数学教学与学以致用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教学与学以致用
内江市威远县两河镇中心学校徐强
数学教学的最终目的是学以致用。就是要让学生从一个问题迁移到另一个问题,从一个情境迁移到另一个情境,从学校课堂迁移到社会生活中。这也就是我们平时所说的学习迁移。
有些学习经验会导致强记忆弱迁移和强记忆负迁移,而另一些却能诱发强记忆强迁移和强记忆正迁移。那么,我们在平时的数学教学过程中怎样去有意识地训练学生的学以致用的能力呢?
我认为可以从以下几个方面着手:
一、基础知识的学习是成功迁移的首要因素
1.注重理解而不是记忆
初始学习不达到一定理解水平,迁移是不会发生的。这是显而易见但又经常容易被忽略的事实。刚学完某个新知识就急于去做难题,就属于这个范畴。这两个结论对教学而言非常重要,这正是我国中小学普遍存在的问题,常常新授课刚结束,就要求学生解难题,不仅课后作业是难题,而且课堂练习中就开始出现难题,有的题甚至就是升学考试的试题。学生难题解不了,只好用强行记忆来弥补,强记忆弱迁移和强记忆负迁移在所难免。这种现象的结果是被迫机械学习,能力无法提高也就是必然的事情了。
迁移受学习的理解性程度的影响,而非仅靠记忆事实或墨守成规。迁移不能发生的原因在于,对新知识的理解没有达到一定水平,而仅仅靠记忆。在新知识的初学阶段,其意义的建构和获得还没有真正完成,按照有意义学习理论,新旧意义之间的联系有一个继续同化的过程。在这个过程中,一方面是对意义联系理解的深化和贯通,另一方面是这种联系需要一定程度的巩固和强化,只有当这两方面达到一定的水平,有意义迁移才可能开始。
2.投入足够的学习时间
数学是一门复杂学科,学习复杂学科需要更多的时间,即使看起来像天才,然而其个人为了拓展数学专业知识和提高数学理解水平也需要投入大量的时间和精力。成功的学习需要大量的时间,主要原因是要达到理解的水平需要时间。其有两方面的含义,一是为了深化和贯通新旧意义的联系,需要一定的时间去摸索与主题相关的具体信息;二是为了使得所获得的学习经验达到相当水平的知悉程度,需要一定的时间来深化和强化这些联系。不同的学生所需要的时间也不同,教师必须对此有充分的认识和思想准备。
学生对一个新的数学对象的初始学习,常常会遇到意义不够明晰和逻辑联系比较隐蔽的材料,一开始就要他们从事理解性学习是有困难的,他们需要时间去探究基本概念,生成与自己已有信息的联系。一下子接触太多的远离主题的内容会妨碍学生对新知识意义的建构和随后的迁移,因为他们缺乏足够的具体信息使这些原则变得有意义,因为他们对远离主题的知识同自己已有知识之间的承袭关系和逻辑联系不能接受,因此学生只能当作孤立的、没有联系的事实去学习那些远离主题的内容。要有充足的时间去练习大量的习题,从练习过程中逐步形成个人的迁移能力。
3.利用变式练习进行强化。
适当安排一些反例能帮助学生注意先前没有注意的新特征,了解哪些特征与某些特定概念相关或无关。恰当的反例不仅可用于知觉学习,还可以用于概念学
习。对何时、何地和如何运用所学知识的理解,即知识条件化,可通过“反例”的运用而增强。利用反例、辨析题、变式题进行教学都属于变式教学的范畴。变式题的运用在于提高解题学习中迁移能力的培养,这在我国的数学教学中是常用的方法。
二、影响学习迁移的其他因素
1.学习的情境
成功的迁移受到初始学习情境的影响,学生有可能在一种情境中学习,但却不能迁移到其他情境中去。实现成功的迁移,取决于知识与情境以怎样的关系相连,取决于初始学习是如何获得知识的。
一个数学对象在单一而非复合情境中学习时,情境间的迁移往往相当困难。当学生用学习情境中材料的细节,即过于具体的无关信息,来详细解释新材料时,知识尤其容易受情境制约。
当学生在复合情境中抽象出一个数学对象概念的特征时,更可能形成弹性的知识表征。复合的情境指学习情境是趋于本源化、多样化、综合化、真实化、情节化的,概念的特征隐藏在众多干扰因素之中,使得学生必须经过由表及里、去粗取精、去伪存真的过程,才能抽取到对象的本质,建构起对象的意义,这样不仅获得了对象的本质特征,而且在“舍弃”的过程中了解对象的非本质特征,认识本质属性与非本质属性之间的联系,从而同时把握对象的本质的和非本质的方面,达到从整体上认识对象意义的作用。这样形成的将是具有弹性的适应性的认识。
但是过度情境化对知识的理解有弊无利。过度情境化是指情境尽管可能真实,但情节过于复杂具体甚至无关,或者涉及因素过手琐碎而缺少综合性。在这种情境中学习,常常造成学生所学知识的弹性缺失,仍然无法把学到的知识灵活地迁移到新的情境。
另一个比较有效的办法,是让学生加入到为提高弹性理解而设计的“如果—怎么办”类的问题解决当中。概括案例,要求学生创造一种不仅能解决单一的问题而且能够解决整个相关类群问题的方法。“如果—怎么办”类型的问题解决本身,更是地地道道的“想象”的问题,没有对“如果”可能引出东西的“想象”,如何能找到“怎么办”?“概括案例”也同样离不开“想象”,没有“想象”,哪来“抽象”;没有“抽象”,又何有“概括”?人失去了想象,知识就会变成教条,智慧就会趋于枯竭。知识是由想象创造出来的,知识又是由想象激活的;知识是由想象推动发展的,知识又是由想象带向无限的。当前数学教育中最普遍的问题就是缺乏对学生进行想象力的培养,刻板僵化的模式,长官意志的管理,教条化的理念,学生不仅缺少想象的空间,甚至连想象的时间也没有。
2.问题的表征
通过教学帮助学生在更高的抽象层面上表征问题,也可以提高数学迁移能力。帮助学生在更一般的层面表征所要解决问题,能增加正向迁移的可能性,减少先前解决问题中策略应用不当的负向迁移影响。让学生在更一般的层面上掌握数学解决问题的策略,就是引导学生学习从问题的原始状态开始,从无到有地实现问题的解决。这是培养和提高学生解决数学新问题能力的有效途径。
学习和运用这种策略,可以促进对问题本质的认识和理解,达到在更一般的层面上,即从整体上、宏观上认识和把握问题及解决问题。这是“问题模式识别”的特征识别模式,实际上这是形成一种问题原理,这种问题原理由于具有很高的概括性而大大增强了它的正迁移性,从而反过来促进和加强解决新问题的能力。