运筹学-7(选址分析)

合集下载

运筹学-7、图与网络分析PPT课件

运筹学-7、图与网络分析PPT课件

THANKS
感谢观看
KEEP VIEW
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
终止条件
所有节点都在同一连通分量中, 即生成树形成。
算法思想
从边开始,每次选择权值最小的 边加入,若形成回路则舍去,直 到生成树形成。
算法特点
适用于稀疏图,时间复杂度为 O(eloge),其中e为边数。
最小生成树问题的应用
通信网络设计
在构建通信网络时,需要在保证所有节点连通的前提下,使得建设 成本最低。最小生成树算法可以用于求解此类问题。
活动时间的估计
对每个活动进行时间估计,包括乐观时间(a)、最 可能时间(m)和悲观时间(b),并计算期望时间 (t=(a+4m+b)/6)。
项目工期的计算
根据活动的逻辑关系和网络结构,计算项目 的期望工期,并确定项目的关键路径。
网络计划技术的应用
项目进度管理
网络计划技术可用于制定详细 的项目进度计划,确保项目按
图与网络的应用背景
图与网络分析的方法
介绍图与网络分析中常用的最短路径 算法、最小生成树算法、最大流算法 等。
阐述图与网络在交通运输、电路设计、 社交网络等领域的应用。
学习目标与要求
学习目标
掌握图与网络分析的基本概念和 常用算法,能够运用所学知识解 决实际问题。
学习要求
熟悉图与网络分析的基本概念和 常用算法,了解相关应用领域, 具备一定的编程能力和数学基础。
算法步骤
初始化距离数组和访问标记数组;从起点开始,选择距离起点最近的未访问节点进行访问 ,并更新其邻居节点的距离;重复上述步骤,直到所有节点都被访问。

选址规划与分析.全面PPT资料

选址规划与分析.全面PPT资料

(美元)
A 250 11 (1)列出相关因素清单
绝大多数企业并不力图得到它们所能得到的最好位置,而是选择一些可以接受的地点,并从中选择。
36
0 48
B
100
30
C
150
20
D
200
35
[解]: a.
700
600 年 总 500 成 本 400 / 千 300 美 元 200
100
B最优
C最优
D B C A
找到新评价方案 No
有优解?
Yes 领导决策
第三节 选址的评价方法
一 选址的难度
1 影响选址的因素很多,这些因素又相互矛盾。 2 不同因素的相对重要性很难确定和度量。 3 不同的决策部门利益不同,所追
求的目标也不同。 4 判别的标准会随时间变化,现在
认为是好的选址,过几年可能就 不一定是好的了。
二 选址的评价方法
m*a b
c
交通条件 0.2 70 17.5 100 25 80 20
5
土地状况 0.1 80 8
0
70 7
100 10
停车场地 0.2 70 14 60 12 90 18
可获性 0
公众态度 0.2 90 22.5 80 20 90 22.5
5
扩展潜力 0.2 90 18 80 16 80 16
(三)线性规划运输问题算法
(一)量本利分析法 (二)因素评分法 (三)线性规划运输法 (四)重心法
(一)量本利分析法
分析过程包括以下步骤: 1)确定每一被选地点的固定成本和可变成本 2)在同一张图表上绘出各地点的总成本线 3)确定在某一预期的产量水平上,哪一地点 的总成本最少或者哪一地点的利润最高。 *总成本=FC+v×Q

运筹学在选址问题中的应用

运筹学在选址问题中的应用
跨 国经 济 集 团 分 公 司 到机 场 、水 利 设施 、人类 居 住 区 、销 售 网
现代运筹的思想萌芽于一 战时期 。1 9 1 5 年 ,哈里斯对商业
库 存f u 】 题 的 研 究 是 库 存 论 模 型 最早 的工 作 。 1 9 1 6 年 ,兰 彻 斯 特
选 址 问题 在 生 产 生 活 、物 流 、军 事 中部 有 着 非常 广 泛 的 应
用,涉及 内容十分广泛 。从城市 、产业带 、经济技术开发区 、
判断模 型和解法 的有效性 ,提出解 决实际问题的方案 ,这就 是
运筹 学 主要 包含 的 三大 部分 :模型 、理 论和 算 法 。
2 . 1运 筹学 发展 简 史
的大学里开设运筹学专业和授课 。今天 ,运筹学的课程已成 为
几 乎所 有 大 学 的 商 学 院 、工 学 院 乃 至 数学 系和 汁 算 机 系 的基 本
课程 。
朴 素的运筹《 孙 子兵 法 》是我 国 古 代军 事 运筹 思 想 最早 的典
中 国运 筹 学 早 期 普 及 与推 广 工 作 的 亮点 是 由华 罗 庚 先生 点 燃 的 。 自1 9 6 5 年起的l O 年 中 ,身 为 中国 数学 会 理 事 长 和 中 科 院 数 学 所 所 长 的华 罗庚 ,亲 自率领 一 个 小 组 ,到 了 约2 ( J 个 省 和 无 数 个 城 市 讲解 基 本 的 优 化 技 术 和统 筹 方 法 。 这一 时期 的 推 广 工
现 代运 筹 学 被 引进 中国 是 在 2 ( ) 世纪5 ( ) 年代 后 期 。 中 国第 一 个 运筹 学 小 组 是 在 钱 学 森 、许 国志 先 生 的 推 动下 ,于 1 9 5 6 年 在 中 科 院 力学 所 成 立 。 1 9 5 9 年 ,第 二 个运 筹 学 部 门 在 中科 院数 学 所 成立 。 1 9 6 3 年 是 中国 运 筹 学 教育 史上 值 得 一 提 的 一年 ,数 学 所 的 运 筹 学 研 究 室 为 中 国 科 技 大 学 应 用 数 学 系 的 第 一 届 学 生 ( 5 8 届 )开 设 了 较 为 系统 的运 筹 学 专 业课 ,这 是 第 一 次在 中 国

物流运筹学

物流运筹学

物流运筹学在物流系统中,物流设施地址的选择是物流系统优化的一个具有战略意义的问题。

物流设施是整个物流网络系统的关键节点,是连接上游和下游的重要环节,起着承上启下的作用,并且这些大型设施的建设与运营需要耗费大量的资源。

因此,这些设施的选址十分重要,科学合理的设施选择可以有效的节约资源,降低物流成本,优化物流网络结构和空间布局,提高物流经济效益和社会效益,确保提供优质服务,是实现集约化经营,建立资源节约型物流至关重要的一步。

国内外学者在设施选址研究方面已形成了多种方法,大致可以分为定性研究法,定量研究法及定性与定量相结合的研究方法。

1.设施选址问题的定性研究:定性研究是以影响设施选址合理性的因素分析基础,如影响物流设施选址的因素很多,包括土地利用,环境保护,资源分布,产业布局,交通区位,公共设施,市场经营等各各个方面的因素,通过综合的定性分析,建立设施选址的评价指标体系,并且常常采用层次分析法,模糊综合评判法对各个备选方案进行指标评价,最后寻求最优地址。

可见,定性研究从较全面的角度,将较多的因素考哦率在内,对设施选址进行决策,通过将定性指标进行评判,可以有效的吸纳决策者的经验,偏好,意愿等来进行方案的评价,但由于定性方法在研究过程中主观性比较强,大量的主观判断易造成评价偏差。

2.设施选址问题的定量研究:设施选址问题的定量研究主要是依据物流费用或物流成本最低的原则,建立数学模型,通过模型求解获得最佳选址方案,根据考虑的影响费用因素的简易与复杂程度,形成多种类型的选址模型,但总体上可以概括为连续模型与离散模型两类。

对现有设施选址研究的评述有关设施选址问题,国内外学者都进行了大量的研究,由简单的选址因素分析、选址原则的制定到多层次、模糊的综合指标评判与决策,由重心法到多元离散选址模型,最后定性分析与定量模型相结合,各种研究方法从不同的角度和层次为设施选址的规划决策提供理论依据。

但上述研究或多或少地存在着一些欠缺与问题。

2024版清华大学出版《运筹学》第三版完整版课件

2024版清华大学出版《运筹学》第三版完整版课件

要点三
金融服务与投资管理
在金融服务和投资管理中,存储论可用 于优化资金配置和投资组合,降低风险 和提高收益。例如,通过定期订货模型 的运用,可以制定合理的投资策略和资 产配置方案,实现资产的保值增值和风 险控制。
2024/1/28
31
07
排队论
2024/1/28
32
排队论的基本概念
2024/1/28
清华大学出版《运筹 学》第三版完整版课

2024/1/28
1
目录
2024/1/28
• 绪论 • 线性规划 • 整数规划 • 动态规划 • 图与网络分析 • 存储论 • 排队论
2
01
绪论
2024/1/28
3
运筹学的定义与发展
运筹学的定义
运筹学是一门应用数学学科,主要研究如何在有限资源下做出最优决策,以最 大化效益或最小化成本。
目标函数
表示决策变量的线性函数,需要最大化或最 小化。
约束条件
表示决策变量需要满足的线性等式或不等式。
2024/1/28
决策变量
表示问题的未知数,需要在满足约束条件的 情况下求解目标函数的最优值。
8
线性规划问题的图解法
01
可行域
表示所有满足约束条件的决策变量构成的集合。
2024/1/28
02
目标函数等值线
2024/1/28
34
单服务台排队系统
M/M/1排队系统
到达间隔和服务时间均服从负指数分布的单服务台排队系 统。
M/D/1排பைடு நூலகம்系统
到达间隔服从负指数分布,服务时间服从确定型分布的单 服务台排队系统。
表格。
10

第7章 物流设施选址规划.ppt

第7章 物流设施选址规划.ppt
上一页 返回
7.2 单一物流设施连续点选址模型
单一物流设施选址,是指只准备为一个物流设施选择其位置。 所谓连续点选址模型,是指在一条路径或一个区域范围内的 任何位置都可以作为一个设施的地址的选址问题。
在解决单一物流设施选址问题时,一般都为选址模型设计了 一些简化的假设条件。
单一物流设施选址模型一般根据可变成本来进行选址。模型 没有区分在不同地点建设仓库所需的资本成本,以及与在不 同地点经营有关的其他成本,如劳动力成本、库存持有成本、 公共事业费用等。
小值。由于
dz ds
s
n
wi wi
i 1
i s 1
,由 dz ds
0知:当
s
wi
i 1
n
时wi,
i s 1
即当商店选在权重的中点位置时,亦即商店两边的权重都占
总权重的50%时,这个位置是商店的最优位置。
上一页 下一页 返回
7.1 物流设施选址概述
7.1.2 物流设施选址分类
根据物流设施选址数量可将物流设施选址分为:单一物流设 施连续点选址和多物流设施连续点选址和离散型物流设施选 址三类。
=
56
i 1
而B点到5个需求点的加权总折线距离为:
5
d
R Bi
(1
2) 1 (11) 7
(0
0) 3 (2
1) 3
(3
2) 6
56
i 1
这也说明,新增报刊零售亭选址在直线AB上的任何一点都可
以。
上一页 下一页 返回
7.2 单一物流设施连续点选址模型
7.2.2 精确重心选址方法
这种方法是对单一物流设施连续点选址问题用直线距离进行 计算的一种求解方法。其具体模型如下:

生产运作管理之选址规划与分析(ppt 21页)

生产运作管理之选址规划与分析(ppt 21页)
76
地点2的总分略高于其他两个地点的总分,如果没有其他情况,按照 因素评分法,将选择地点2作为分店的地址
9
选址方案评估—continued
重心法
主要用于选择配送中心或中转仓库的情况 把分销成本看成运输距离和运输数量的线性函数,
求得使分销成本最低的位置,作为目的地(重心) 假设在同一种运输方式下,运输数量不变,运输
40
A(200,40)
D(600,50)
0 100 200 300 400 500 600 x
各分店的分布
12
选址方案评估—continued
算例
各分店的物流量
位置 A(200,40) B(450,60) C(500,70) D(600,50)
各分店到配送中心的物流量 1 000 500 1 500 2 000
范围内对每个备选方案的所有因素进行打分 将每个因素的得分与它的权重值相乘,再把每个方案
各因素的这个乘积数相加,得到各备选方案的总分 比较各方案的总分,选择总分最高的地点
8
选址方案评估—continued
因素评分法
算例
因素 (1)
交通条件 附近人口 租金 面积 社区繁华 已有超市 停车场 合计
单价相同
10
选址方案评估—continued
重心法
步骤 建立坐标系,确定各地点在坐标系中的相对位置 计算重心的横纵坐标值,并在坐标系中找到其相应的位 置 Cx=∑dixVi /∑Vi;Cy=∑diyVi /∑Vi Cx——重心的横坐标; Cy——重心的纵坐标;
dix——第i地点的横坐标; diy——第i地点的纵坐标; Vi——第i地点运往目的地的运输量。
若运往各地的产品数量是一样的,公式可以简化为: Cx=∑dix/n;Cy=∑diy/n

选址规划与分析解析PPT学习教案

选址规划与分析解析PPT学习教案

案例-美国的新型加工工作不在工厂里完成
日本汽车制造商带来的美国工业复兴并没有推动美国工厂 工作机会的增加,相反新的工厂模式对工人的需求减少了, 然而其制造业产出却保持稳定。
随着这些工厂工作的减少,由制造业推动的新经济部门出 现了,如计算机软件、机器人制造和服务行业等,从而在 制造业就业机会减少的同时,增加了新的就业机会。
(二)、线性规划运输模型
如果商品从不同的发出点运输到不同的接收点,并且 在整个体系中增加了新地点时,公司应该对运输作独 立分析。在这种情况下,运输线性规划模型非常有用。 如果有一个新地点增加到现有体系中时,就必须用特 别的算法来测定最小的运输成本。这种模型被用来分 析各种配置方案,它能显示各个方案的最小成本
对绝大部分企业来说,选址很重要!
第1页/共46页
一、选址的概念和必要性
(一)什么是选址?
如何运用科学的方法决定设施的位置,使之与企业的整体经营运作系统 有机结合,以便有效、经济地达到企业的经营目的。通俗地讲,就是确定在 何处建厂或建立服务设施。它包括选位与定址两个层面的内容。
(二)选址的必要性
市场营销:战略一部分,为了扩大市场。 业务成长:现有的地点无法满足。 资源枯竭:某些受资源限制的行业。 生产经营成本:相对其它地方很高。
第12页/共46页
地区影响因素5——其他因素
气候 寒冷的冬天使有些公司考虑搬到更暖和的地方
税收 某些地区的商业税、个人所得税会降低这里对正 在选址公司的吸引力
能源 有些公司被吸引到国外是因其附近煤、原油等资 源丰富
语言与文化
第13页/共46页
(二)具体地点影响因素
土地 土壤条件、荷载力、 土地费用:将来扩展的空间、 现有设施和排水能力、停车 场

运筹学-物流规划及选址方法

运筹学-物流规划及选址方法

y
P1(x1, y1) P2 (x2 , y2 )
d1 d2
di Pi (xi , yi ) (i 1, 2, , n)
P0 (x0 , y0 )
dm
Pn (xn , yn )
0
x
29
(x,y)
(xi,yi),Wj
目标函数:总运输费用最少
令总运输费用为F,则
n
F C jW j (x x j )2 ( y y j )2 j 1 30
6
• 4、流动模式分析 • 布置问题的定量分析常见的目标是降低物流成本,这
时就要对设施内的流动模式作出分析。 • 流动模式可以分为水平和竖直的,如是单层设施,就
只用考虑水平流动模式,多层设施布置时还要考虑竖 直模式。但总的来说,水平模式是最基本的。不论布 置对象的大小,也不论采用何种原则布置,都要考虑 物料的流动模式。
初始 解
(x1,y1)
n
C jW j x j /
x
j 1
n
C jW j / j 1 n
y
C jW j y j /
j 1
n
C jW j / j 1
(x x j )2 ( y y j )2 (x x j )2 ( y y j )2
(x x j )2 ( y y j )2 (x x j )2 ( y y j )2
2
• 2、空间布局规划 • ——包括两个部分: • 物流作业流程设计和功能区域总体分类。 • (1)物流作业流程设计规划是一个系统工程,要求规
划的物流中心合理化、简单化和机械化。
• 所谓合理化就是指各项作业流程具有必要性和合理性。 • 所谓简单化是指整个系统的物流作业简单、明确和易操作,并

-选址规划与分析PPT课件

-选址规划与分析PPT课件

W i
Wi Wi
i
W i —— 第i个影响因素的初始权数
Wi ——对所有的影响因素初始权数求和
i
厂址选择的方法——加权平均法
W i —— 规化的影响因素权数
分别对每一个影响因素确定每个侯选方案的标 度等级和分数
将每个侯选方案在每种影响因素下的分数,乘 以 该影响因素的权数,
然后汇总起来,得到每个侯选方案的总得分 选择总分最高的侯选方案作为最佳选址方案。
国外直接投资 (全球性选址)
资源、关税和保护政策的影响
3、要考虑的因素
技术性因素
地形及地质 水源及排水、废渣物的处理 气候
社会性因素
政策法令 个人或传统性因素 国家及城市发展规划 当地居民的态度
经济性因素
地价 原材料 电力及燃料 市场 劳力 运输及通信
企业所在地差异性比较
比较
都市
工业区
1、接近市场,产销容易 优 2、运输交通系统健全 点 3、公共设施良好
第 章 选址规划与分析
1、意义 厂址选择是企业成功的首要基础 建厂作业过程中厂址选择将影响
生产与经营成本 厂房扩充与发展
在美国,有关调查表明,因选址不当在各类小企业 的失败原因中,占有15%的比重。
2、三种趋势:
集中于工业园区
政府支持企业,吸引投资的一种手段
厂址分散(多工厂制造策略)
视原料、或市场所在而将工厂分散
视工业区规划定
1、地价低廉, 2、劳动力成本 3、厂房易扩充 4、税及建筑成 5、污染噪音限 6、交通不拥挤
1、远离市场 2、高级人力资 3、公共设施差 4、交通不便
1、噪音污染不 初级加工工业
4、厂址选择的步骤
人员组织

Python小白的数学建模课-07.选址问题

Python小白的数学建模课-07.选址问题

Python小白的数学建模课-07.选址问题1. 选址问题选址问题是指在某个区域内选择设施的位置使所需的目标达到最优。

选址问题也是一种互斥的计划问题。

例如投资场所的选址:企业要在 m 个候选位置选择若干个建厂,已知建厂费用、运输费及 n 个地区的产品需求量,应如何进行选址。

选址问题是运筹学中经典的问题之一,选址问题在生产生活、物流、甚至军事中都有着非常广泛的应用,如工厂、仓库、急救中心、消防站、垃圾处理中心、物流中心、导弹仓库的选址等。

更重要的,选址问题也是数模竞赛的热点问题。

选址是重要的长期决策,选址的好坏直接影响到服务方式、服务质量、服务效率、服务成本等,从而影响到利润和市场竞争力,选址问题的研究有着重大的经济、社会和军事意义。

选址问题有四个基本要素:设施、区域、距离和优化目标。

1.1 设施选址问题加粗样式中所说的设施,在具体题目中可以是工厂、仓库、服务站等形式。

1.2 区域选址问题中所说的区域,在具体题目中可以是工厂、车间的内部布局,也可以是给定的某个地区、甚至空间范围。

按照规划区域的特征,可以分为连续选址问题和离散选址问题。

连续选址问题,设施可以布局在区域内的任意位置,就要求出最优选址的坐标;离散选址问题,只能从若干候选位置中进行选择,运筹学中的选址问题通常是这类离散选址问题。

1.3 距离选址问题中所说的距离,是指设施到服务对象之间的距离,在具体题目中也可以是某个选址位置的服务时间、成本、覆盖范围。

如果用图论方法求解,通常就是连接顶点的边的权值。

当问题所关注的是设施到服务对象之间的距离时,如果问题给出的不是顶点之间的距离,而是设施的位置坐标,要注意不是只有欧式距离,对于不同问题也可能是球面距离、曼哈顿距离、切比雪夫距离。

1.4 优化目标选址问题要求选择最好的选址位置,但选址位置只是决策变量,选择的最终目的通常是实现加权距离最短、费用最小、利润最大、时间最短,这才是优化问题的目标函数。

按照目标函数的特点,可以分为:中位问题,要求总成本最小;中心问题,服务于每个客户的最大成本最小;反中心问题:服务于每个客户的最小成本最大。

运筹学-7(选址分析)

运筹学-7(选址分析)
各点的需求量和资源量分别看成是物体的重量,物
体系统的重心作为物流网点的最佳设置点。
1.运输量—重心法(单设施选址)
q1 q4
q2
q3
假设现在要建一座配送中心以向 n 个零售商供货,令 n 个零售 商在平面上的坐标为 (x1,y1), (x2,y2), …, (xn,yn),各零售 商的装运量分别为 q1, q2,…,qn ,则依下式算出的配送中心位置 (x,y)将可使新工厂到n个零售 商的分配成本和为最小。
x
0


n
i 1
x iw
n
i
c
i
i

n
w
i 1
i
c
i
y
0

i 1
y iw
n
c
i
i

w
i 1
i
c
式中X0 — 重心的x 坐标; Y0 — 重心的y 坐标; Xi — 第i个地点的x坐标;Yi — 第i个地点的y坐标; Wi — 第i个地点货物量;Ci —第i个地点运输费。 最后,选择求出的重心点坐标值对应的地点作为我们要 布置设施的地点。
所以,该企业应该选址在(25.4, 42.1)Km的 位置上。 下面,我们给同学介绍一个迭代重心法。
什么是迭代法?
迭代法也称辗转法,是一种不断用变量的旧值递推新值 的过程,跟迭代法相对应的是直接法(或者称为一次解 法),即一次性解决问题。迭代法又分为精确迭代和近似迭 代。“二分法”和“牛顿迭代法”属于近似迭代法。 迭代算法是用计算机解决问题的一种基本方法。它利用
附:单一物流中心选址---迭代重心法
公式:在应用公式求到重心值后
d ( x x ) ( y y ) j 0 j 0 j

选址问题

选址问题
分类
选址研究中的典型问题,如Weber(韦伯)问题、中值问题、覆盖问题、中心问题、多目标选址、竞争选址、不受欢迎的设施选址、选址-分配、选址-路线等,都是引起广泛关注和深入研究的热点课题,研究的也较为成熟。[1]
编辑本段
选址问题综述
基本选址问题
(1)P-中位问题(p-median problems)
P-中位问题(也叫P-中值问题)是研究如何选择P个服务站使得需求点和服务站之间的距离与需求量的乘积之和最小。Hakimi提出该问题之后给出了P-中位问题的Hakimi特性,他证明了P-中位问题的服务站候选点限制在网络节点上时至少有一个最优解是与不对选址点限制时的最优解是一致的,所以将网络连续选址的P-中位问题简化到离散选址问题不会影响到目标函数的最优值。Goldman给出了在树和只有一个环的网络上为单个服务站选址中位问题的简单算法。Miehle于1958年也研究过平面1-中位问题,也就是Weber问题,是他发现了Weiszfeld的研究成果,被选址-分配问题的里程碑文章Cooper誉为Weiszfeld研究的发现者。对于空间P-中位问题,也就是更一般的Weber问题,Rosing提出了最优解法。Garey和Johnson证明了P-中位问题是NP-困难问题。Francis、Francis和Cabot、Chen以及Chen和Handler研究了基于欧氏距离的P-中位问题。
最大覆盖问题或P-覆盖问题是研究在服务站的数目和服务半径已知的条件下,如何设立P个服务站使得可接受服务的需求量最大的问题。同其它基本问题一样,最大网络覆盖问题也是NP-困难问题(Marks.Daskin)。最初的最大覆盖问题是由Church RL和ReVelle C提出的,他们将服务站最优选址点限制在网络节点上;Church RL和Meadows ME在确定的关键候选节点集合中给出了一般情况下的最优算法,他们通过线性规划的方法求解,如果最优解不是整数就用分枝定界法求解;Church和Meadows提出了最大覆盖问题的伪Hakimi特性,即在任何一个网络中,存在一个有限节点的扩展集,在这个集合中至少包含一个最大覆盖问题的最优解。Benedict,Hogan和ReVelle,Daskin考虑服务系统拥挤情况下的最大覆盖问题,他们把任意一个服务站繁忙的概率当作外生变量,目标函数是服务站可以覆盖的期望需求量最大。Haldun Aytug和Cem Saydam用遗传算法来求解大规模最大期望覆盖问题,并进行了比较。Fernando Y等对最大期望覆盖问题中排队与非排队的情况进行了对比。Berman研究了最大覆盖问题和部分覆盖问题之间的关系。Oded Berman和DmitryKrass、Oded Berman, Dmitry Krass和Zvi Drezner讨论比传统最大覆盖问题更一般的最大覆盖问题,并给出了拉格朗日松弛算法。Orhan Karasakal和Esra K.Karasakal讨论了部分覆盖问题,对覆盖程度进行了定义。Jorge H. Jaramillo、Joy Bhadury和Rajan Batta在选址问题的遗传算法应用研究时介绍了最大覆盖问题遗传算法的操作策略。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档