条件下的重复试验中发生了A n 次,则称nn A f An =)( 为事件A 在这n 次试验中出现的频率,并称A n 为事件A 在这n 次试验中出现的频数。

由定义易知,频率具有以下性质: 1.非负性 0)(≥A f n 2.规范性 1)(=Ωn f3.有限可加性 若k 个事件k A A A ,,,21 两两互不相容,则有)()()()(2121k n n n k n A f A f A f A A A f +++=随机事件在一次试验中是否发生是不确定的,但在大量重复试验或观察中,其发生却具有规律性。

例如,历史上,多人做过抛掷硬币的试验,其结果如下表所示从表中可以看出,当抛掷次数足够多时,正面向上的频率在0.5附近摆动,这种现象称为随机事件的频率稳定性,这是概率这一概念的经验基础。

定义2 在相同条件下做大量重复随机试验,事件A 出现的频率总在某一常数p 附近摆动,且试验次数越多,摆动幅度越小,则称常数p 为事件A 的概率,记作()P A p =。

相关文档
最新文档