第一章 1.2.1 第2课时
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2课时排列的综合应用
学习目标 1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列,能应用排列数公式解决简单的实际问题.
知识点排列及其应用
1.排列数公式
A m n=n(n-1)(n-2)…(n-m+1)(n,m∈N*,m≤n)=n!
(n-m)!
.
A n n=n(n-1)(n-2)…2·1=n!(叫做n的阶乘).另外,我们规定0!=1.
2.应用排列与排列数公式求解实际问题中的计数问题的基本步骤
类型一无限制条件的排列问题
例1(1)有7本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法?
(2)有7种不同的书,要买3本送给3名同学,每人各1本,共有多少种不同的送法?
考点排列的应用
题点无限制条件的排列问题
解(1)从7本不同的书中选3本送给3名同学,相当于从7个元素中任取3个元素的一个排列,所以共有A37=7×6×5=210(种)不同的送法.
(2)从7种不同的书中买3本书,这3本书并不要求都不相同,根据分步乘法计数原理,共有7×7×7=343(种)不同的送法.
反思与感悟典型的排列问题,用排列数计算其排列方法数;若不是排列问题,需用计数原理求其方法种数.排列的概念很清楚,要从“n个不同的元素中取出m个元素”.即在排列问题中元素不能重复选取,而在用分步乘法计数原理解决的问题中,元素可以重复选取.跟踪训练1(1)有5个不同的科研小课题,从中选3个由高二(6)班的3个学习兴趣小组进行研究,每组一个课题,共有多少种不同的安排方法?
(2)有5个不同的科研小课题,高二(6)班的3个学习兴趣小组报名参加,每组限报一个课题,共有多少种不同的报名方法?
考点排列的应用
题点无限制条件的排列问题
解(1)从5个不同的课题中选出3个,由兴趣小组进行研究,对应于从5个不同元素中取出3个元素的一个排列,因此不同的安排方法有A35=5×4×3=60(种).
(2)由题意知3个兴趣小组可能报同一科研课题,因此元素可以重复,不是排列问题.
由于每个兴趣小组都有5种不同的选择,且3个小组都选择完才算完成这件事,所以由分步乘法计数原理得共有5×5×5=125(种)报名方法.
类型二排队问题
命题角度1元素“相邻”与“不相邻”问题
例23名男生、4名女生按照不同的要求排队,求不同的排队方法的种数.
(1)全体站成一排,男、女各站在一起;
(2)全体站成一排,男生必须站在一起;
(3)全体站成一排,男生不能站在一起;
(4)全体站成一排,男、女各不相邻.
考点排列的应用
题点元素“相邻”与“不相邻”问题
解(1)男生必须站在一起是男生的全排列,有A33种排法;
女生必须站在一起是女生的全排列,有A44种排法;
全体男生、女生各视为一个元素,有A22种排法.
由分步乘法计数原理知,共有A33·A44·A22=288(种)排队方法.
(2)三个男生全排列有A33种方法,把所有男生视为一个元素,与4名女生组成5个元素全排列,有A55种排法.故有A33·A55=720(种)排队方法.
(3)先安排女生,共有A44种排法;男生在4个女生隔成的五个空中安排,共有A35种排法,故共有A44·A35=1 440(种)排法.
(4)排好男生后让女生插空,共有A33·A44=144(种)排法.
反思与感悟处理元素“相邻”“不相邻”问题应遵循“先整体,后局部”的原则.元素相邻问题,一般用“捆绑法”,先把相邻的若干个元素“捆绑”为一个大元素与其余元素全排列,然后再松绑,将这若干个元素内部全排列.元素不相邻问题,一般用“插空法”,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.跟踪训练2某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的节目编排方法有多少种?
(1)一个唱歌节目开头,另一个放在最后压台;
(2)2个唱歌节目互不相邻;
(3)2个唱歌节目相邻且3个舞蹈节目不相邻.
考点排列的应用
题点元素“相邻”与“不相邻”问题
解(1)先排唱歌节目有A22种排法,再排其他节目有A66种排法,所以共有A22·A66=1 440(种)排法.
(2)先排3个舞蹈节目和3个曲艺节目有A66种排法,再从其中7个空(包括两端)中选2个排唱歌节目,有A27种插入方法,所以共有A66·A27=30 240(种)排法.
(3)把2个相邻的唱歌节目看作一个元素,与3个曲艺节目排列共A44种排法,再将3个舞蹈节目插入,共有A35种插入方法,最后将2个唱歌节目互换位置,有A22种排法,故所求排法共有A44·A35·A22=2 880(种)排法.
命题角度2元素“在”与“不在”问题
例3六人按下列要求站一横排,分别有多少种不同的站法?
(1)甲不能在两端;
(2)甲、乙必须在两端;
(3)甲不在最左端,乙不在最右端.
考点排列的应用
题点元素“在”与“不在”问题
解(1)先考虑甲有A14种方案,再考虑其余5人全排列,故N=A14·A55=480(种);
(2)先安排甲、乙有A22种方案,再安排其余4人全排列,故N=A22·A44=48(种);
(3)方法一甲在最左端的站法有A55种,乙在最右端的站法有A55种,且甲在最左端而乙在最右端的站法有A44种,共有A66-2A55+A44=504(种)站法.
方法二以元素甲分类可分为两类:a.甲站最右端有A55种,b.甲在中间4个位置之一,而乙不在最右端有A14·A14·A44种,故共有A55+A14·A14·A44=504(种)站法.
反思与感悟“在”与“不在”排列问题解题原则及方法
(1)原则:解“在”与“不在”的有限制条件的排列问题时,可以从元素入手也可以从位置入手,原则是谁特殊谁优先.
(2)方法:从元素入手时,先给特殊元素安排位置,再把其他元素安排在其他位置上,从位置