高等数学 第9章 空间解析几何典型例题分析

合集下载

高等代数第9章习题参考答案

高等代数第9章习题参考答案

高等代数(北大版)第9章习题参考答案(总33页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第九章 欧氏空间1.设()ij a =A 是一个n 阶正定矩阵,而),,,(21n x x x =α, ),,,(21n y y y =β,在n R 中定义内积βαβα'A =),(,1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵;3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。

解 1)易见βαβα'A =),(是n R 上的一个二元实函数,且(1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =ji j i ij y x a ,),(αααα,由于A 是正定矩阵,因此∑ji j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有0),(=αα。

2)设单位向量)0,,0,1(1 =ε, )0,,1,0(2 =ε, … , )1,,0,0( =n ε,的度量矩阵为)(ij b B =,则)0,1,,0(),()( i j i ij b ==εε⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n n n n a a a a a aa a a212222211211)(010j ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛ =ij a ,),,2,1,(n j i =, 因此有B A =。

4) 由定义,知∑=ji ji ij y x a ,),(βα,α==β==故柯西—布湿柯夫斯基不等式为2.在4R 中,求βα,之间><βα,(内积按通常定义),设:1) )2,3,1,2(=α, )1,2,2,1(-=β, 2) )3,2,2,1(=α, )1,5,1,3(-=β, 3) )2,1,1,1(=α, )0,1,2,3(-=β。

第9章平面解析几何双曲线

第9章平面解析几何双曲线

双曲线1.双曲线的概念平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c >2a ,其中a ,c 为常数且a >0,c >0. 2.双曲线的标准方程和几何性质x ∈R ,y ≤-a 或y ≥a概念方法微思考1.平面内与两定点F 1,F 2的距离之差的绝对值等于常数2a 的动点的轨迹一定为双曲线吗?为什么? 提示 不一定.当2a =|F 1F 2|时,动点的轨迹是两条射线; 当2a >|F 1F 2|时,动点的轨迹不存在;当2a =0时,动点的轨迹是线段F 1F 2的中垂线.2.与椭圆标准方程相比较,双曲线标准方程中,a ,b 只限制a >0,b >0,二者没有大小要求,若a >b >0,a =b >0,0<a <b ,双曲线哪些性质受影响? 提示 离心率受到影响.∵e =c a =1+⎝⎛⎭⎫b a 2,故当a >b >0时,1<e <2;当a =b >0时,e =2(亦称等轴双曲线);当0<a <b 时,e > 2.1.(2020•天津)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A .22144x y -=B .2214y x -=C .2214x y -=D .221x y -=【答案】D【解析】抛物线24y x =的焦点坐标为(1,0), 则直线l 的方程为(1)y b x =--,双曲线C 的方程为22221(0,0)x y a b a b-=>>的渐近线方程为by x a =±,C 的一条渐近线与l 平行,另一条渐近线与l 垂直,b b a ∴-=-,()1bb a-=-, 1a ∴=,1b =,∴双曲线C 的方程为221x y -=,故选D .2.(2020•新课标Ⅰ)设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则△12PF F 的面积为( ) A .72B .3C .52D .2【答案】B【解析】由题意可得1a =,b =2c =, 12||24F F c ∴==,||2OP =, 121||||2OP F F ∴=, ∴△12PF F 为直角三角形,12PF PF ∴⊥,22212||||416PF PF c ∴+==, 12||||||22PF PF a -==,221212||||2||||4PF PF PF PF ∴+-=, 12||||6PF PF ∴=,∴△12PF F 的面积为121||||32S PF PF ==,故选B .3.(2020•新课标Ⅲ)设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F .P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则(a = ) A .1 B .2 C .4 D .8【答案】A【解析】由题意,设2PF m =,1PF n =,可得2m n a -=,142mn =,2224m n c +=,c e a ==可得224164c a =+,可得2254a a =+, 解得1a =. 故选A .4.(2019•全国)已知双曲线2222:1(0,0)x y C a b a b-=>>,过C 的左焦点且垂直于x 轴的直线交C 于M ,N 两点,若以MN 为直径的圆经过C 的右焦点,则C 的离心率为( )A 1B .2C D【答案】A【解析】设双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为1F ,右焦点为2F ,以MN 为直径的圆恰好过双曲线的右焦点,112||||F M F F ∴=,∴22b c a=, 222c a ac ∴-=, 2210e e ∴--=,1e ∴=,1e >,1e ∴=,故选A .5.(2019•新课标Ⅲ)已知F 是双曲线22:145x y C -=的一个焦点,点P 在C 上,O 为坐标原点.若||||OP OF =,则OPF ∆的面积为( )A .32B .52C .72D .92【答案】B【解析】如图,不妨设F 为双曲线22:145x y C -=的右焦点,P 为第一象限点.由双曲线方程可得,24a =,25b =,则3c =, 则以O 为圆心,以3为半径的圆的方程为229x y +=. 联立22229145x y x y ⎧+=⎪⎨-=⎪⎩,解得P ,5)3.∴1553232OPF S ∆=⨯⨯=. 故选B .6.(2019•新课标Ⅲ)双曲线22:142x y C -=的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若||||PO PF =,则PFO ∆的面积为( ) ABC.D.【答案】A【解析】双曲线22:142x y C -=的右焦点为F 0),渐近线方程为:2y x =,不妨P 在第一象限,可得tan POF ∠=,P, 所以PFO ∆的面积为:12. 故选A .7.(2019•浙江)渐近线方程为0x y ±=的双曲线的离心率是( ) AB .1 CD .2【答案】C【解析】根据渐近线方程为0x y ±=的双曲线,可得a b =,所以c =则该双曲线的离心率为ce a=, 故选C .8.(2019•北京)已知双曲线2221(0)x y a a-=>,则(a = )A B .4 C .2 D .12【答案】D【解析】由双曲线2221(0)x y a a -=>,得21b =,又ce a==225c a =,即2222215a b a a a ++==, 解得214a =,12a =.故选D .9.(2019•新课标Ⅱ)设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若||||PQ OF =,则C 的离心率为( )A B C .2D【答案】A 【解析】如图,由||||PQ OF =,可知PQ 过点(2c,0),由图可得a ,得ce a= 故选A .10.(2019•新课标Ⅰ)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( )A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒【答案】D【解析】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为by x a=±,由双曲线的一条渐近线的倾斜角为130︒,得tan130tan50ba-=︒=-︒,则sin50tan50cos50b a ︒=︒=︒, ∴2222222222501115050b c a c sin a a a cos cos -︒==-==-︒︒, 得22150e cos =︒,1cos50e ∴=︒.故选D .11.(2018•天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( ) A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【答案】A【解析】由题意可得图象如图,CD 是双曲线的一条渐近线 by x a=,即0bx ay -=,(,0)F c , AC CD ⊥,BD CD ⊥,FE CD ⊥,ACDB 是梯形,F 是AB 的中点,1232d d EF +==,EF b =,所以3b =,双曲线22221(0,0)x y a b a b -=>>的离心率为2,可得2ca=,可得:2224a b a +=,解得a =则双曲线的方程为:22139x y -=.故选A .12.(2018•天津)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( ) A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -= 【答案】C【解析】由题意可得图象如图,CD 是双曲线的一条渐近线by x a=,即0bx ay -=,(,0)F c , AC CD ⊥,BD CD ⊥,FE CD ⊥,ACDB 是梯形,F 是AB 的中点,1232d d EF +==,EF b =,所以3b =,双曲线22221(0,0)x y a b a b -=>>的离心率为2,可得2ca=,可得:2224a b a +=,解得a =则双曲线的方程为:22139x y -=.故选C .13.(2018•浙江)双曲线2213x y -=的焦点坐标是( )A .(,0),,0)B .(2,0)-,(2,0)C .(0,,D .(0,2)-,(0,2)【答案】B【解析】双曲线方程可得双曲线的焦点在x 轴上,且23a =,21b =,由此可得2c ==,∴该双曲线的焦点坐标为(2,0)±故选B .14.(2018•新课标Ⅲ)已知双曲线2222:1(0,0)x y C a b a b-=>>,则点(4,0)到C 的渐近线的距离为()A B .2C D .【答案】D【解析】双曲线2222:1(0,0)x y C a b a b-=>>,可得ca=2222a b a +=,解得a b =,双曲线2222:1(0)x y C a b a b-=>>的渐近线方程为:y x =±,点(4,0)到C=. 故选D .15.(2018•新课标Ⅲ)设1F ,2F 是双曲线2222:1(0x y C a a b-=>.0)b >的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P ,若1|||PF OP ,则C 的离心率为( )A B .2C D【答案】C【解析】双曲线2222:1(0x y C a a b -=>.0)b >的一条渐近线方程为by x a=,∴点2F 到渐近线的距离d b ==,即2||PF b =,||OP a ∴,2cos bPF O c∠=,1|||PF OP =,1||PF ∴=,在三角形12F PF 中,由余弦定理可得22212122122||||||2||||PF PF F F PF F F COS PF O =+-∠, 2222222264224343()ba b c b c c b c c a c∴=+-⨯⨯⨯=-=--, 即223a c =,c =,ce a∴=, 故选C .16.(2018•新课标Ⅱ)双曲线22221(0,0)x y a b a b-=>>( )A .y =B .y =C .y =D .y = 【答案】A【解析】双曲线的离心率为ce a=则b a ====即双曲线的渐近线方程为by x a=±=,故选A.17.(2018•新课标Ⅰ)已知双曲线22:13xC y-=,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若OMN∆为直角三角形,则||(MN=)A.32B.3 C.D.4【答案】B【解析】双曲线22:13xC y-=的渐近线方程为:y=,渐近线的夹角为:60︒,不妨设过(2,0)F的直线为:2)y x=-,则:2)y xy x⎧=⎪⎨⎪=-⎩解得3(2M,,2)yy x⎧=⎪⎨⎪=-⎩解得:N,则||3MN=.故选B.18.(2017•全国)已知双曲线2222:1(0,0)x yC a ba b-=>>的右焦点为(,0)F c,直线()y k x c=-与C的右支有两个交点,则()A.||bka<B.||bka>C.||cka<D.||cka>【答案】B【解析】双曲线2222:1(0,0)x yC a ba b-=>>的渐近线方程为by xa=±,由直线()y k x c=-与C的右支有两个交点,且直线经过右焦点F,可得||bka>,故选B.19.(2017•天津)已知双曲线22221(0,0)x ya ba b-=>>的右焦点为F,点A在双曲线的渐近线上,OAF∆是边长为2的等边三角形(O为原点),则双曲线的方程为()A.221412x y-=B.221124x y-=C.2213xy-=D.2213yx-=【答案】D【解析】双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),可得2c =,ba=223b a =,2223c a a -=,解得1a =,b x 轴,所得双曲线方程为:2213y x -=.故选D .20.(2017•新课标Ⅰ)已知F 是双曲线22:13y C x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则APF ∆的面积为( ) A .13B .12C .23D .32【答案】D【解析】由双曲线22:13y C x -=的右焦点(2,0)F ,PF 与x 轴垂直,设(2,)y ,0y >,则3y =,则(2,3)P ,AP PF ∴⊥,则||1AP =,||3PF =,APF ∴∆的面积13||||22S AP PF =⨯⨯=,同理当0y <时,则APF ∆的面积32S =, 故选D .21.(2017•新课标Ⅲ)已知双曲线2222:1(0,0)x y C a b a b -=>>的一条渐近线方程为y =,且与椭圆221123x y +=有公共焦点,则C 的方程为( )A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 【答案】B【解析】椭圆221123x y +=的焦点坐标(3,0)±,则双曲线的焦点坐标为(3,0)±,可得3c =,双曲线2222:1x y C a b-=(0,0)a b >>的一条渐近线方程为y =,可得b a =,即22254c a a -=,可得32c a =,解得2a =,b =所求的双曲线方程为:22145x y -=.故选B .22.(2017•新课标Ⅱ)若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A .,)+∞B .,2)C .D .(1,2)【答案】C【解析】1a >,则双曲线2221x y a-=的离心率为:c a ==. 故选C .23.(2020•北京)已知双曲线22:163x y C -=,则C 的右焦点的坐标为 (3,0) ;C 的焦点到其渐近线的距离是__________.【答案】(3,0)【解析】双曲线22:163x y C -=,则222639c a b =+=+=,则3c =,则C 的右焦点的坐标为(3,0),其渐近线方程为y =,即0x =,则点(3,0)到渐近线的距离d故答案为:(3,0)24.(2020•新课标Ⅲ)设双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线为y =,则C 的离心率为__________.【解析】由双曲线的方程可得渐近线的方程为:by x a =±,由题意可得ba=c e a ===25.(2020•江苏)在平面直角坐标系xOy 中,若双曲线2221(0)5x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是__________.【答案】32【解析】双曲线2221(0)5x y a a -=>的一条渐近线方程为y ==,所以2a =,所以双曲线的离心率为:32c e a ===, 故答案为:32. 26.(2020•新课标Ⅰ)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF垂直于x 轴.若AB 的斜率为3,则C 的离心率为__________. 【答案】2【解析】F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点(,0)c ,A 为C 的右顶点(,0)a ,B 为C 上的点,且BF 垂直于x 轴.所以2(,)b B c a,若AB 的斜率为3,可得:203b a c a-=-, 222b c a =-,代入上式化简可得2232c ac a =-,c e a=, 可得2320e e -+=,1e >, 解得2e =. 故答案为:2.27.(2019•上海)已知数列{}n a 满足1(*)n n a a n N +<∈,(n P n ,)(3)n a n 均在双曲线22162x y -=上,则1lim ||n n n P P +→∞=__________.【解析】法一:由22162na n -=,可得n a =(n P n ∴,1(1n P n +∴+,1||n n P P +∴∴求解极限可得1lim ||n n n P P +→∞=. 方法二:当n →+∞时,1n n P P +与渐近线平行,1n n P P +在x 轴的投影为1,渐近线倾斜角为θ,则tan θ,故11cos6n n P P π+==28.(2019•江苏)在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是__________.【答案】y =【解析】双曲线2221(0)y x b b-=>经过点(3,4),∴221631b-=,解得22b =,即b =.又1a =,∴该双曲线的渐近线方程是y =.故答案为:y =.29.(2019•新课标Ⅰ)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B =,则C 的离心率为__________. 【答案】2 【解析】如图,1F A AB =,A ∴为1F B 的中点,且O 为12F F 的中点,AO ∴为△12F F B 的中位线,又120F B F B =,12F B F B ∴⊥,则1OB FO c ==. 设1(B x ,1)y ,2(A x ,2)y , 点B 在渐近线by x a=上, ∴2221111x y c by x a ⎧+=⎪⎨=⎪⎩,得11x a y b =⎧⎨=⎩.又A 为1FB 的中点,∴2222c a x b y -+⎧=⎪⎪⎨⎪=⎪⎩, A 在渐近线by x a=-上,∴22b b a ca -=-,得2c a =,则双曲线的离心率2c e a ==. 故答案为:2.30.(2018•江苏)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线的距离,则其离心率的值为__________. 【答案】2【解析】双曲线22221(0,0)x y a b a b -=>>的右焦点(,0)F c 到一条渐近线byx a=,bcb ==, 可得22234c a c -=,即2c a =,所以双曲线的离心率为:2ce a==. 故答案为:2.31.(2018•北京)若双曲线2221(0)4x y aa -=>a =__________. 【答案】4【解析】双曲线2221(0)4x y a a-=>, 可得:22454a a +=,解得4a =. 故答案为:4.32.(2018•上海)双曲线2214x y -=的渐近线方程为__________.【答案】12y x =±【解析】双曲线2214x y -=的2a =,1b =,焦点在x 轴上而双曲线22221x y a b -=的渐近线方程为by x a =±∴双曲线2214x y -=的渐近线方程为12y x =±故答案为:12y x =±.33.(2017•上海)设双曲线2221(0)9x y b b-=>的焦点为1F 、2F ,P 为该双曲线上的一点,若1||5PF =,则2||PF =__________. 【答案】11【解析】根据题意,双曲线的方程为:22219x y b-=,其中3a =, 则有12||||||6PF PF -=, 又由1||5PF =,解可得2||11PF =或1-(舍) 故2||11PF =, 故答案为:11.34.(2017•北京)若双曲线221y x m-=m =__________.【答案】2【解析】双曲线221(0)y x m m-=>= 解得2m =. 故答案为:2.35.(2017•新课标Ⅰ)已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若60MAN ∠=︒,则C 的离心率为__________.【解析】双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为(,0)A a ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点.若60MAN ∠=︒,可得A 到渐近线0bx ay +=的距离为:cos30b ︒=,=,即a c =,可得离心率为:e .36.(2017•江苏)在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是1F ,2F ,则四边形12F PF Q 的面积是__________.【答案】【解析】双曲线2213x y -=的右准线:32x =,双曲线渐近线方程为:y =,所以3(2P,3(2Q,,1(2,0)F -.2(2,0)F . 则四边形12F PF Q的面积是:142⨯=故答案为:37.(2018•全国)双曲线221124x y -=,1F 、2F 为其左右焦点,C 是以2F 为圆心且过原点的圆.(1)求C 的轨迹方程;(2)动点P 在C 上运动,M 满足12F M MP =,求M 的轨迹方程.【解析】(1)由已知得212a =,24b =,故4c ,所以1(4,0)F -、2(4,0)F , 因为C 是以2F 为圆心且过原点的圆,故圆心为(4,0),半径为4, 所以C 的轨迹方程为22(4)16x y -+=; (2)设动点(,)M x y ,0(P x ,0)y , 则1(4,)F M x y =+,00(,)MP x x y y =--, 由12F M MP =,得(4x +,0)2(y x x =-,0)y y -, 即0042()2()x x x y y y +=-⎧⎨=-⎩,解得0034232x x y y +⎧=⎪⎪⎨⎪=⎪⎩,因为点P 在C 上,所以2200(4)16x y -+=, 代入得22343(4)()1622x y+-+=, 化简得22464()39x y -+=.38.(2017•上海)已知双曲线222:1(0)y x b bΓ-=>,直线:(0)l y kx m km =+≠,l 与Γ交于P 、Q 两点,P '为P 关于y 轴的对称点,直线P Q '与y 轴交于点(0,)N n ;(1)若点(2,0)是Γ的一个焦点,求Γ的渐近线方程; (2)若1b =,点P 的坐标为(1,0)-,且32NP P Q ''=,求k 的值; (3)若2m =,求n 关于b 的表达式.【解析】(1)双曲线222:1(0)y x b bΓ-=>,点(2,0)是Γ的一个焦点,2c ∴=,1a =,222413b c a ∴=-=-=,∴Γ的标准方程为:2213y x -=,Γ的渐近线方程为y =.(2)1b =,∴双曲线Γ为:221x y -=,(1,0)P -,(1,0)P ', 32NP P Q '=',设2(Q x ,2)y , 则有定比分点坐标公式,得: 223021312320312x n y ⎧+⎪=⎪⎪+⎪⎨⎪+⎪=⎪+⎪⎩,解得253x =,22221x y -=,∴243y =±,∴220112y k x -==±+.(3)设1(P x ,1)y ,2(Q x ,2)y ,0PQ k k =, 则1(P x '-,1)y ,0PQ l k x n =+,由22221y kx y x b =+⎧⎪⎨-=⎪⎩,得2222()440b k x kx b ----=, 12224kx x b k +=-,212224b x x b k --=-, 由02221y k x ny x b =+⎧⎪⎨-=⎪⎩,得2222200()20b k x k nx n b ----=, 0122202k nx x b k -+=-,2212220n b x x b k ---=-,22212222204b n b x x b k b k --+∴==--,即22022b k b k --,即222202224b k n b b k b -+=---, 21222202112222210210021224y y b k x x x x kk k n b y y k x x k n b k k n b x x ---++====-----+, 化简,得2222(4)20n n b b +++=,2n ∴=-或22b n =-, 当2n =-,由222202224b k n b b k b -+=---,得22202b k k =+, 由022y k x y kx =-⎧⎨=+⎩,得000422x k k k k y k k ⎧=⎪-⎪⎨+⎪=⎪-⎩,即04(Q k k -,0022)k k k k +-,代入2221y x b-=,化简,得:2200(4)40b kk b kk -++=,解得24b =或20b kk =,当24b =时,满足22b n =-,当20b kk =时,由22202b k k =+,得0k k =(舍去),综上,得22b n =-.1.(2020•江西模拟)圆22:()4M x m y-+=与双曲线2222:1(0,0)y x C a b a b-=>>的两条渐近线相切于A 、B 两点,若||2AB =,则C 的离心率为( ) A B C .2 D .3【答案】A【解析】圆22:()4M x m y -+=的圆心为(,0)M m ,双曲线2222:1(0,0)y x C a b a b -=>>的两条渐近线方程为ay x b=±,由圆M 和两条渐近线都关于x 轴对称,可设(,1)A s ,(,1)B s -,0s >,s m <, 由题意可得2()14s m -+=,则s m -=由A 为切点,直线AM 与渐近线ay x b=垂直,可得11as m b=--,则b a =可得双曲线的离心率为c e a ====,故选A .2.(2020•红岗区校级模拟)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,过点1F 且垂直于x 轴的直线与该双曲线的左支交于A 、B 两点,若2ABF ∆的周长为24,则当2ab 取得最大值时,该双曲线的焦点到渐近线的距离为( )A .1BC .2D .【答案】D【解析】可设1(,0)F c -,由x c =-代入双曲线的方程可得2b y a==±,则22||b AB a=,22||||AF BF ===由题意可得2224b a +, 结合222c a b =+,上式化简可得322366a ab a b +=-,可得2(6)b a a =-, 则22(6)ab a a =-,设2()(6)f x x x =-,0x >,导数为2()123f x x x '=-,当4x >时,()0f x '<,()f x 递减;当04x <<时,()0f x '>,()f x 递增. 可得()f x 在4x =处取得最大值.即有4a =,24(64)8b =⨯-=,即b =而焦点到渐近线的距离为2222d b a b===+,故选D .3.(2020•湖北模拟)已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,O 为坐标原点,以A 为圆心的圆与双曲线C 的某一条渐近线交于两点P ,Q ,若0AP AQ =且3OQ OP =,则双曲线C 的离心率为( )A B C D【答案】A【解析】0AP AQ =,AP AQ ∴⊥,又||||AP AQ =,APQ ∴∆ 是等腰直角三角形, (,0)A a ,渐近线方程不妨为by x a =,即0bx ay -= 则A 到该渐近线的距离为ab d c==∴2||2,||ab PQ d AQ c ====又3OQ OP =,∴13||||,||2ab abOQ PQ OQ c c===,又45AQO ∠=︒,由余弦定理222||||||2||||cos45OA AQ OQ AQ OQ =+-︒,得222222229322a b a b ab a c c c c =+-⨯⨯⨯,整理得2245c a =,∴c e a ==故选A .4.(2020•运城模拟)当m 变化时,对于双曲线22:1(0)2x y C m m m-=>,值不变的是( )A .实轴长B .虚轴长C .焦距D .离心率【答案】D【解析】由题意可得22a m =,2b m =,23c m =,显然双曲线实轴长,虚轴长,焦距都是变量;而c e a ==故选D .5.(2020•镜湖区校级模拟)双曲线222:1(0)36x y C a a -=>左、右焦点分别为1F ,2F ,一条渐近线与直线430x y +=垂直,点M 在C 上,且2||14MF =,则1||(MF = ) A .6或30 B .6C .30D .6或20【答案】C【解析】双曲线222:1(0)36x y C a a -=>左、右焦点分别为1F ,2F ,一条渐近线与直线430x y +=垂直, 可得634a =-,解得8a =,点M 在C 上,2||14216MF a =<=,所以M 在双曲线的右支上, 则12||2||30MF a MF =+=. 故选C .6.(2020•香坊区校级一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,过F 作双曲线C 一条渐近线的垂线,垂足为点A ,且与另一条渐近线交于点B ,若BA AF =,则双曲线方程为( )A .2213x y -=B .2213y x -=C .221412x y -=D .221123x y -=【答案】B【解析】由题意可得2c =,即224a b +=,双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为by x a=±,设A 在渐近线by xa =上,可得||AFb ==,若BA AF =,则A 为BF 的中点如图, 且OA BF ⊥,可得OBF ∆为等腰三角形, 则60BOA AOF ∠=∠=︒,在直角三角形AOF 中,可得||||sin 602AF OF =︒=即b =,1a =,则双曲线的方程为2213y x -=.故选B .7.(2020•二模拟)双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过其中一个焦点作x 轴的垂线,与C 交于A ,B 两点,若12||||AB F F =,则双曲线的离心率为( )A B C 1 D 1【答案】B【解析】由题意可知,双曲线的通径为:22b a ,双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过其中一个焦点作x 轴的垂线,与C 交于A ,B 两点,若12||||AB F F =,可得222b c a=,即:22c a ac -=,即210e e --=,1e >.解得e =. 故选B .8.(2020•南岗区校级模拟)已知双曲线2222:1(0,0)x y E a b a b-=>>的右焦点为2F ,A 和B 为双曲线上关于原点对称的两点,且A 在第一象限.连结2AF 并延长交E 于P ,连结2BF ,PB ,若△2BF P 是以2BF P ∠为直角的等腰直角三角形,则双曲线E 的离心率为( )A B C D 【答案】C【解析】设双曲线的半焦距为c ,22||||BF PF t ==,由||||OA OB =,12||||OF OF =,可得四边形12AF BF 为平行四边形, 则12||||AF BF t ==,且1290F AF ∠=︒,连接1PF ,由双曲线的定义可得12||||22PF PF a t a =+=+, 又21||||22AF AF a t a =-=-,在直角三角形12AF F 中,可得22(2)24t t a c +-=,① 在直角三角形1PAF 中,可得222(22)(2)t t a t a +-=+, 化为3t a =,代入①可得22294a a c +=,即有c =,即c e a =. 故选C .9.(2020•安徽模拟)已知双曲线22221(0,0)y x a b a b -=>>的离心率为2.则其渐近线的方程为( )A .0x ±=B 0y ±=C 0y ±=D .0x y ±=【答案】A【解析】双曲线22221(0,0)y x a b a b-=>>的离心率为2.可得:2ca=,即2214b a +=,可得ba=则双曲线C 的渐近线方程为:0x ±=. 故选A .10.(2020•汉阳区校级模拟)已知P 为双曲线22221(0,0)x y a b a b-=>>的右支上一点,1F 、2F 为其左、右焦点,且焦距的长度为6,PI 为12F PF ∠的角平分线,I 是PI 与x 轴的交点,O 是坐标原点,满足||4PO =,||1OI =,则双曲线的离心率为( )A B .53C D 【答案】A【解析】如图,焦距的长度为6,满足||4PO =,||1OI =,故1314F I =+=,2312IF =-=;PI 为12F PF ∠的角平分线,1212::2:1PF PF F I IF ∴==;设2PF x =,则12PF x =;∴△1PFO 中,2221(2)34cos 223x PFO x +-∠=;① ∴△12PF F 中,2221(2)6cos 226x x PFO x +-∠=;②联立①②可得:210x x =⇒=22a x x ∴=-;22c e a ∴==. 故选A .11.(2020•东湖区校级三模)已知1F 、2F 为双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点,点M 为E 右支上一点.若1MF 恰好被y 轴平分,且1230MF F ∠=︒,则E 的渐近线方程为( )A.y = B.y = C.y = D .2y x =±【答案】B【解析】1F 、2F 为双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点,点M 为E 右支上一点,若1MF 恰好被y 轴平分,则2MF 垂直x 轴,因为1230MF F ∠=︒,所以21212tan MF MF F F F =∠22b a c =,22ac ,可得4224443a a b b +=, 可得222b a =,则ba=则E的渐近线方程为y =. 故选B .12.(2020•辽宁模拟)已知1F ,2F 分别为双曲线22221(0,0)y x a b a b-=>>的两个焦点,双曲线上的点P 到原点的距离为b ,且2112sin 3sin PF F PF F ∠=∠,则该双曲线的渐近线方程为( ) A.y = B.y x = C.y = D.y =【答案】A 【解析】1F ,2F 分别为双曲线22221(0,0)y x a b a b-=>>的两个焦点,∴不妨设双曲线的焦点坐标为1(0,)F c -、2(0,)F c ,2112sin 3sin PF F PF F ∠=∠,所以12||3||PF PF =,12||||2PF PF a -=, 1||3PF a =,2||PF a =,双曲线上的点P 到原点的距离为b ,所以||OP b =,2||OF c ∴=,222c a b =+,290OPF ∴∠=︒,2PH OF ⊥,abPH c∴=,设(,)P m n ,||ab m c ∴=,2b nc =,把P 点的坐标代入双曲线方程可得:b =,∴该双曲线的渐近线方程2y x =±. 故选A .13.(2020•碑林区校级模拟)双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点为1F ,2F ,以2F 为圆心,2||OF 为半径作圆2F ,过1F 作直线l 与圆2F 切于点M ,若M 在双曲线的渐近线上,则双曲线的离心率为( )A B C .2 D 【答案】C【解析】1MF 为圆的切线,故1212OM F F c ==, 又22MF OF r c ===,260MOF ∴∠=︒,2tan bMOF a∴∠=,b ∴,2c e a ∴==.故选C .14.(2020•思明区校级一模)已知1F 、2F 为双曲线2222:1(0)x y C a b a b-=>>的左、右焦点,点A 在双曲线C 的右支上,线段1AF 与双曲线C 的左支交于点B ,260ABF ∠=︒,113AF BF =,则双曲线C 的离心率为( )A B C D .【答案】C【解析】如图所示:113AF BF =,不妨设11||3||3AF BF m ==, ||2AB m ∴=,21||||2BF BF a -=,12||||2AF AF a -=, 2||2BF a m ∴=+,2||32AF m a =-,在2ABF ∆中,由余弦定理可得2222222||||||2||||cos AF AB BF AB BF ABF =+-∠, 即222(32)(2)(2)22(2)cos60m a m a m m a m -=++-+︒, 解得2m a =,1||2BF a ∴=,2||4BF a =,在△12BF F 中,由余弦定理可得22212121212||||||2||||cos F F BF BF BF BF F BF =+-∠, 即222(2)(2)(4)224cos120c a a a a =+-︒,c =,即e = 故选C .15.(2020•黄州区校级三模)已知双曲线2222:1(0,0)x y C a b a b -=>>,过左焦点F 作斜率为12的直线与双曲线的一条渐近线相交于点A ,且A 在第一象限,若||||OA OF =,则双曲线C 的离心率为( ) A .53BC .2 D【答案】A【解析】由题意可得直线l 的方程为:1()2y x c =+,与渐近线by x a=联立,可得122ac x a b =-,2bcy b a=-,因为||||OA OF =,即222()()22ac bc c b a b a+=--, 整理可得34b a =,222299()16b c a a =-=,即22925c a =,因为1ce a=>, 解得53e =.故选A .16.(2020•吉林模拟)已知(F 是双曲线2222:1(0,0)x y C a b a b-=>>的左焦点,P 为双曲线C 右支上一点,圆222x y a +=与y 轴的正半轴交点为A ,||||PA PF +的最小值4,则双曲线C 的实轴长为( )A B .2 C .D .【答案】B【解析】由题意,(0,)A a ,设F '为双曲线的右焦点,则||2||PF a PF =+',(F ,0),F '0).||||||2||2(||||)2||2PA PF PA a PF a PA PF a AF a ∴+=++'=++'+'=+三点P ,A ,F '共线时取等号.所以24a +,解得1a =,故实轴长为2. 故选B .17.(2020•松原模拟)已知点P 是双曲线22184x y -=上一点,1F ,2F 分别为双曲线的左、右焦点,若△12F PF 的外接圆半径为4,且12F PF ∠为锐角,则12||||(PF PF = ) A .15 B .16C .18D .20【答案】B【解析】点P 是双曲线22184x y -=上一点,1(F -0),2F 0),△12F PF 的外接圆半径为4,可得圆的圆心(0,2),圆的方程为:22(2)16x y +-=,不妨设P 在第一象限,圆的方程与双曲线22184x y -=联立可得(4,2)P ,222212||||(423)(20)(423)(20)321633216325616PF PF =++--+-=+-==.故选B .18.(2020•红岗区校级模拟)双曲线2221(0)y x b b-=>的渐近线方程是y =±,则双曲线的焦距为( )A .3B .6C .D 【答案】B【解析】双曲线2221(0)y x b b-=>的渐近线方程是y =±,可得b =3c =, 所以双曲线的焦距为6.故选B .19.(2020•龙潭区校级模拟)设双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为023x y±=,则双曲线C 的离心率为( ) ABCD【答案】D【解析】双曲线2222:1(0,0)x y C a b a b -=>>的渐近线方程为023x y±=,可得32a b =,所以2222944()a b c a ==-,即22413c a =,所以双曲线的离心率为:c e a ==故选D .20.(2020•运城模拟)过双曲线2222:1(0,0)x y C a b a b -=>>的左焦点F 且斜率为12的直线l 与双曲线C 的两条渐近线分别交于A ,B 两点,与y 轴交于M 点,若2AM MB =,则双曲线C 的离心率等于( ) ABCD【答案】D【解析】依题意可知点A 在第二象限,点B 在第一象限,直线l 方程为1()2y x c =+,由1()2y x c b y x a ⎧=+⎪⎪⎨⎪=-⎪⎩得2A ac x a b =-+,由1()2y x c b y x a⎧=+⎪⎪⎨⎪=⎪⎩得2B ac x b a =-,(2)b a >,由2AM MB =,可得2||||A B x x =,即222ac aca b b a=+-整理得23b a =, 又因为222b c a =-,所以2224()9c a a -=,得22413c a =,所以c e a ==. 故选D .21.(2020•大同模拟)已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点F ,半焦距2c =,点F 到直线2a x c=的距离为12,过点F 作双曲线C 的两条互相垂直的弦AB ,CD ,设AB ,CD 的中点分别为M ,N . (1)求双曲线C 的标准方程;(2)证明:直线MN 必过定点,并求出此定点的坐标.【解析】(1)由题意可得2c =,212a c c -=,222b c a =-,解得:23a =,21b =, 所以双曲线的方程为:2213x y -=;(2)证明:设(2,0)F 设过F 的弦AB 所在的直线方程为:2x ky =+,1(A x ,1)y ,2(B x ,2)y , 则有中点12()(22k y y M ++,12)2y y +, 联立直线AB 与双曲线的方程:22213x ky x y =+⎧⎪⎨-=⎪⎩整理可得:22(3)410k y ky -++=, 因为弦AB 与双曲线有两个交点,所以230k -≠, 12243k y y k +=-,所以1212212()43x x k y y k+=++=-, 所以26(3M k -,22)3kk -; ()i 当0k =时,M 点即是F ,此时直线MN 为x 轴; ()ii 当0k ≠时,将M 的坐标中的k 换成1k-,同理可得N 的坐标226(31k k -,22)31kk --,①当直线MN 不垂直于x 轴时,直线MN 的斜率222222222331663(1)331MNk kk k k k k k k k +--==----, 将M 代入方程可得直线222226:()33(1)3k k MN y x k k k -=----, 化简可得22(3)3(1)ky x k =--,所以直线MN 恒过定点(3,0)P ;②当直线MN 垂直于x 轴时,22266331k k k =--可得1k =±,直线也过定点(3,0)P ; 综上所述直线MN 恒过定点(3,0)P .22.(2019•陕西三模)设离心率为3,实轴长为1的双曲线2222:1(0)x y E a b a b-=>>的左焦点为F ,顶点在原点的抛物线C 的准线经过点F ,且抛物线C 的焦点在x 轴上. ()I 求抛物线C 的方程;(Ⅱ)若直线l 与抛物线C 交于不同的两点M ,N ,且满足OM ON ⊥,求||MN 的最小值. 【解析】()I 离心率为3,实轴长为1,即3ce a==,12a =,可得32c =,3(2F -,0), 可设抛物线的方程为22y px =,0p >, 可得322p =,即3p =,可得抛物线的方程为26y x =;(Ⅱ)设直线l 的方程为x my t =+,设点1(M x ,1)y 、2(N x ,2)y , 则2116y x =,2226y x =,将直线l 的方程与抛物线C 的方程联立26x my ty x=+⎧⎨=⎩,得2660y my t --=,由韦达定理得126y y m +=,126y y t =-, OM ON ⊥,12663616OM ON k k y y t∴==-=-,即6t =, 由△2362460m =+⨯>恒成立,则22||36144MN m =+12=,当且仅当0m =时,||MN 取得最小值12.23.(2019•天河区校级三模)已知双曲线1C 的焦点在x 轴上,焦距为4,且1C 的渐近线方程为0x ±=. (1)求双曲线1C 的方程;(2)若直线:l y kx =+222:142x y C +=及双曲线1C 都有两个不同的交点,且l 与1C 的两个交点A 和B 满足6OA OB <(其中O 为原点),求2k 的取值范围.【解析】(1)根据题意,1C 的渐近线方程为0x ±=,则设双曲线1C 的方程为22(0)3x y λλ-=>,则23a λ=,2b λ=,又双曲线的焦距为4,则24c =,即2c =, 于是由222441a b c λλ+=⇒=⇒=,故1C 的方程为2213x y -=;(2)根据题意,将y kx =+22142x y +=得22(12)20k x +++=, 由直线l 与椭圆2C 有两个不同的交点得2222(43)8(12)8(41)0k k k =-+=->,即214k >,⋯⋯① 将y kx =+2213x y -=得22(13)120k x ---=,由直线l 与双曲线1C 有两个不同的交点A ,B ,则有22221130(63)48(13)12(43)0k k k k ⎧-≠⎪⎨=+-=->⎪⎩,即213k ≠且243k <,⋯⋯②设1(A x ,1)y ,2(B x ,2)y ,则12x x +=,1221213x x k-=-, 则6OA OB <得12126x x y y +<,而22221212121222212(1)1839(1)()33131331k k k x x y y k x x x x k k k -+++=+++=++=---, 于是2239631k k +<-,解此不等式得21k >,或213k <,⋯⋯③由①,②,③得21143k <<,或2413k <<,故2k 的取值范围为114(,)(1,)433. 24.(2019•龙岩模拟)双曲线22:143x y Γ-=的左右顶点分别为1A ,2A ,动直线l 垂直Γ的实轴,且交Γ于不同的两点M ,N ,直线1A N 与直线2A M 的交点为P . (1)求点P 的轨迹C 的方程;(2)过点(1,0)H 作C 的两条互相垂直的弦DE ,FG ,证明:过两弦DE ,FG 中点的直线恒过定点. 【解析】(1)因为1(2,0)A -,2(2,0)A ,设(,)P x y ,0(M x ,0)y ,则0(N x ,0)y -,且2200143x y -=,①,因为动直线l 交双曲线于不同的两点M ,N ,所以02x ≠±且2x ≠±, 因为直线2A M 的方程为00(2)2y y x x =--,②, 直线1A N 的方程为00(2)2y y x x -=++,③, 由②③得222020(4)4y y x x -=--, 把①代入上式得223(4)4y x =--,化简得22143x y +=,所以点P 的轨迹C 的方程为221(2)43x y x +=≠±.(2)依题意得直线DE 与直线FG 斜率均存在且不为0, 设直线DE 的方程为1(0)x my m =+≠,则直线FG 的方程为11x y m=-+, 联立2213412x my x y =+⎧⎨+=⎩,得22(34)690m y my ++-=, 则△2223636(34)144(1)0m m m =++=+>, 设1(D x ,1)y ,2(E x ,2)y ,则122634m y y m -+=+,121228()234x x m y y m +=++=+, 所以DE 的中点24(34R m +,23)34mm -+,同理FG 的中点224(43m S m +,23)43mm +,所以直线RS 的斜率为2222223373443444(1)3443RSm mm m m k m m m m --++==--++, 所以直线RS 的方程为222374()344(1)34m m y x m m m +=-+-+,整理得274()4(1)7m y x m =--, 所以直线RS 恒过定点4(7,0),即过两弦DE ,FG 中点的直线恒过定点4(7,0).25.(2019•丹东一模)已知离心率为2的双曲线C 的一个焦点(,0)F c(1)求双曲线C 的方程;(2)设1A ,2A 分别为C 的左右顶点,P 为C 异于1A ,2A 一点,直线1A P 与2A P 分别交y 轴于M ,N 两点,求证:以线段MN 为直径的圆D 经过两个定点.【解析】(1)设2222:1(0,0)x y C a b a b-=>>,因为离心率为2,所以2c a =,b .所以C0y ±=,得2c =.于是1a =,b C 的方程为2213y x -=.(2)方法一、设0(P x ,00)(1)y x ≠±,因为1(1,0)A -,2(1,0)A , 可得直线1A P 与2A P 方程为00(1)1y y x x =++,00(1)1yy x x =--. 由题设,所以00(0,)1y M x +,00(0,)1y N x --,00202||||1x yMN x =-,MN 中点坐标02(0,)1y x -,于是圆D 的方程为222200022200()1(1)y x y x y x x +-=--. 因为220013y x -=,所以圆D 的方程可化为220630x y y y ++-=.当0y =时,x =,因此D经过两个定点(和. 方法二、设0(P x ,00)(1)y x ≠±,因为1(1,0)A -,2(1,0)A , 可得直线1A P 与2A P 方程为00(1)1y y x x =++,00(1)1yy x x =--, 由题设,所以00(0,)1y M x +,00(0,)1y N x --.设(,)P x y 是圆D 上点,则0MP NP =,即0000(,)(,)011y yx y x y x x -+=+-,。

空间解析几何习题答案解析

空间解析几何习题答案解析

.WORD 格式整理 ..一、计算题与证明题1.已知| a |1, | b | 4 ,| c | 5 ,并且 a b c0 .计算 a b b c c a .解:因为 | a | 1 ,|b | 4 , | c | 5 ,并且 a b c0所以 a 与b同向,且a b 与c反向因此 a b0 , b c0 , c a 0所以 a b b c c a02.已知| a b |3, | a b |4, 求| a | |b |.解: | a b | a b cos3( 1)| a b |a b sin4( 2)(1) 2 2 2得 a225 b所以a b54.已知向量x与a(,1,5,2)共线,且满足 a x 3 ,求向量x的坐标.解:设 x 的坐标为x, y, z ,又 a1,5,2则 a x x 5y 2z 3( 1)又 x 与 a 共线,则x a0即i j ky z x y x y x y z i j5121k15225 2y 5z i z 2x j5x y k 0所以2 y5z 2z2x 25x y 20即 29x 25y226 220yz4xz10xy0(2)z又 x 与 a 共线, x 与 a 夹角为0或cos01x a3x2y2z21252 2 2x 2y 2z230整理得x2y 2z23(3)10联立1、2、3解出向量 x 的坐标为 1 ,1,16.已知点A(3,8,7) , B( 1,2, 3) 求线段 AB 的中垂面的方程.解:因为 A 3,8,7 ,B( 1,2, 3)AB 中垂面上的点到A、 B 的距离相等,设动点坐标为M x, y, z ,则由 MA MB 得x 3 2y 8 2z 7 2x 1 2y 2 2z 3 2化简得2x 3 y5z270这就是线段 AB 的中垂面的方程。

7 .向量a , b , c 具有相同的模,且两两所成的角相等,若 a ,b的坐标分别为(1,1,0)和(0,1,1),求向量c 的坐标.解: a b c r 且它们两两所成的角相等,设为则有 a b101 1 011则 cos a b1 a b r 2设向量 c的坐标为x, y, z则 a c1x1y0 z x y a b cos r r11( 1)r 21b c0x1y1z y z bc cos r1( 2)r2rc x2y 2z2r1212022所以 x2y 2z22( 3)x 1 3x14联立( 1)、(2)、 (3)求出y0 或y3z11z3所以向量 c 的坐标为1,0,1或1,4, 13338.已知点A(3,6,1) ,B(2,4,1) , C (0,2,3) , D (2,0,3) ,(1)求以 AB , AC , AD 为邻边组成的平行六面体的体积.(2)求三棱锥 A BCD 的体积.(3) 求 BCD 的面积.(4)求点 A 到平面 BCD 的距离.解:因为 A 3,0,1 , B 2, 4,1 ,C 0, 2,3 ,D 2,0, 3所以 AB1, 10,0AC 3, 8,2 AD5, 6, 4(1) AB, AC, AD 是以它们为邻边的平行六面体的体积1 10 0V3 8 23 100 00 120 12 176564(2)由立体几何中知道,四面体ABCD (三棱锥 A BCD )的体积V T1 V 1 176 88663(3)因为 BC2,2,2 , BD4,4, 4ijkBC BD2 2 2 16i 16 j0k4 44所以 BC BD16 2 16 216 2 ,这是平行四边形 BCED 的面积因此 S BCD1S □ BCED1 162 8 22 2(4)设点 A 到平面 BCD 的距离为 H ,由立体几何使得三棱锥 ABCD 的体积V T1S BCDH33V T3 8811 11 2所以 H3 SBCD8 2221.求经过点 A(3,2,1) 和 B( 1,2, 3) 且与坐标平面 xOz 垂直的平面的方程. 解:与 xoy 平面垂直的平面平行于y 轴,方程为AxCzD 0(1)把点 A 3,2,1 和点 B1,2, 3 代入上式得.WORD 格式整理 ..3A C D 0 (2)A 3C D 0(3)由( 2),( 3)得 AD, CD22代入( 1)得D D Dxz22消去 D 得所求的平面方程为x2 z 02.求到两平面: 3x y 2z 60 和 :xyz 1距离相等的点的轨迹方程.2 51解;设动点为 Mx, y, z ,由点到平面的距离公式得3z y 2z 65x 2 y 10 z 103222222221510所以 3xy 2z614 5x 2 y10z101293.已知原点到平面的距离为 120, 且在三个坐标轴上的截距之比为2:6:5, 求的方程.解:设截距的比例系数为k ,则该平面的截距式方程为x yz12k 6k 5k化成一般式为15x 5 y 6 z 30k又因点 O 0,0,0 到平面的距离为 120,则有30k1201525262求出 k 4 286所以,所求平面方程为15x 5 y 6z 120 2865.已知两平面: mx 7 y 6z 24 0 与平面: 2x3my 11z 19 0 相互垂直, 求 m的值.解:两平面的法矢分别为n 1m, 1, 6 , n 22, 3m,11 ,由 n 1 ⊥ n 2 ,得2m21m 66求出 m66196.已知四点A(0,0,0) , B(,2, 5,3) , C(0,1, 2) , D(2,0,7) , 求三棱锥 D ABC 中 ABC. WORD 格式整理 . .面上的高.解:已知四点 A 0,0,0 , B 2, 5,3 ,C 0,1, 2 , D 2,0,7 ,则 DA2,0, 7,DB 0,5, 4 ,DC2,1,9由 DA , DB , DC 为邻边构成的平行六面体的体积为2 0 7 VDA,DB, DC5 4219900 0700 890 70828由立体几何可知,三棱锥DABC 的体积为V DABC1 V 1 28 14设 D 到平面 ABC 的高为 H6 63则有VD ABC1 H SABC3所以H3V D ABCSABC又 AB2,5,3 , AC0,1, 2ij k AB AC2 53 7i4 j2k0 12所以, S ABC1ABAC1 7242 221 692223 1428 28 69因此, H1 369696927.已知点 A 在 z 轴上且到平面: 4x 2 y 7z 14 0 的距离为 7, 求点 A 的坐标.解: A 在 z 轴上,故设 A 的坐标为( 0 0 z ),由点到平面的距离公式,得7z1474222727z 1469则 z 2 69那么 A 点的坐标为 A 0,0,2698.已知点. A 在 z 轴上且到点 B(0,2,1) 与到平面: 6x 2y 3z9 的距离相等 , 求点 A的坐标。

空间解析几何习题答案

空间解析几何习题答案

空间解析几何习题答案空间解析几何习题答案在学习数学的过程中,解析几何是一个重要的分支。

它通过坐标系和代数方法来研究几何图形的性质和变换。

而空间解析几何则是解析几何的一个延伸,它研究的是三维空间中的几何图形。

在空间解析几何的学习过程中,我们经常会遇到一些习题,下面我将给出一些空间解析几何习题的解答。

习题一:已知直线L1过点A(1, 2, 3)和点B(4, 5, 6),直线L2过点C(7, 8, 9)且与直线L1垂直,求直线L2的方程。

解答:首先,我们可以求出直线L1的方向向量。

直线L1的方向向量可以通过两点的坐标差来得到,即(4-1, 5-2, 6-3),即(3, 3, 3)。

因为直线L2与直线L1垂直,所以直线L2的方向向量与直线L1的方向向量垂直,即两个向量的点积为0。

设直线L2的方向向量为(a, b, c),则有3a + 3b + 3c = 0。

再代入直线L2过点C(7, 8, 9),得到7a + 8b + 9c = 0。

所以直线L2的方程为7x + 8y + 9z = d,其中d为常数。

习题二:已知点A(1, 2, 3)和点B(4, 5, 6),求直线AB的方程。

解答:直线AB的方向向量可以通过两点的坐标差来得到,即(4-1, 5-2, 6-3),即(3, 3, 3)。

设直线AB的方程为x = 1 + 3t,y = 2 + 3t,z = 3 + 3t,其中t为参数。

习题三:已知平面P过点A(1, 2, 3)、点B(4, 5, 6)和点C(7, 8, 9),求平面P的方程。

解答:平面P的法向量可以通过两个方向向量的叉积来得到。

设向量AB为(4-1, 5-2, 6-3),即(3, 3, 3),向量AC为(7-1, 8-2, 9-3),即(6, 6, 6)。

则平面P的法向量为(3, 3, 3) × (6, 6, 6),即(0, 0, 0)。

因为法向量为零向量,所以平面P的方程为0x + 0y + 0z = d,即0 = d,其中d为常数。

空间解析几何应用题解析

空间解析几何应用题解析

空间解析几何应用题解析解析几何是数学中的一个重要分支,主要研究空间中的点、直线、平面和曲面等几何元素之间的关系和性质。

空间解析几何的应用题是解析几何的一种实际问题,通常需要运用坐标系、向量和方程等方法进行求解。

本文将通过几个空间解析几何应用题来探讨其解题方法和思路。

题目一:过点A(1,2,3)且平行于直线l1:x-1/2=y/3=z-5/4的平面方程。

解析:要求解过点A(1,2,3)且平行于直线l1:x-1/2=y/3=z-5/4的平面方程。

首先,我们需要确定平面的法向量。

由于平面平行于直线l1,故直线l1的方向向量也是平面的法向量。

直线l1的方向向量为(1/2, 1/3, 5/4)。

知道平面的法向量后,我们可以利用点法式求解平面方程。

设平面的法向量为n=(A,B,C),平面上一点为P(x,y,z),则平面方程可表示为Ax+By+Cz+D=0,其中D为常数。

由于平面过点A(1,2,3),代入平面方程得到:A*1 + B*2 + C*3 + D= 0,即A + 2B + 3C + D = 0。

然后,将平面的法向量(1/2, 1/3, 5/4)代入,得到方程:1/2 * A + 1/3 * B + 5/4 * C = 0。

我们可以得到一个平面方程的方程组:A + 2B + 3C +D = 01/2 * A + 1/3 * B + 5/4 * C = 0进一步化简方程组,可以求解出平面方程的解。

题目二:已知点A(1,2,3)和点B(-1,3,4),求直线AB的方程。

解析:要求直线AB的方程,我们可以用两点确定一条直线的方法。

点A(1,2,3)和点B(-1,3,4)确定了直线AB。

直线上两点的坐标分别为(x1, y1, z1)和(x2, y2, z2)。

我们可以使用参数方程表示直线的方程:x = x1 + t(x2-x1)y = y1 + t(y2-y1)z = z1 + t(z2-z1)这里,t是一个参数,可以取任意实数。

2021高考数学一轮复习统考第9章平面解析几何第5讲椭圆课时作业含解析北师大版

2021高考数学一轮复习统考第9章平面解析几何第5讲椭圆课时作业含解析北师大版

椭圆课时作业1.若椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长等于焦距,则椭圆的离心率为( )A .12B .33 C .22D .24答案 C解析 因为椭圆的短轴长等于焦距,所以b =c ,所以a 2=b 2+c 2=2c 2,所以e =c a =22,故选C .2.已知椭圆x 210-m +y 2m -2=1,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .8答案 D解析 椭圆焦点在y 轴上,∴a 2=m -2,b 2=10-m .又c =2,∴m -2-(10-m )=c 2=4.∴m =8.3.(2019·杭州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A .x 23+y 22=1B .x 23+y 2=1C .x 212+y 28=1 D .x 212+y 24=1 答案 A解析 由题意及椭圆的定义知4a =43,则a =3,又c a=c3=33,∴c =1,∴b 2=2,∴C 的方程为x 23+y 22=1.选A .4.椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8D .32答案 B解析 |ON |=12|MF 2|=12×(2a -|MF 1|)=12×(10-2)=4,故选B .5.(2019·河南豫北联考)已知点P ⎝⎛⎭⎪⎫1,22是椭圆x 2a 2+y 2=1(a >1)上的点,A ,B 是椭圆的左、右顶点,则△PAB 的面积为( )A .2B .24C .12 D .1答案 D解析 由题可得1a 2+12=1,∴a 2=2,解得a =2(负值舍去),则S △PAB =12×2a ×22=1,故选D .6.(2019·吉林长春模拟)椭圆x 22+y 2=1的两个焦点分别是F 1,F 2,点P 是椭圆上任意一点,则·的取值范围是( )A .[-1,1]B .[-1,0]C .[0,1]D .[-1,2]答案 C解析 由椭圆方程得F 1(-1,0),F 2(1,0),设P (x ,y ),∴=(-1-x ,-y ),=(1-x ,-y ),则·=x 2+y 2-1=x 22∈[0,1],故选C .7.(2019·湖南郴州模拟)设e 是椭圆x 24+y 2k =1的离心率,且e ∈⎝ ⎛⎭⎪⎫12,1,则实数k 的取值范围是( )A .(0,3)B .⎝⎛⎭⎪⎫3,163C .(0,3)∪⎝ ⎛⎭⎪⎫163,+∞D .(0,2)答案 C解析 当k >4时,c =k -4,由条件知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件知14<4-k4<1,解得0<k <3.故选C .8.若椭圆x 236+y 29=1的弦被点(4,2)平分,则此弦所在直线的斜率是( )A .2B .-2C .13D .-12答案 D解析 设弦的端点为A (x 1,y 1),B (x 2,y 2),∴⎩⎪⎨⎪⎧x 21+4y 21=36,x 22+4y 22=36,整理,得x 21-x 22=-4(y 21-y 22),∴此弦的斜率为y 1-y 2x 1-x 2=x 1+x 2-4(y 1+y 2)=-12,则此直线的斜率为-12. 9.(2020·甘肃联考)设A ,B 是椭圆C :x 212+y 22=1的两个焦点,点P 是椭圆C 与圆M :x 2+y 2=10的一个交点,则||PA |-|PB ||=( )A .2 2B .4 3C .4 2D .6 2答案 C解析 由题意知,A ,B 恰好在圆M 上且AB 为圆M 的直径,∴|PA |+|PB |=2a =43,|PA |2+|PB |2=(2c )2=40,∴(|PA |+|PB |)2=|PA |2+|PB |2+2|PA ||PB |,解得2|PA ||PB |=8,∴(|PA |-|PB |)2=|PA |2+|PB |2-2|PA ||PB |=32,则||PA |-|PB ||=42,故选C .10.(2020·西安摸底检测)设AB 是椭圆的长轴,点C 在椭圆上,且∠CBA =π4,若AB =4,BC =2,则椭圆的两个焦点之间的距离为( )A .463B .263C .433D .233答案 A解析 不妨设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),如图,由题意知,2a =4,a =2,∵∠CBA =π4,BC =2,∴点C 的坐标为(-1,1),∵点C 在椭圆上,∴14+1b 2=1,∴b 2=43,∴c 2=a 2-b 2=4-43=83,c =263,则椭圆的两个焦点之间的距离为463.11.(2019·山西八校联考)椭圆x 225+y 216=1的左、右焦点分别为F 1,F 2,弦AB 过F 1,若△ABF 2的内切圆周长为π,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则|y 1-y 2|的值为( )A .53 B .103C .203D .53答案 A解析 在椭圆x 225+y 216=1中,a =5,b =4,所以c =3.故椭圆左、右焦点分别为F 1(-3,0),F 2(3,0).由△ABF 2的内切圆周长为π,可得内切圆的半径为r =12.△ABF 2的面积=△AF 1F 2的面积+△BF 1F 2的面积=12|y 1|·|F 1F 2|+12|y 2|·|F 1F 2|=12(|y 1|+|y 2|)·|F 1F 2|=3|y 1-y 2|(A ,B 在x轴的上下两侧),又△ABF 2的面积=12r (|AB |+|BF 2|+|F 2A |)=12×12(2a +2a )=a =5,所以3|y 1-y 2|=5,即|y 1-y 2|=53.12.(2019·湖北八校联考)如图,已知椭圆C 的中心为原点O ,F (-5,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |且|PF |=6,则椭圆C 的方程为( )A .x 236+y 216=1B .x 240+y 215=1C .x 249+y 224=1 D .x 245+y 220=1 答案 C解析 由题意可得c =5,设右焦点为F ′,连接PF ′,由|OP |=|OF |=|OF ′|=12|FF ′|知,∠FPF ′=90°,即PF ⊥PF ′.在Rt △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=102-62=8,由椭圆定义,得|PF |+|PF ′|=2a =6+8=14,从而a =7,得a 2=49,于是b 2=a 2-c 2=72-52=24,所以椭圆C 的方程为x 249+y 224=1,故选C .13.设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为________.答案33解析 设|PF 2|=m ,∵PF 2⊥F 1F 2,∠PF 1F 2=30°,∴|PF 1|=2m ,|F 1F 2|=3m .又|PF 1|+|PF 2|=2a ,|F 1F 2|=2c .∴2a =3m,2c =3m ,∴C 的离心率为e =c a =33. 14.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,分析可知M 在以F 1为圆心、焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎨⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15).15.(2019·浙江高考)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.答案15解析 如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此OM =2. 在△FF ′P 中,OM 12PF ′, 所以PF ′=4.根据椭圆的定义,得PF +PF ′=6,所以PF =2. 又因为FF ′=4, 所以在Rt △MFF ′中,tan ∠PFF ′=MF ′MF =FF ′2-MF 2MF=15,即直线PF 的斜率是15.16.(2020·南充模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且·=0,=3,则椭圆C 的标准方程为________,圆A 的标准方程为________.答案x 24+y 2=1 (x -2)2+y 2=85解析 如图,设T 为线段PQ 的中点,连接AT ,则AT ⊥PQ .∵·=0,即AP ⊥AQ , ∴|AT |=12|PQ |.又=3, ∴|OT |=|PQ |. ∴|AT ||OT |=12,即b a =12. 由已知得半焦距c =3,∴a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1.又|AT |2+|OT |2=4, ∴|AT |2+4|AT |2=4,∴|AT |=255,r =|AP |=2105.∴圆A 的方程为(x -2)2+y 2=85.17.(2019·全国卷Ⅱ)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为C 上的点,O 为坐标原点.(1)若△POF 2为等边三角形,求C 的离心率;(2)如果存在点P ,使得PF 1⊥PF 2,且△F 1PF 2的面积等于16,求b 的值和a 的取值范围. 解 (1)连接PF 1.由△POF 2为等边三角形可知在△F 1PF 2中,∠F 1PF 2=90°,|PF 2|=c ,|PF 1|=3c ,于是2a =|PF 1|+|PF 2|=(3+1)c ,故C 的离心率为e =ca=3-1.(2)由题意可知,满足条件的点P (x ,y )存在当且仅当 12|y |·2c =16,y x +c ·y x -c =-1,x 2a 2+y 2b 2=1, 即c |y |=16,①x 2+y 2=c 2,② x 2a 2+y 2b 2=1.③ 由②③及a 2=b 2+c 2得y 2=b 4c2.又由①知y 2=162c2,故b =4.由②③及a 2=b 2+c 2得x 2=a 2c2(c 2-b 2),所以c 2≥b 2,从而a 2=b 2+c 2≥2b 2=32,故a ≥4 2. 当b =4,a ≥42时,存在满足条件的点P . 所以b =4,a 的取值范围为[42,+∞).18.(2019·成都一诊)已知椭圆x 25+y 24=1的右焦点为F ,设直线l :x =5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(1)若直线l 1的倾斜角为π4,求|AB |的值;(2)设直线AM 交直线l 于点N ,证明:直线BN ⊥l . 解 由题意知,F (1,0),E (5,0),M (3,0). (1)∵直线l 1的倾斜角为π4,∴斜率k =1.∴直线l 1的方程为y =x -1.代入椭圆方程,可得9x 2-10x -15=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=109,x 1x 2=-53.∴|AB |=2·(x 1+x 2)2-4x 1x 1 =2×⎝ ⎛⎭⎪⎫1092+4×53=1659.(2)证明:设直线l 1的方程为y =k (x -1). 代入椭圆方程,得(4+5k 2)x 2-10k 2x +5k 2-20=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=10k 24+5k 2,x 1x 2=5k 2-204+5k 2.设N (5,y 0),∵A ,M ,N 三点共线, ∴-y 13-x 1=y 02,∴y 0=2y 1x 1-3. 而y 0-y 2=2y 1x 1-3-y 2=2k (x 1-1)x 1-3-k (x 2-1) =3k (x 1+x 2)-kx 1x 2-5kx 1-3=3k ·10k 24+5k 2-k ·5k 2-204+5k 2-5k x 1-3=0.∴直线BN ∥x 轴,即直线BN ⊥l .19.(2019·广东广州联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为26,且过点A (2,1).(1)求椭圆C 的方程;(2)若不经过点A 的直线l :y =kx +m 与椭圆C 交于P ,Q 两点,且直线AP 与直线AQ 的斜率之和为0,证明:直线PQ 的斜率为定值.解 (1)因为椭圆C 的焦距为26,且过点A (2,1), 所以4a 2+1b2=1,2c =2 6.又因为a 2=b 2+c 2,由以上三式解得a 2=8,b 2=2, 所以椭圆C 的方程为x 28+y 22=1.(2)证明:设点P (x 1,y 1),Q (x 2,y 2),x 1≠x 2≠2, 则y 1=kx 1+m ,y 2=kx 2+m .由⎩⎪⎨⎪⎧y =kx +m ,x 28+y22=1,消去y 并整理,得(4k 2+1)x 2+8kmx +4m 2-8=0, 则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-84k 2+1.因为k AP +k AQ =0,所以y 1-1x 1-2=-y 2-1x 2-2, 化简得x 1y 2+x 2y 1-(x 1+x 2)-2(y 1+y 2)+4=0. 即2kx 1x 2+(m -1-2k )(x 1+x 2)-4m +4=0. 所以2k (4m 2-8)4k 2+1-8km (m -1-2k )4k 2+1-4m +4=0, 整理得(2k -1)(m +2k -1)=0. 因为直线l 不经过点A , 所以2k +m -1≠0,所以k =12.所以直线PQ 的斜率为定值,该值为12.20.(2019·天津高考)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55. (1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解 (1)设椭圆的半焦距为c ,依题意,2b =4,c a =55,又a 2=b 2+c 2,可得a =5,b =2,c =1.所以,椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M,0),直线PB 的斜率为k (k ≠0),因为B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立,得⎩⎪⎨⎪⎧y =kx +2,x 25+y24=1,整理得(4+5k 2)x 2+20kx =0, 可得x P =-20k4+5k2,代入y =kx +2得y P =8-10k24+5k2,进而直线OP 的斜率为y P x P =4-5k 2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245,从而k =±2305.所以直线PB 的斜率为2305或-2305.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。

数学(理)一轮复习:第九章 解析几何

数学(理)一轮复习:第九章 解析几何

1.抛物线的概念平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2.抛物线的标准方程与几何性质标准方程y2=2px(p>0)y2=-2px(p〉0)x2=2py(p〉0)x2=-2py(p>0) p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y=0x=0焦点F错误!F错误!F错误!F错误!【知识拓展】1.抛物线y2=2px(p〉0)上一点P(x0,y0)到焦点F错误!的距离|PF|=x0+错误!,也称为抛物线的焦半径.2.y2=ax的焦点坐标为错误!,准线方程为x=-错误!。

3.设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=错误!,y1y2=-p2.(2)弦长|AB|=x1+x2+p=错误!(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p,通径是过焦点最短的弦.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×")(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.(×)(2)方程y=ax2(a≠0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是(错误!,0),准线方程是x=-错误!.(×)(3)抛物线既是中心对称图形,又是轴对称图形.(×)(4)AB为抛物线y2=2px(p>0)的过焦点F(错误!,0)的弦,若A(x1,y1),B(x2,y2),则x1x2=错误!,y1y2=-p2,弦长|AB|=x1+x2+p。

( √)1.(2016·四川)抛物线y2=4x的焦点坐标是( )A.(0,2)B.(0,1)C.(2,0)D.(1,0)答案D解析∵对于抛物线y2=ax,其焦点坐标为错误!,∴对于y2=4x,焦点坐标为(1,0).2.(2016·甘肃张掖一诊)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|等于( )A.9 B.8 C.7 D.6答案B解析抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.3.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )A.错误!B.[-2,2]C.[-1,1]D.[-4,4]答案C解析Q(-2,0),设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1.4.(教材改编)已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P(-2,-4),则该抛物线的标准方程为________________.答案y2=-8x或x2=-y解析设抛物线方程为y2=2px(p≠0)或x2=2py(p≠0).将P(-2,-4)代入,分别得方程为y2=-8x或x2=-y。

上海大学高等数学教程课后习题答案(第九章)

上海大学高等数学教程课后习题答案(第九章)

《高等数学教程》第九章 向量代数与空间解析几何习题参考答案9-1(A )4.;342,324m n CD m n BC-=-=5.;}116,117,116{}116,117,116{---或6.-2 ;7.13, 7 j ;8.(1) 垂直于 x 轴,平行于 yoz 坐标面;(2) 与 y 轴共线,方向与 y 轴的正向相反,垂直于 zox 坐标面;(3) 平行于 z 轴,垂直于 xoy 坐标面。

9.模:2; 方向余弦:21,22,21--;10.434ππγ或=;11.31cos ,31cos ,31cos =-=-=γβα;12.m = 4 , n = 0 .9-1(B )1. ;0,22,221,0,0或-3. }5,4,6{-B , }10,6,9{-C , }7,1,7{--=CA4.(1) 在一直线上, (2) 不在一直线上;6. 2 .9-2(A )1.(1) 28 , (2) 52 ;3.15 , 593;4.}4,2,4{--=b ;5.m = 4 , n = 0 ;6.;}2,2,3{171}2,2,3{171-----或7.12 , 219;8.5 ;9.,1548)^,(sin =b a ,7753)^,(cos =b a(1) }2,0,1{-, (2) }2,10,16{-, (3) 0 , (4) }24,8,0{--;10.(1) 24, (2) 60 ;11.(1) -3, (2) 3, (3) 0 ;13.是14.20 , 619;9-2(B )1.(1) 在一直线上, (2) 不在一直线上;2.(1) 至 (8) 全错;5.1328-;6.;,,,,,共线与c b d c d b d a c a b a ⊥⊥⊥⊥⊥7.;共线必须与b a8.3π;9.)68(51)68(51k j k j ---或;10.(1) 2-=λ, (2) 1002,99821=-=λλ;11.23-.9-3(A )2.04573=-+-z y x ;3.0473=+--z y x ;4.012634=+-+z y x ;5.023=--z y x ;6.049263=-+-z y x ;7.010377=--+z y x ;8.029)3(,5)2(,043)1(=---==+z y y y x ;9.1 ;10.32,32,31;11.270)3(,1)2(,2)1(±===k k k ;12.(1) 18,32=-=l m , (2) 6=l ;9-3(B )1.12=++z y x ;2.02=--z y x ;3.1522=-+z y x ;4.03326=-+±z y x ;5.)54,0,0(,)2,0,0(;6.032=-+-z y x ;7.312228±=++z y x ;9-4(A )1.112243--=-+=-z y x ;2.0270112520255612523=+--=++-z y x z y x 及;3.311121-=-=--z y x , ⎪⎩⎪⎨⎧+=+=-=tz t y tx 31121 ;4.13422zy x =-=--;5.0592298=---z y x ;7.341111;8.4273;9.D = -6 ;9-4(B )1.(1) 平行, (2) 垂直, (3) 直线在平面上(题目中平面方程应为 3=++z y x );2.0=ϕ;3.)32,32,35(-;5.⎩⎨⎧=-+-=--+0140117373117z y x z y x ;6.012=++y x ;7.2849161-==+z y x ;8.,1=λ ⎩⎨⎧=-=-+-0027z x z y x ;10.012720=-++z y x ;11.564922-=-=-z y x ;12.0163401022=-+=-++z x z y x 或;13.03=---z y x ;14.332;15.⎩⎨⎧=++-=-++0893012572z y x z y x ;16.不相交, 29311=d ;9-5(A )1.9116)34()1()32(222=+++++z y x , 它表示以)34,1,32(---为球心, 2932为半径的球面。

空间解析几何习题答案解析(最新整理)

空间解析几何习题答案解析(最新整理)

一、计算题与证明题1.已知, , , 并且. 计算.1||=a 4||=b 5||=c 0=++c b a a c c b b a ⨯+⨯+⨯解:因为, , , 并且1||=a 4||=b 5||=c 0=++c b a 所以与同向,且与反向a b b a +c 因此,,0=⨯b a 0=⨯c b 0=⨯a c 所以0=⨯+⨯+⨯a c c b b a 2.已知, , 求.3||=⋅b a 4||=⨯b a ||||b a ⋅解:(1)3cos ||=⋅=⋅θb a b a(2)4sin ||=⋅=⨯θb a b a 得()222)1(+()252=⋅b a 所以5=⋅b a 4.已知向量与共线, 且满足, 求向量的坐标.x )2,5,1(,-a 3=⋅x ax 解:设的坐标为,又x ()z y x ,,()2,5,1-=a 则 (1)325=-+=⋅z y x x a 又与共线,则x a 0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i 所以()()()05252222=-+++--y x x z z y 即 (2)010*********22=-++++xy xz yz z y x 又与共线,与夹角为或x a x a 0π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax 整理得(3)103222=++z y x 联立解出向量的坐标为()()()321、、x ⎪⎭⎫⎝⎛-51,21,1016.已知点, 求线段的中垂面的方程.)7,8,3(A )3,2,1(--B AB 解:因为,()7,8,3A )3,2,1(--B 中垂面上的点到的距离相等,设动点坐标为,则由得AB B A 、()z y x M ,,MB MA =()()()()()()222222321783++-++=-+-+-z y x z y x 化简得027532=-++z y x 这就是线段的中垂面的方程。

《高等数学(下册)》 第9章

《高等数学(下册)》 第9章
向量的数乘满足下列运算规律.
(1)结合律: (a) (a) ()a ; (2)分配律: ( )a a a ,(a b) a b . 这里 a ,b 为向量, , 为实数.
向量的加法运算以及向量的数乘运算统称为向量的线性运算.
9.1.2 向量的线性运算
设 a 0 ,与 a 同方向的单位向量记为 ea ,由数与向量乘积的定义有 a | a | ea ,
9.2.2 向量的坐标表示
3 4 2
解法一 按对角线法则,有
D 1 2 (2) 2 1 (3) (4) (2) 4 11 4 2 (2) (2) (4) 2 (3) 4 6 32 4 8 24 14.
解法二 按第一行展开,有
2 D 1
1 2 2
1
2
(4)
2 1 (4 4) 2 (4 3) (4) (8 6) 14 .
x 为数轴上点 P 的坐标.
9.1.3 二阶与三阶行列式
1.二阶行列式 由 4 个数排成 2 行 2 列(横排称行、竖排称列)的数表
a11 a12 a21 a22 , 表达式 a11a22 a12a21 称为该数表所确定的二阶行列式,并记作
a11 a12 . a21 a22
数 aij (i 1,2 ;j 1,2) 称为二阶行列式的元素,元素 aij 中的第一个下标 i 和第二个下 标 j 分别表示该元素所在的行数和列数.例如,元素 a21 在行列式中位于第二行、第一列.
9.1.3 二阶与三阶行列式
例1 计算二阶行列式 2 1 . 1 3
解 2 1 2 (3) 11 7 . 1 3
9.1.3 二阶与三阶行列式
2.三阶行列式 由 9 个数排成 3 行 3 列的数表
a11 a12 a13 a21 a22 a23 a31 a32 a33 ,

张宇1000题(最新版)第9,10章习题详解(仅数学一)

张宇1000题(最新版)第9,10章习题详解(仅数学一)

(
) (
ቤተ መጻሕፍቲ ባይዱ)
(
)
3 ⋅ 2 + 4 ⋅1 + 5 ⋅ 0 3 2 +4 2 + 5 2
= 2
11. 【答案】 【解】
2 {1, 2, −2} 9 2 = , u′ y 9 = 2y x + y2 + z2
2
u′ x
(1,2, −2)
=
2x x + y2 + z2
2
(1,2, −2 )
(1,2, −2)
r
r
r
r
r r r r r r r r r 【解】 a + b × b + c ⋅ ( c + a ) = 2 a × b ⋅ c
9. 【答案】 2 x + 2 y − 3 z = 0 【解】所求平面的法线向量 n ⊥ {4, −1, 2} , n ⊥ {6, −3, 2} , 取n = {2, 2, −3} . 10. 【答案】 2 【解】根据点到平面的距离公式 d =
u r u r u r u r ∂A ∂A ∂A div A = + + ∂x ∂y ∂z
= −k[
2x2 + y2 + z 2 x2 + y 2 + z 2
2 2 2
+
x2 + 2 y 2 + z 2 x2 + y 2 + z 2
+
x2 + y2 + 2z 2 x2 + y 2 + z 2
]
= −4 k x + y + z 10. 【答案】 【解】

高考数学一轮复习 第九章 平面解析几何9 (1)

高考数学一轮复习 第九章 平面解析几何9 (1)

高考数学一轮复习 第九章 平面解析几何9.12 圆锥曲线中的探索性与综合性问题题型一 探索性问题例1 已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与C 2:y 29-x 23=1有相同的渐近线,点F (2,0)为C 1的右焦点,A ,B 为C 1的左、右顶点.(1)求双曲线C 1的标准方程;(2)若直线l 过点F 交双曲线C 1的右支于M ,N 两点,设直线AM ,BN 的斜率分别为k 1,k 2,是否存在实数λ使得k 1=λk 2?若存在,求出λ的值;若不存在,请说明理由. 解 (1)∵C 2的渐近线方程为y =±3x ,∴b a =3, ∵c =a 2+b 2=2,∴a =1,b =3,∴双曲线C 1的标准方程为x 2-y 23=1. (2)由已知,A (-1,0),B (1,0),M (x 1,y 1),N (x 2,y 2),l 过点F (2,0)与右支交于两点,则l 斜率不为零,设l :x =my +2,由⎩⎪⎨⎪⎧ x 2-y 23=1,x =my +2,消元得(3m 2-1)y 2+12my +9=0, ∵l 与双曲线右支交于两点,∴⎩⎪⎨⎪⎧3m 2-1≠0,y 1y 2=93m 2-1<0,解得m ∈⎝⎛⎭⎫-33,33, Δ=(12m )2-4×9(3m 2-1)=36(m 2+1)>0,∴y 1+y 2=-12m 3m 2-1,y 1y 2=93m 2-1,∵k 1=y 1x 1+1,k 2=y 2x 2-1≠0, ∴k 1k 2=y 1x 2-1y 2x 1+1=y 1my 2+1y 2my 1+3=my 1y 2+y 1my 1y 2+3y 2, ∵y 1+y 2y 1y 2=-12m 9=-4m 3, ∴my 1y 2=-34(y 1+y 2), ∴k 1k 2=-34y 1+y 2+y 1-34y 1+y 2+3y 2=14y 1-34y 2-34y 1+94y 2 =-13, ∴存在λ=-13使得k 1=λk 2. 教师备选(2022·洛阳模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,点E ,F 分别为其下顶点和右焦点,坐标原点为O ,且△EOF 的面积为 2.(1)求椭圆C 的方程;(2)是否存在直线l ,使得l 与椭圆C 相交于A ,B 两点,且点F 恰为△EAB 的垂心?若存在,求直线l 的方程,若不存在,请说明理由.解 (1)由题意可知⎩⎨⎧c a =33,12bc =2,a 2=b 2+c 2,解得⎩⎨⎧ a =6,b =2,c =2, 所以椭圆C 的方程为x 26+y 24=1. (2)假设满足条件的直线l 存在,由E (0,-2),F (2,0),得k EF =2,因为点F 为△EAB 的垂心,所以AB ⊥EF ,所以k AB =-22, 设直线l 的方程为y =-22x +t , 代入x 26+y 24=1, 得7x 2-62tx +6(t 2-4)=0,Δ=(-62t )2-4×7×6(t 2-4)=-96t 2+672>0,即-7<t <7,记A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 1+x 2=627t ,x 1x 2=6t 2-47,由AF ⊥BE 得y 1x 1-2·y 2+2x 2=-1, 所以y 1y 2+2y 1+x 1x 2-2x 2=0,将y 1=-22x 1+t ,y 2=-22x 2+t 代入上式,得3x 1x 2-2(t +2)(x 1+x 2)+(2t 2+4t )=0,所以3×6t 2-47-2(t +2)·62t 7+(2t 2+4t ) =0,所以5t 2+t -18=0,解得t =95(t =-2舍去), 满足Δ>0,所以直线l 的方程为y =-22x +95. 思维升华 存在性问题的解题策略存在性的问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.跟踪训练1 (2022·南京模拟)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x ,经过P (t ,0)(t >0)的直线l 与C 交于A ,B 两点.(1)若t =4,求AP 长度的最小值;(2)设以AB 为直径的圆交x 轴于M ,N 两点,问是否存在t ,使得OM →·ON →=-4?若存在,求出t 的值;若不存在,请说明理由.解 (1)设A ⎝⎛⎭⎫y 204,y 0,由P (4,0),可得|AP |2=⎝⎛⎭⎫y 204-42+y 20 =y 4016-y 20+16 =116(y 20-8)2+12≥12, 当y 0=±22时,|AP |取得最小值2 3.(2)设直线AB 的方程为x =my +t ,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +t ,y 2=4x ,可得y 2-4my -4t =0, 即有y 1+y 2=4m ,y 1y 2=-4t ,设以AB 为直径的圆上任一点Q (x ,y ),M (x 3,0),N (x 4,0),所以Q 的轨迹方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.x 1+x 2=m (y 1+y 2)+2t =4m 2+2t ,x 1x 2=(my 1+t )(my 2+t )=m 2y 1y 2+mt (y 1+y 2)+t 2=-4m 2t +4m 2t +t 2=t 2.所以Q 的轨迹方程化为x 2-(4m 2+2t )x +t 2+y 2-4my -4t =0.令y =0,得x 2-(4m 2+2t )x +t 2-4t =0.所以上式方程的两根分别为x 3,x 4,则x 3x 4=t 2-4t .由OM →·ON →=x 3x 4=-4,即有t 2-4t =-4,解得t =2.所以存在t =2,使得OM →·ON →=-4.题型二 圆锥曲线的综合问题例2 (2022·梅州模拟)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 的距离的取值范围.解 (1)设椭圆C :x 2a 2+y 2b 2=1的右焦点F 2(c ,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离 d =|c +22-1|12+12=a , 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1,所以椭圆的标准方程为x 24+y 23=1. (2)设B (m ,n ),线段MN 的中点为D ,直线OD 与椭圆交于A ,B 两点,因为O 为△BMN 的重心,则|BO |=2|OD |=|OA |,所以D ⎝⎛⎭⎫-m 2,-n 2, 即B 到直线MN 的距离是原点O 到直线MN 的距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处.由|OB |=2,得|OD |=1,则点O 到直线MN 的距离为1,点B 到直线MN 的距离为3. 当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎨⎧ x 214+y 213=1,x 224+y 223=1,两式相减得x 1+x 2x 1-x 24+y 1+y 2y 1-y 23=0,因为D 为线段MN 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m 4n , 所以直线MN 的方程为y +n 2=-3m 4n ⎝⎛⎭⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m 264n 2+36m 2. 因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m 264n 2+36m 2=12144+16n 2=39+n 2. 因为0<n 2≤3,所以3<9+n 2≤23,所以123≤19+n 2<13, 所以332≤3d <3, 即点B 到直线MN 的距离的取值范围为⎣⎡⎦⎤332,3. 教师备选(2022·开封模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,P 是抛物线C 上一点,且满足FP →=(0,-2).(1)求抛物线C 的方程;(2)已知斜率为2的直线l 与抛物线C 交于A ,B 两点,若|F A →|,|FP →|,|FB →|成等差数列,求该数列的公差.解 (1)由题设知F ⎝⎛⎭⎫p 2,0,设点P (x 0,y 0),由FP →=(0,-2),即⎝⎛⎭⎫x 0-p 2,y 0=(0,-2), ∴x 0=p 2,y 0=-2,代入y 2=2px , 得4=p 2,又p >0,∴p =2,则抛物线C 的方程为y 2=4x .(2)设直线l :y =2x +m ,则⎩⎪⎨⎪⎧y =2x +m ,y 2=4x , 消去y 得4x 2+(4m -4)x +m 2=0,满足Δ=(4m -4)2-16m 2=-32m +16>0,即m <12, 设点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1-m ,x 1x 2=m 24, 若|F A →|,|FP →|,|FB →|成等差数列,则|F A →|+|FB →|=2|FP →|,即x 1+x 2+2=4,即3-m =4,m =-1.即x 1+x 2=2,x 1x 2=14, 又∵公差d 满足2d =|FB →|-|F A →|=x 2-x 1,而|x 2-x 1|=x 1+x 22-4x 1x 2=3,∴2d =±3,即d =±32. 思维升华 圆与圆锥曲线综合问题中,圆大多数是以工具的形式出现,解决此类问题的关键是掌握圆的一些常用性质.如:圆的半径r ,弦长的一半h ,弦心距d 满足r 2=h 2+d 2;圆的弦的垂直平分线过圆心;若AB 是圆的直径,则圆上任一点P 有P A →·PB →=0.跟踪训练2 (2022·鹰潭模拟)如图,O 为坐标原点,抛物线C 1:y 2=2px (p >0)的焦点是椭圆C 2:x 2a 2+y 2b2=1(a >b >0)的右焦点,A 为椭圆C 2的右顶点,椭圆C 2的长轴长为|AB |=8,离心率e =12.(1)求抛物线C 1和椭圆C 2的方程;(2)过A 点作直线l 交C 1于C ,D 两点,射线OC ,OD 分别交C 2于E ,F 两点,记△OEF 和△OCD 的面积分别为S 1和S 2,问是否存在直线l ,使得S 1∶S 2=3∶13?若存在,求出直线l 的方程;若不存在,请说明理由.解 (1)由题知,a =4,c a =12, 所以c =2,所以b =a 2-c 2=23,p =4.所以抛物线C 1的方程为y 2=8x ,椭圆C 2的方程为x 216+y 212=1. (2)由题设知直线l 的斜率不为0,设直线l 的方程为x =my +4.则⎩⎪⎨⎪⎧y 2=8x ,x =my +4⇒y 2-8my -32=0. 设C (x 1,y 1),D (x 2,y 2),则y 1+y 2=8m ,y 1y 2=-32.所以S 2S 1=12|OC |·|OD |sin ∠COD 12|OE |·|OF |sin ∠EOF =|OC |·|OD ||OE |·|OF |=|y 1|·|y 2||y E |·|y F |=32|y E |·|y F |, 因为直线OC 的斜率为y 1x 1=y 1y 218=8y 1,所以直线OC 的方程为y =8y 1x . 由⎩⎨⎧ y =8y 1x ,x 216+y 212=1, 得y 2⎝⎛⎭⎫y 2164×16+112=1, 则y 2E⎝⎛⎭⎫y 2164×16+112=1, 同理可得y 2F⎝⎛⎭⎫y 2264×16+112=1, 所以y 2E ·y 2F ⎝⎛⎭⎫y 2264×16+112⎝⎛⎭⎫y 2164×16+112=1, 所以y 2E ·y 2F =36×256121+48m 2, 要使S 1∶S 2=3∶13,只需322121+48m 236×256=⎝⎛⎭⎫1332, 解得m =±1,所以存在直线l :x ±y -4=0符合条件.课时精练1.已知椭圆C :x 28+y 24=1的左、右焦点为F 1,F 2,点P 为双曲线x 24-y 24=1上异于顶点的任意一点,直线PF 1和PF 2与椭圆的交点分别为A ,B 和C ,D .(1)设直线PF 1,PF 2的斜率分别为k 1,k 2,证明:k 1·k 2=1;(2)是否存在常数λ,使得1|AB |+1|CD |=λ恒成立?若存在,求λ的值;若不存在,请说明理由. (1)证明 设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则k 1=y 0x 0+2,k 2=y 0x 0-2, 因为点P 为双曲线x 24-y 24=1上异于顶点的任意一点, 所以x 20-y 20=4(x 0≠±2),所以k 1k 2=y 0x 0+2·y 0x 0-2=y 20x 20-4=1, 即k 1k 2=1.(2)解 由直线PF 1的方程为y =k 1(x +2), 代入椭圆C :x 28+y 24=1, 可得(1+2k 21)x 2+8k 21x +8k 21-8=0,所以x 1+x 2=-8k 212k 21+1,x 1x 2=8k 21-82k 21+1, 所以|AB |=1+k 21x 1+x 22-4x 1x 2=42·k 21+12k 21+1, 同理可得|CD |=42·k 22+12k 22+1, 因为k 1k 2=1,可得|CD |=42·k 21+1k 21+2, 则1|AB |+1|CD |=142·⎝ ⎛⎭⎪⎫2k 21+1k 21+1+k 21+2k 21+1 =328, 即存在常数λ=328, 使得1|AB |+1|CD |=328恒成立. 2.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的实半轴长为1,且C 上的任意一点M 到C 的两条渐近线的距离的乘积为34. (1)求双曲线C 的方程;(2)设直线l 过双曲线C 的右焦点F ,与双曲线C 相交于P ,Q 两点,问在x 轴上是否存在定点D ,使得∠PDQ 的平分线与x 轴或y 轴垂直?若存在,求出定点D 的坐标;若不存在,请说明理由.解 (1)由题意可得a =1,所以双曲线C :x 2-y 2b 2=1, 所以渐近线方程为bx ±y =0,设M (x 0,y 0), 则|bx 0-y 0|b 2+1·|bx 0+y 0|b 2+1=34, 即|b 2x 20-y 20|b 2+1=34, 因为M (x 0,y 0)在双曲线上,所以x 20-y 20b2=1, 即b 2x 20-y 20=b 2,所以b 2b 2+1=34, 解得b 2=3,所以双曲线C 的方程为x 2-y 23=1. (2)假设存在D (t ,0),使得∠PDQ 的平分线与x 轴或y 轴垂直,则可得k PD +k QD =0,F (2,0),设P (x 1,y 1),Q (x 2,y 2),当直线l 的斜率存在时,直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k x -2,3x 2-y 2=3, 可得(3-k 2)x 2+4k 2x -4k 2-3=0,所以x 1+x 2=4k 2k 2-3, x 1x 2=4k 2+3k 2-3, 所以k PD +k QD =y 1x 1-t +y 2x 2-t =y 1x 2-t +y 2x 1-t x 1x 2-t x 1+x 2+t 2=0, 即k (x 1-2)(x 2-t )+k (x 2-2)(x 1-t )=0恒成立,整理可得k [2x 1x 2-(t +2)(x 1+x 2)+4t ]=0,所以k ⎣⎢⎡⎦⎥⎤2×4k 2+3k 2-3-t +2×4k 2k 2-3+4t =0, 即2×4k 2+3k 2-3-(t +2)×4k 2k 2-3+4t =0, 所以8k 2+6-4k 2(t +2)+4t (k 2-3)=0,所以6-12t =0,解得t =12, 当直线l 的斜率不存在时,t =12也满足题意. 所以存在点D ⎝⎛⎭⎫12,0,使得∠PDQ 的平分线与x 轴或y 轴垂直.3.(2022·承德模拟)已知M (-2,0),N (2,0),动点P 满足:直线PM 与直线PN 的斜率之积为-14,设动点P 的轨迹为曲线C 1.抛物线C 2:x 2=2py (p >0)与C 1在第一象限的交点为A ,过点A 作直线l 交曲线C 1于点B ,交抛物线C 2于点E (点B ,E 不同于点A ).(1)求曲线C 1的方程;(2)是否存在不过原点的直线l ,使点E 为线段AB 的中点?若存在,求出p 的最大值;若不存在,请说明理由.解 (1)设动点P (x ,y )(x ≠±2),则k PM =y x +2,k PN =y x -2. ∵k PM ·k PN =-14, ∴y x +2·y x -2=-14, 即y 2x 2-4=-14, 即x 24+y 2=1(x ≠±2), ∴曲线C 1的方程为x 24+y 2=1(x ≠±2). (2)设A (x 1,y 1)(x 1>0,y 1>0),B (x 2,y 2),E (x 0,y 0),显然直线l 存在斜率,设l :y =kx +m (k ≠0,m ≠0),由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 得(1+4k 2)x 2+8kmx +4m 2-4=0,Δ=16(4k 2-m 2+1)>0,∴x 1+x 2=-8km 1+4k 2,x 0=-4km 1+4k 2. 又由⎩⎪⎨⎪⎧x 2=2py ,y =kx +m , 得x 2=2p (kx +m ),即x 2-2pkx -2pm =0,∴x 1x 0=-2pm ,∴x 1·-4km 1+4k 2=-2pm ⇒x 1=p ⎝⎛⎭⎫1+4k 22k , ∴k >0,∵⎩⎪⎨⎪⎧ x 24+y 2=1,x 2=2py , 即x 2+x 4p 2=4, ∴p 2⎝⎛⎭⎫1+4k 22k 2+p 4⎝⎛⎭⎫1+4k 22k 4p 2=4, ∴p 2=4⎝⎛⎭⎫1+4k 22k 2+⎝⎛⎭⎫1+4k 22k 4,设⎝⎛⎭⎫1+4k 22k 2=⎝⎛⎭⎫12k +2k 2 =t ≥⎝⎛⎭⎫212k ·2k 2=4, 当且仅当12k =2k ,即k =12时取等号, 则p 2=4t +t 2=4⎝⎛⎭⎫t +122-14, 当t ≥4时,⎝⎛⎭⎫t +122-14≥20, 当k =12,即t =4时,p 2取得最大值,最大值为15, 即p =55. 此时A ⎝⎛⎭⎫255,255,满足Δ>0, 故存在不过原点的直线l ,使点E 为线段AB 的中点,且p 的最大值为55.4.(2022·九江模拟)在平面直角坐标系xOy 中,已知抛物线C :x 2=2py (p >0),P 为直线y =x -2上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B .当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.解 (1)P 为直线y =x -2上的动点,当P 在y 轴上时,则P (0,-2),由x 2=2py (p >0),得y =x 22p (p >0), 所以y ′=x p(p >0), 设A ⎝⎛⎭⎫x 1,x 212p ,B ⎝⎛⎭⎫x 2,x 222p ,x 1>0,x 2<0, 所以过点A 的切线方程为y -x 212p =x 1p(x -x 1), 又因为点P 在过点A 的切线上,所以-2-x 212p =x 1p(0-x 1), 解得x 21=4p ,又因为OA ⊥OB ,所以直线OA 的斜率为1,所以x 1=x 212p,解得x 1=2p , 解得p =1,所以抛物线C 的方程为x 2=2y .(2)由(1)得抛物线的切线的斜率y ′=x ,A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222, 所以切线P A 的方程为y -x 212=x 1(x -x 1), 切线PB 的方程为y -x 222=x 2(x -x 2), 两切线方程联立解得P ⎝⎛⎭⎫x 1+x 22,x 1x 22,又点P 在直线y =x -2上,所以x 1x 22=x 1+x 22-2, 由题意知直线AB 的斜率一定存在,所以设直线AB 的方程为y =kx +m ,与抛物线的方程联立⎩⎪⎨⎪⎧y =kx +m ,x 2=2y , 消元得x 2-2kx -2m =0,Δ=4k 2+8m >0,所以x 1+x 2=2k ,x 1x 2=-2m , 所以-2m 2=2k 2-2,即k +m =2,满足Δ>0, 所以点O 到直线AB 的距离为d =|m |1+k 2=2-k 21+k 2=1+-4k +31+k 2, 令t =-4k +31+k 2, 则t ′=2k -22k +11+k 22, 令t ′=0,得k =2或k =-12, 所以当k ∈⎝⎛⎭⎫-∞,-12∪(2,+∞)时, t ′>0,t 单调递增,当k ∈⎝⎛⎭⎫-12,2时,t ′<0,t 单调递减, 当k =-12时,t =4,当k →+∞时,t →0且t <0, 所以t max =4,所以d max =1+4=5,所以点O 到直线AB 距离的最大值为 5.。

高数下第九章的答案

高数下第九章的答案
解:直线 的方向向量 ;设过点 到直线 的垂足为 ;则有
,即 ;又 在直线 上,
联立方程 解得
从而点 到直线 的距离为 .
9.5空间曲面
P.31.习题9.5
1.指出下列方程在平面解析几何和在空间解析几何中分别表示什么图形.
(1) ;
(2) ;
(3) ;
(4) ;
(5) ;
(6) ;
解:(1) 在平面解析几何中表示平行于y轴的直线,在x轴上的截距为2; 在空间解析几何中表示平行于yoz面的平面,在x轴上的截距为2;
.
(3)已知非零向量a、b、c且满足 ,证明 .
(4)设向量 ,证明三向量a、b、c共面.
证明:(1)
(2)
相加得 .
(3)已知 ,右乘b得 ,即 ;同理 ;
所以 .
(4)因为 ;
所以设向量 ,证明三向量a、b、c共面.
南阳理工学院高等数学(下)课后答案选解
第九章向量代数与空间解析几何
9.1向量及其坐标表示
P.9习题9.1
2.已知一边长为a的正方体,现取正方体下底面的中心为原点,正方体的顶点在x轴、y轴上,求此正方体各顶点的坐标.
解:下底面的四个顶点分别是:
对应的上底面的四个顶点分别是:
3.求出点 到原点、各坐标轴及坐标面的距离.
;所求直线为 .
(5)过点 且与直线 垂直相交的直线方程为
;则 ;联立
解得
所以,过点 且与直线 垂直相交的直线方程为
.
2.用点向式方程及参数方程表示直线
解:设直线的方向向量为 ;在直线
上任取一点 ,则 解得
所以,点向式方程为 ;参数方程为
3.求直线 与平面 之间的夹角.
解:因为

空间解析几何课后习题解析

空间解析几何课后习题解析

空间解析几何课后习题解析第一章矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点;(3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点.[解]:(1)单位球面;(2)单位圆(3)直线;(4)相距为2的两点2. 设点O是正六边形ABCDEF的中心,在矢量、OB、、OD、OE、OF、AB、BC、CD、DE、和中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF中,相等的矢量对是:图1-1.和和和和和3. 设在平面上给了一个四边形ABCD,点K、L、M、N分别是边AB、BC、CD、DA的中点,求证:KL=NM. 当ABCD是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC, 则在?BAC中,21AC. KL与方向相同;在?DAC中,21AC. NM与AC方向相同,从而KL=NM且KL与NM方向相同,所以KL=NM.4. 如图1-3,设ABCD-EFGH是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) 、; (2) 、; (3) 、;(4) AD、; (5) BE、.[解]:相等的矢量对是(2)、(3)和(5);互为反矢量的矢量对是(1)和(4)。

§1.2 矢量的加法1.要使下列各式成立,矢量ba,应满足什么条件?(1=+(2+=+(3-=+(4+=C(5=[解]:(1), -=+;(2),+=+(3≥且,-=+ (4),+=(5),≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-?+--?-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解⑴→→→→→→→→→→→→→→-=+-+---+=-?+--?-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解→→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线.证明∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.5. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量, BM ,可以构成一个三角形.[证明]: )(21+=)(21BC BA BM +=)(21+=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。

吉林大学高职高专《高等数学》第09章

吉林大学高职高专《高等数学》第09章

这就是平面的方程, 称为点法式方程.
过点M0(x0, y0, z0)且法线向量为n(A, B, C)的平面的方程
为 A(xx0)B(yy0)C(zz0)0.
41
二、平面的一般方程
由于平面的点法式方程是x, y, z的一次方程, 而任一平面 都可以用它上面的一点及它的法线向量来确定, 所以任一平 面都可以用三元一次方程来表示 .
以轴与向量的夹角的余弦:Pr jl AB | AB | cos

B
A
B
A
B
Pr jl AB Pr jl' AB
l'
l
| AB | cos
17
性质1的说明:
(1) 0 , 投影为正;
2
(2) , 投影为负;
2
(3) ,
2
投影为零;
γ
24
利用向量的坐标,可得向量的加法、减法及 向量与数的乘法的运算如下:
设α=x1i+y1j+z1k=(x1 , y1 ,z1), 则有:β=x2i+y2j+z2k= (x2,y2,z2).
α+β =(x1+x2 )i +(y1+y2)j +(z1+z2) k
=(x1+x2 , y1+y2 , z1+z2 ). α-β=(x1-x2) i+ (y1-y2 ) j+ (z1-z2)k
C( x,o, z)
• M(x, y, z)
o
y
Q(0, y,0)
x P( x,0,0)
A( x, y,0)
6
二、空间两点间的距离公式

2021届高考数学一轮总复习第9章解析几何第2节两直线的位置关系跟踪检测文含解析

2021届高考数学一轮总复习第9章解析几何第2节两直线的位置关系跟踪检测文含解析

第九章 解析几何第二节 两直线的位置关系A 级·基础过关|固根基|1.已知直线l :(a -1)x +(b +2)y +c =0,若l∥x 轴,但不重合,则下列结论正确的是( )A .a ≠1,c≠0,b≠2B .a ≠1,b =-2,c≠0C .a =1,b≠-2,c≠0D .其他解析:选C ∵直线l :(a -1)x +(b +2)y +c =0,l∥x 轴,但不重合,∴⎩⎪⎨⎪⎧a -1=0,b +2≠0,c≠0,解得a =1,b≠-2,c≠0.故选C.2.(2019届石家庄模拟)已知点P(3,2)与点Q(1,4)关于直线l 对称,则直线l 的方程为( )A .x -y +1=0B .x -y =0C .x +y +1=0D .x +y =0解析:选A 由题意知直线l 与直线PQ 垂直,直线PQ 的斜率k PQ =-1,所以直线l 的斜率k =-1k PQ=1.又直线l 经过PQ 的中点(2,3),所以直线l 的方程为y -3=x -2,即x -y +1=0.3.已知过点A(-2,m)和点B(m ,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为( )A .-10B .-2C .0D .8解析:选A 因为l 1∥l 2,所以k AB =4-m m +2=-2. 解得m =-8.又因为l 2⊥l 3,所以-1n×(-2)=-1, 解得n =-2,所以m +n =-10.4.已知点A(5,-1),B(m ,m),C(2,3),若△ABC 为直角三角形且AC 边最长,则整数m 的值为( )A .4B .3C .2D .1解析:选D 由题意得∠B =90°,即AB⊥BC,所以k AB ·k BC =-1,所以m +1m -5·3-m 2-m=-1,解得m =1或m =72,故整数m 的值为1,故选D. 5.对于任意的实数m ,直线(m -1)x +(2m -1)y =m -5都过一定点,则该定点的坐标为( )A .(9,-4)B .(-9,-4)C .(9,4)D .(-9,4)解析:选A (m -1)x +(2m -1)y =m -5即为m(x +2y -1)+(-x -y +5)=0,由⎩⎪⎨⎪⎧x +2y -1=0,-x -y +5=0,得定点的坐标为(9,-4).故选A.6.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.解析:由⎩⎪⎨⎪⎧y =2x ,x +y =3,得⎩⎪⎨⎪⎧x =1,y =2. ∴点(1,2)在直线mx +2y +5=0上,即m×1+2×2+5=0,∴m=-9.答案:-97.已知点A(3,2)和B(-1,4)到直线ax +y +1=0的距离相等,则a 的值为________.解析:由点到直线的距离公式可得,|3a +2+1|a 2+1=|-a +4+1|a 2+1,解得a =12或a =-4. 答案:12或-4 8.如果直线l 1:ax +(1-b)y +5=0和直线l 2:(1+a)x -y -b =0都平行于直线l 3:x -2y +3=0,则l 1,l 2之间的距离为________.解析:因为l 1∥l 3,所以-2a -(1-b)=0 ①,因为l 2∥l 3,所以-2(1+a)+1=0 ②,由①②解得a =-12,b =0,因此l 1:x -2y -10=0,l 2:x -2y =0,所以d =105=2 5. 答案:2 59.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等.解:(1)因为l 1⊥l 2,所以a(a -1)-b =0. ①又因为直线l 1过点(-3,-1),所以-3a +b +4=0. ②由①②可得a =2,b =2.(2)因为直线l 2的斜率存在,且l 1∥l 2,所以直线l 1的斜率存在.所以a b =1-a. ③ 又因为坐标原点到这两条直线的距离相等,所以l 1,l 2在y 轴上的截距互为相反数,即4b=b.④ 联立③④可得a =2,b =-2或a =23,b =2. 10.已知直线l 经过直线2x +y -5=0与x -2y =0的交点P.(1)点A(5,0)到直线l 的距离为3,求直线l 的方程;(2)求点A(5,0)到直线l 的距离的最大值.解:(1)因为经过两已知直线交点的直线系方程为(2x +y -5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,解得λ=12或λ=2, 所以直线l 的方程为x =2或4x -3y -5=0.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0, 解得⎩⎪⎨⎪⎧x =2,y =1,即交点P(2,1),如图,过P 作任一直线l ,设d 为点A 到直线l 的距离,则d≤|PA|(当l⊥PA 时等号成立).所以d max =|PA|=10.B 级·素养提升|练能力|11.(2019届山东省实验中学模拟)设a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,则直线sin A ·x +ay -c =0与bx -sin B ·y +sin C =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:选C 由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin A a,直线bx -sin B ·y+sin C =0的斜率k 2=b sin B ,由正弦定理可得,k 1k 2=-sin A a ·b sin B=-1,所以直线sin A ·x +ay -c =0与直线bx -sin B ·y +sin C =0垂直,故选C.12.已知直线l 1:2x -y +3=0,直线l 2:4x -2y -1=0和直线l 3:x +y -1=0,若点M 同时满足下列条件:①点M 是第一象限的点;②点M 到l 1的距离是到l 2的距离的12; ③点M 到l 1的距离与到l 3的距离之比是2∶ 5.则点M 的坐标为( )A.⎝ ⎛⎭⎪⎫13,2 B.⎝ ⎛⎭⎪⎫13,3718 C.⎝ ⎛⎭⎪⎫19,2 D.⎝ ⎛⎭⎪⎫19,3718 解析:选D 设点M(x 0,y 0),由点M 满足②,得|2x 0-y 0+3|5=12×|4x 0-2y 0-1|16+4,故2x 0-y 0+132=0或2x 0-y 0+116=0,由点M(x 0,y 0)满足③,根据点到直线的距离公式,得|2x 0-y 0+3|5=25×|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,故x 0-2y 0+4=0或3x 0+2=0,由于点M(x 0,y 0)在第一象限,故3x 0+2=0不符合题意,联立方程得⎩⎪⎨⎪⎧2x 0-y 0+132=0,x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12,不符合题意; 联立方程得⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718,即点M 的坐标为⎝ ⎛⎭⎪⎫19,3718.故选D. 13.已知直线l :x -y +3=0.(1)求点A(2,1)关于直线l :x -y +3=0的对称点A′;(2)求直线l 1:x -2y -6=0关于直线l 的对称直线l 2的方程.解:(1)设点A′(x′,y′),由题知⎩⎪⎨⎪⎧y ′-1x′-2×1=-1,x′+22-y′+12+3=0,解得⎩⎪⎨⎪⎧x ′=-2,y′=5, 所以A′(-2,5).(2)在直线l 1上取一点,如M(6,0),则M(6,0)关于直线l 的对称点M′必在l 2上.设对称点为M′(a ,b),则⎩⎪⎨⎪⎧a +62-b +02+3=0,b -0a -6×1=-1,解得M′(-3,9).设l 1与l 的交点为N ,则由⎩⎪⎨⎪⎧x -y +3=0,x -2y -6=0,得N(-12,-9).又因为l 2经过点N(-12,-9),所以直线l 2方程为y -9=9+9-3+12(x +3),即2x -y +15=0. 14.已知△ABC 的顶点A(5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知,k AC =-2,A(5,1),所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C(4,3). 设B(x 0,y 0),则AB 的中点M ⎝ ⎛⎭⎪⎫x 0+52,y 0+12, 代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B(-1,-3), 所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.。

2019版高考数学大一轮复习江苏专版文档:第九章 平面

2019版高考数学大一轮复习江苏专版文档:第九章 平面

§9.4 直线与圆的位置关系 考情考向分析 考查直线与圆的位置关系的判断,根据位置关系求参数的范围、最值、几何量的大小等.题型以填空题为主.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆的半径r 的大小关系.d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:――→判别式Δ=b 2-4ac ⎩⎪⎨⎪⎧ >0⇔相交;=0⇔相切;<0⇔相离. 知识拓展1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2.2.求弦长的两种方法(1)利用两点间的距离公式.(2)利用半径、半弦和圆心到直线的垂线段构成的直角三角形.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若直线与圆有公共点,则直线与圆相交.( × )(2)直线y =kx +1和圆x 2+y 2=4一定相交.( √ )(3)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(4)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )(5)如果直线与圆组成的方程组有解,则直线与圆相交或相切.( √ )题组二 教材改编2.[P115练习T4]若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是________.答案 [-3,1]解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1. 3.[P117习题T2(3)]若过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.答案 1或177解析 将圆的方程化为标准方程得(x -1)2+(y -1)2=1,∴圆心坐标为(1,1),半径r =1,又弦长为2,∴圆心到直线l 的距离d = 12-⎝⎛⎭⎫222=22, 设直线l 的斜率为k ,又直线l 过点(-1,-2),∴直线l 的方程为y +2=k (x +1),即kx -y +k -2=0, ∴|2k -3|1+k 2=22,即(k -1)(7k -17)=0, 解得k =1或k =177, 则直线l 的斜率为1或177. 题组三 易错自纠4.若直线l :x -y +m =0与圆C :x 2+y 2-4x -2y +1=0恒有公共点,则m 的取值范围是________________.答案 [-22-1,22-1]解析 圆C 的标准方程为(x -2)2+(y -1)2=4,圆心为(2,1),半径为2,圆心到直线的距离d =|2-1+m |2,若直线与圆恒有公共点,则|2-1+m |2≤2, 解得-22-1≤m ≤22-1.5.过点A (3,5)作圆O :x 2+y 2-2x -4y +1=0的切线,则切线的方程为__________________. 答案 5x -12y +45=0或x -3=0解析 化圆x 2+y 2-2x -4y +1=0为标准方程得(x -1)2+(y -2)2=4,其圆心为(1,2),∵OA =(3-1)2+(5-2)2=13>2,∴点A (3,5)在圆外.显然,当切线斜率不存在时,直线与圆相切,即切线方程为x -3=0,当切线斜率存在时,可设所求切线方程为y -5=k (x -3),即kx -y +5-3k =0.又圆心为(1,2),半径r =2,而圆心到切线的距离d =|3-2k |k 2+1=2, 即|3-2k |=2k 2+1,∴k =512, 故所求切线方程为5x -12y +45=0或x -3=0.6.(2017·苏北四市摸底)若直线ax +y +1=0被圆x 2+y 2-2ax +a =0截得的弦长为2,则实数a 的值是________.答案 -2解析 圆x 2+y 2-2ax +a =0可化为(x -a )2+y 2=a 2-a ,∴圆心为(a,0),半径为a 2-a ,圆心到直线的距离为d =a 2+1a 2+1=a 2+1. ∵直线ax +y +1=0被圆x 2+y 2-2ax +a =0截得的弦长为2,∴a 2+1+1=a 2-a ,∴a =-2.题型一 直线与圆的位置关系的判断1.已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是________. 答案 相交解析 因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1. 所以直线与圆相交.2.圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为________. 答案 相交解析 直线2tx -y -2-2t =0恒过点(1,-2),∵12+(-2)2-2×1+4×(-2)=-5<0,∴点(1,-2)在圆x 2+y 2-2x +4y =0内,直线2tx -y -2-2t =0与圆x 2+y 2-2x +4y =0相交.3.(2017·苏州、无锡、常州、镇江三模)若直线3x +4y -m =0与圆x 2+y 2+2x -4y +4=0始终有公共点,则实数m 的取值范围是________.答案 [0,10]解析 圆的方程x 2+y 2+2x -4y +4=0化为标准方程为(x +1)2+(y -2)2=1,所以圆心为(-1,2),半径r =1,圆心到直线3x +4y -m =0的距离d =|-3+8-m |9+16=|5-m |5, ∵直线3x +4y -m =0与圆x 2+y 2+2x -4y +4=0始终有公共点,∴0≤|5-m |5≤1,解得0≤m ≤10, ∴实数m 的取值范围是[0,10].思维升华 判断直线与圆的位置关系的常见方法(1)几何法:利用d 与r 的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交. 上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.题型二 切线问题典例 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程.(1)与直线l 1:x +y -4=0平行;(2)与直线l 2:x -2y +4=0垂直;(3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0,则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0.(2)设切线方程为2x +y +m =0,则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0.(3)∵k AC =-2+11-4=13, ∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4),即3x +y -11=0.思维升华 圆的切线问题解决的关键是抓住圆心到直线的距离等于半径,从而建立关系解决问题.跟踪训练 (2017·南通、扬州、淮安、宿迁、泰州二调)在平面直角坐标系xOy 中,若过点P (-2,0)的直线与圆x 2+y 2=1相切于点T ,与圆(x -a )2+(y -3)2=3相交于点R ,S ,且PT =RS ,则正数a 的值为________.答案 4解析 设过点P (-2,0)的直线方程为y =k (x +2),∵过点P (-2,0)的直线与圆x 2+y 2=1相切于点T , ∴|2k |k 2+1=1,解得k =±33,不妨取k =33, PT =4-1=3,∴PT =RS =3,∵直线y =33(x +2)与圆(x -a )2+(y -3)2=3相交于R ,S ,且PT =RS , ∴圆心(a ,3)到直线y =33(x +2)的距离 d =⎪⎪⎪⎪33a -3+23313+1=(3)2-⎝⎛⎭⎫322. ∵a >0,∴a =4.题型三 直线与圆相交问题命题点1 圆的弦长典例 已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若AB =23,则CD =________. 答案 4解析 设AB 的中点为M ,由题意知,圆的半径R =23,AB =23,所以OM =3,由OM =|3m -3|m 2+1=3, 解得m =-33,∴l :x -3y +6=0. 由⎩⎨⎧x -3y +6=0,x 2+y 2=12,解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3),BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以CD =4. 命题点2 直线与圆相交求参数范围典例 已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .解 (1)由题设,可知直线l 的方程为y =kx +1,因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73. 所以k 的取值范围为⎝ ⎛⎭⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1=4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1, 所以l 的方程为y =x +1.故圆心C 在l 上,所以MN =2.思维升华 (1)直线和圆问题的代数解法就是联立直线方程和圆的方程,通过交点坐标满足的关系式解题,往往“设而不求”.(2)弦长问题可采用几何法,利用半弦、半径和弦心距构成的直角三角形.跟踪训练 (1)(2014·江苏)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.答案2555解析 圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355, 所以弦长为2r 2-d 2=2 22-⎝⎛⎭⎫3552=2555. (2)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则MN =__________. 答案 4 6解析 由已知,得AB →=(3,-1),BC →=(-3,-9),则AB →·BC →=3×(-3)+(-1)×(-9)=0,所以AB →⊥BC →,即AB ⊥BC ,故过三点A ,B ,C 的圆以AC 为直径,得其方程为(x -1)2+(y +2)2=25,令x =0得(y +2)2=24,解得y 1=-2-26,y 2=-2+26,所以MN =|y 1-y 2|=4 6.1.已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得的弦的长度为4,则实数a =________.答案 -4解析 将圆的方程化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4.2.圆x 2+2x +y 2+4y -3=0上到直线x +y +1=0的距离为2的点共有________个. 答案 3解析 圆的方程可化为(x +1)2+(y +2)2=8,圆心(-1,-2)到直线的距离d =|-1-2+1|2=2,半径是22,结合图形(图略)可知有3个符合条件的点.3.过点P (1,-2)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则AB 所在直线的方程为________.答案 2y +1=0解析 圆(x -1)2+y 2=1的圆心为(1,0),半径为1,以PC =(1-1)2+(-2-0)2=2为直径的圆的方程为(x -1)2+(y +1)2=1,将两圆的方程相减得AB 所在直线的方程为2y +1=0.4.(2017·南京学情调研)在平面直角坐标系xOy 中,若直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=16相交于A ,B 两点,且△ABC 为直角三角形,则实数a 的值为________.答案 -1解析 因为△ABC 为直角三角形,所以BC =AC =r =4,所以圆心C 到直线AB 的距离为22,从而有|a +a -2|a 2+1=22,解得a =-1. 5.(2018届江苏常州一中调研)直线x +7y -5=0截圆x 2+y 2=1所得的两段弧长之差的绝对值是________.答案 π解析 圆心到直线的距离d =|0+0-5|1+49=22. 又圆的半径r =1,∴直线x +7y -5=0被圆x 2+y 2=1截得的弦长为2,∴直线截圆所得的劣弧所对的圆心角为90°,∴劣弧是整个圆周的14, ∴直线截圆所得的两段弧长之差的绝对值为整个圆周长的一半,即12×2πr =π. 6.(2017·苏州模拟)在平面直角坐标系xOy 中,已知过点M (1,1)的直线l 与圆(x +1)2+(y -2)2=5相切,且与直线ax +y -1=0垂直,则实数a =________.答案 12解析 因为点M 在圆上,所以切线方程为(1+1)(x +1)+(1-2)(y -2)=5,即2x -y -1=0.由两直线的法向量(2,-1)与(a,1)垂直,得2a -1=0,即a =12. 7.(2017·苏州调研)在直角坐标系xOy 中,已知A (-1,0),B (0,1),则满足P A 2-PB 2=4,且在圆x 2+y 2=4上的点P 的个数为________.答案 2解析 设P (x ,y ),则由P A 2-PB 2=4⇒(x +1)2+y 2-x 2-(y -1)2=4⇒x +y =2.满足P A 2-PB 2=4的点P 的轨迹为直线x +y =2,因为圆心到此直线的距离为|0+0-2|2=2<2, 所以直线与圆相交,交点个数为2,故满足题意的点P 有2个.8.已知圆C 的方程为x 2+y 2=1,直线l 的方程为x +y =2,过圆C 上任意一点P 作与l 夹角为45°的直线交l 于点A ,则P A 的最小值为________.答案 2- 2解析 方法一 由题意可知,直线P A 与坐标轴平行或重合,不妨设直线P A 与y 轴平行或重合,设P (cos α,sin α),则A (cos α,2-cos α),∴P A =|2-cos α-sin α|=⎪⎪⎪⎪2-2sin ⎝⎛⎭⎫α+π4, ∴P A 的最小值为2- 2.方法二 由题意可知圆心(0,0)到直线x +y =2的距离d =22=2,∴圆C 上一点到直线x +y =2的距离的最小值为2-1.由题意可得P A min =2(2-1)=2- 2.9.已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则CD =________.答案 4解析 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧x -3y +6=0,x 2+y 2=12,得y 2-33y +6=0,则y 1+y 2=33,令y 2=23, 则y 1=3,∴A (-3,3),B (0,23).过A ,B 作l 的垂线方程分别为y -3=-3(x +3),y -23=-3x ,令y =0,则x C =-2,x D =2,∴CD =2-(-2)=4.10.在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为________.答案 45π 解析 由题意得AB 为直径的圆C 过原点O ,圆心C 为AB 的中点,设D 为切点,要使圆C 的面积最小,只需圆的半径最短,也只需OC +CD 最小,其最小值为OE (过原点O 作直线2x +y -4=0的垂线,垂足为E )的长度.由点到直线的距离公式得OE =45.∴圆C 面积的最小值为π⎝⎛⎭⎫252=45π. 11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0, 则|-k -2+3-k |1+k 2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1), 即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则PM 2=PC 2-MC 2=(x +1)2+(y -2)2-4,PO 2=x 2+y 2,∵PM =PO ,∴(x +1)2+(y -2)2-4=x 2+y 2,整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.12.已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由. 解 (1)设圆心C (a,0)⎝⎛⎭⎫a >-52, 则|4a +10|5=2,解得a =0或a =-5(舍). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1.若x 轴平分∠ANB ,则k AN =-k BN ,即y 1x 1-t +y 2x 2-t=0, 则k (x 1-1)x 1-t +k (x 2-1)x 2-t=0, 即2x 1x 2-(t +1)(x 1+x 2)+2t =0,亦即2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0,解得t =4, 所以当点N 坐标为(4,0)时,能使得∠ANM =∠BNM 总成立.13.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(0,1)之间距离的最大值为________. 答案 2+1解析 △AOB 是直角三角形等价于圆心(0,0)到直线2ax +by =1的距离等于22,由点到直线的距离公式,得12a 2+b 2=22,即2a 2+b 2=2,即a 2=1-b 22且b ∈[-2,2].点P (a ,b )与点(0,1)之间的距离为d =a 2+(b -1)2=12b 2-2b +2,因此当b =-2时,d max =3+22=2+1.14.若a ,b 是正数,直线2ax +by -2=0被圆x 2+y 2=4截得的弦长为23,则t =a 1+2b 2取得最大值时a 的值为________.答案 34解析 由已知可得圆心(0,0)到直线2ax +by -2=0的距离d =24a 2+b 2, 则直线被圆截得的弦长为24-44a 2+b 2=23, 化简得4a 2+b 2=4.∴t =a 1+2b 2=122·(22a )·1+2b 2 ≤142[(22a )2+(1+2b 2)2] =142(8a 2+2b 2+1)=942, 当且仅当⎩⎪⎨⎪⎧8a 2=1+2b 2,4a 2+b 2=4时等号成立,即t 取最大值,此时a =34(舍负值).15.(2017·苏锡常镇调研)在平面直角坐标系xOy 中,过点M (1,0)的直线l 与圆x 2+y 2=5交于A ,B 两点,其中点A 在第一象限,且BM →=2MA →,则直线l 的方程为____________.答案 x -y -1=0解析 方法一 易知l 的斜率必存在,设l :y =k (x -1).由BM →=2MA →,可设BM =2t ,MA=t ,如图,过原点O 作OH ⊥l 于点H ,则BH =3t 2.设OH =d ,在Rt △OBH 中,d 2+⎝⎛⎭⎫3t 22=r 2=5,在Rt △OMH 中,d 2+⎝⎛⎭⎫t 22=OM 2=1,解得d 2=12.所以d 2=k 2k 2+1=12,解得k =1或k =-1,因为点A 在第一象限,BM →=2MA →,由图知k =1,所以l :x -y -1=0.方法二 设A (x 1,y 1),B (x 2,y 2),所以BM →=(1-x 2,-y 2),MA →=(x 1-1,y 1).因为BM →=2MA →,所以有⎩⎪⎨⎪⎧ 1-x 2=2(x 1-1),-y 2=2y 1,当直线AB 的斜率不存在时,BM →=MA →,不符合题意.当直线AB 的斜率存在时,设AB :y =k (x -1),联立⎩⎪⎨⎪⎧y =k (x -1),x 2+y 2=5,可得(1+k 2)y 2+2ky -4k 2=0,即⎩⎪⎨⎪⎧ y 1+y 2=-2k 1+k 2,y 1y 2=-4k 21+k 2,-y 2=2y 1,解得⎩⎪⎨⎪⎧ y 1=2k 1+k 2,y 2=-4k 1+k 2,所以y 1y 2=-8k 2(1+k 2)2=-4k 21+k 2,即k 2=1,又点A 在第一象限,所以k =1,即直线AB 的方程为x -y -1=0.方法三 设A (x 1,y 1),B (x 2,y 2),所以BM →=(1-x 2,-y 2),MA →=(x 1-1,y 1).因为BM →=2MA →,所以有⎩⎪⎨⎪⎧1-x 2=2(x 1-1),-y 2=2y 1,即⎩⎪⎨⎪⎧ -x 2=2x 1-3,-y 2=2y 1. 又⎩⎪⎨⎪⎧ x 21+y 21=5,x 22+y 22=5,代入可得⎩⎪⎨⎪⎧x 21+y 21=5,(2x 1-3)2+4y 21=5,解得x 1=2,代入可得y 1=±1,又点A 在第一象限,故A (2,1),由点A 和点M 的坐标可得直线AB 的方程为x -y -1=0.16.曲线y =x 2+4x的一条切线l 与直线y =x ,y 轴围成的三角形记为△OAB ,则△OAB 外接圆面积的最小值为________.答案 16(2-1)π解析 y ′=x 2-4x 2,设直线l 与曲线的切点坐标为(x 0,y 0),则直线l 的方程为y -x 20+4x 0=x 20-4x 20·(x -x 0),即y =x 20-4x 20x +8x 0.不妨设直线l 与直线y =x 的交点为A ,与y 轴的交点为B ,可求得A (2x 0,2x 0),B ⎝⎛⎭⎫0,8x 0. ∴AB 2=4x 20+⎝⎛⎭⎫2x 0-8x 02=8x 20+64x 20-32 ≥32(2-1),当且仅当x 20=22时取等号.由正弦定理可得△OAB 的外接圆的半径R =12·AB sin 45°=22AB ,则△OAB 外接圆的面积S =πR 2=12πAB 2≥16(2-1)π.。

高等数学(本科)第九章课后习题解答

高等数学(本科)第九章课后习题解答

习题9.11.二元函数()y x f ,在有界闭区域D 可积的充分与必要条件是什么?它的几何意义和物理意义是什么?【答】几何意义表曲顶柱体的体积的代数和;物理意义表平面薄片的质量. 2.设()(){}11|,22≤+-=y x y x D ,则二重积分⎰⎰=Ddxdy π.【解】根据二重积分的性质,⎰⎰Ddxdy 等于积分区域D 的面积.而此处积分区域D 是半径为1的圆域,因此其面积为π. 3.求⎰⎰Ddxdy 4,其中(){}1|,≤+=y x y x D .【解】⎰⎰Ddxdy 4()()824442=⨯===⎰⎰D S dxdy D.4.如果闭区域D 被分成区域1D 、2D 且()5,1⎰⎰=D dxdy y x f ,()1,2⎰⎰=D dxdy y x f ,求()⎰⎰Ddxdy y x f ,.【解】根据二重积分的性质()⎰⎰Ddxdy y x f ,()⎰⎰+=1,D dxdy y x f ()615,2=+=⎰⎰D dxdy y x f .5.设()⎰⎰+=13221D d y x I σ, (){}22,11|,1≤≤-≤≤-=y x y x D ;()⎰⎰+=23222D d y x I σ,其中(){}20,10|,2≤≤≤≤=y x y x D .试利用二重积分的几何意义说明1I 与2I 之 间的关系.【解】因为积分区域2D 关于x 轴及y 轴均对称,且被积函数()()322,y x y x f +=为偶函数,故根据二重积分的对称性知214I I =. 6.估计下列积分的值. (1)⎰⎰+=Dy xd e I σ22,其中(){}41|,22≤+≤=y x y x D ;【解】积分区域D 的面积πσ3=.显然被积函数()32,y x e y x f +=在积分区域D 内有最小值e e m ==1及最大值4e M =,因此由估值定理知 433e I e ππ≤≤.(2)⎰⎰=Dyd x I σ22sin sin ,其中(){}ππ≤≤≤≤=y x y x D 0,0|,.【解】积分区域D 的面积2πσ=.显然被积函数()x x y x f 22sin sin ,=在积分区域D 内有最小值()00,0==f m 及最大值12,2=⎪⎭⎫⎝⎛=ππf M ,因此由估值定理知20π≤≤I .7.设函数()y x f ,在点()b a ,的某个邻域内连续,D 表示以点()b a ,为圆心且完全含在上述邻域内的圆域(半径为R ).求极限 ()⎰⎰→DR d y x f R σπ,1lim20.【解】积分区域D 的面积2R πσ=.由积分中值定理知 ()⎰⎰Dd y x f σ,()()ηξπσηξ,.,2f R f ==.显然当0→R 时,()()b a ,,→ηξ,所以 ()⎰⎰→DR d y x f R σπ,1lim20()()b a f f R ,,lim 0==→ηξ.8.设区域(){}1|,22≤+=y x y x D ,()y x f ,为区域D 上的连续函数,且 ()()dxdy y x f y x y x f D⎰⎰---=,11,22π. ① 求()y x f ,.【解】记 ()dxdy y x f a D⎰⎰=,. ②则①成为()πay x y x f ---=221,. ③由③得()⎰⎰⎰⎰⎰⎰---=DDDdxdy adxdy y x dxdy y x f π221,. ④其中,根据几何意义及性质可知32134211322ππ=⎪⎭⎫ ⎝⎛⨯=--⎰⎰dxdy y x D.π=⎰⎰Ddxdy .所以由④式得到 3.32ππππ=⇒-=a a a . 将3π=a 代入③即得到()311,22---=y x y x f .习题9.21.在化二重积分时,选择坐标系的原则是什么?【解】选择坐标系的原则主要是根据积分区域的形状,具体地讲,积分区域的边界曲线是用直角坐标方程表示方便还是用极坐标方程表示简洁.当然,被积函数的特征也要考虑,如形如()22y xf+的积分就首选极坐标系来计算.2.先画出积分区域,再计算二重积分.(1)()⎰⎰+Dd y x σ22,其中D 是矩形区域:1,1≤≤y x ;【解】记(){}10,10|,1≤≤≤≤=y x y x D .由对称性知()⎰⎰+Dd y xσ22()⎰⎰+=1224D d y x σ()dy y x dx ⎰⎰+=101224⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=101032|314dx y y x 3831314314101032|=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎰x x dx x .(2)()⎰⎰++Dd y y x x σ3233,其中D 是矩形区域:10,10≤≤≤≤y x ;【解】()⎰⎰+Dd y xσ22()dy y y x x dx ⎰⎰++=10103233⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=10104223|4123dx y y x y x1412141412310103423|=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=⎰x x x dx x x .(3)()⎰⎰+Dd y x σ23,其中D 是由两坐标轴及直线2=+y x 所围成的区域;【解】()⎰⎰+Dd y x σ23()dy y x dx x⎰⎰-+=202023()⎰⎥⎦⎤⎢⎣⎡+=-20202|3dx y xy x()()[]()3204324222232020232022|=⎪⎭⎫ ⎝⎛++-=++-=-+-=⎰⎰x x x dx x x dx x x x .(4)()⎰⎰+Dd y x x σcos ,其中D 是顶点分别为()0,0,()0,π,()ππ,的三角形区域;【解】()⎰⎰+Dd y x x σcos ()dy y x x dx x ⎰⎰+=π00cos ()⎰⎥⎦⎤⎢⎣⎡+=π00|sin dx y x x x()⎰⎰⎰-=-=πππ0sin 2sin sin 2sin xdx x xdx x dx x x x()()⎰⎰+-=ππ00cos 2cos 21x xd x xd 【分部】()⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--=⎰⎰ππππ0000cos cos 22cos 212cos 21||xdx x x x xd x xπππππππ2321sin 2sin 2121||00-=--=⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡--=x x .(5)⎰⎰Dxy dxdy ye ,其中D 是由曲线2,2,1===y x xy 所围成的区域; 【解】⎰⎰Dxydxdy ye dy ye dx x xy⎰⎰=22121()x d e yd x x xy ⎰⎰⎥⎦⎤⎢⎣⎡=221211x d dy e ye x x xy x xy ⎰⎰⎪⎪⎭⎫ ⎝⎛-=2212121|1x d e x x e e x x xy x⎰⎪⎪⎭⎫ ⎝⎛--=221212|1121 x d e x e x x x ⎰⎪⎭⎫ ⎝⎛-=22122212x d e x x⎰=221212x d e xx ⎰-221221其中=⎰x d e x x 221221⎪⎭⎫ ⎝⎛-⎰x d e x 12212【分部】()⎥⎦⎤⎢⎣⎡--=⎰2212221211|x x e d x e x ++-=e e 2214x d e xx ⎰221212.所以⎰⎰Dxydxdy ye -=⎰x d e x x 221212e e dx e x e e x22112221422214-=⎥⎦⎤⎢⎣⎡++-⎰. (6)()⎰⎰+Ddxdy y x sin ,其中D 是矩形区域:ππ20,0≤≤≤≤y x .【解】以直线π=+y x 及π2=+y x 将区域D 分成三个子区域:321D D D D ⋃⋃=.其中,⎩⎨⎧≤≤-≤≤,0,0:1ππx x y D , ⎩⎨⎧≤≤-≤≤-,0,2:2πππx x y x D ,⎩⎨⎧≤≤≤≤-,0,22:3πππx y x D ()dy y x dx I x⎰⎰-+=ππ0sin ()dy y x dx x x ⎰⎰--+-+πππ02sin ()dy y x dx x⎰⎰-++πππ022sin其中()dy y x dx x⎰⎰-+ππ0sin ()dx y x x ⎰⎥⎦⎤⎢⎣⎡+-=-ππ00|cos ()()πππ=+=+=⎰|0sin cos 1x x dx x ;()dy y x dx xx⎰⎰--+-πππ02sin ()dx y x xx ⎰⎥⎦⎤⎢⎣⎡+=--πππ02|cosππ220==⎰dx ;()dy y x dx x ⎰⎰-+πππ022sin ()dx y x x ⎰⎥⎦⎤⎢⎣⎡+-=-πππ022|cos ()()πππ=-=-=⎰|0sin cos 1x x dx x .所以 .42ππππ=++=I3.化二重积分()⎰⎰Dd y x f σ,为二次积分,且二次积分的两个变量的积分次序不同,其中积分区域D 为:(1)由直线x y =及抛物线x y 42=所围成的区域;【解】联立⎩⎨⎧==,4,2x y x y 解得⎩⎨⎧==,0,0y x 或⎩⎨⎧==.4,4y x 所以直线x y =及抛物线x y 42=的交点为()0,0及()4,4.(i )若视区域D 为-X 型区域,则⎩⎨⎧≤≤≤≤.40,2:x x y x D()⎰⎰Dd y x f σ,()⎰⎰=402,xxdy y x f dx .(ii )若视区域D 为-Y 型区域,则⎪⎩⎪⎨⎧≤≤≤≤.40,41:2y y x y D()⎰⎰Dd y x f σ,()⎰⎰=40412,y y dx y x f dy .(2)半圆形区域222r y x ≤+,0≥y .(i )若视区域D 为-X 型区域,则⎪⎩⎪⎨⎧≤≤--≤≤.,0:22r x r x r y D()⎰⎰Dd y x f σ,()⎰⎰--=rrx r dy y x f dx 320,.(ii )若视区域D 为-Y 型区域,则⎪⎩⎪⎨⎧≤≤-≤≤--.0,:3222r y y r x y r D()⎰⎰Dd y x f σ,()⎰⎰---=ry r y r dx y x f dy 03222,.4.交换下列积分次序 (1)()⎰⎰--21222,x x xdy y x f dx ;【解】D 是由圆周曲线()1122=+-y x ,2=+y x 【两曲线交于点()1,1】所围成的区域.故()⎰⎰--21222,x x xdy y x f dx ().,11122⎰⎰-+-=y ydy y x f dy(2)()⎰⎰e xdy y x f dx 1ln 0,;【解】积分区域D 由曲线x y ln =,及x 轴和直线e x =所围成. 若改变积分次序,即将区域D 视为-Y 型区域,则⎩⎨⎧≤≤≤≤,10:1y ex e D y ,所以()⎰⎰e xdy y x f dx 1ln 0,().,10⎰⎰=eey dx y x f dy(3)()⎰⎰102,x xdy y x f dx ;【解】积分区域D 由抛物线x y 42=及两直线x y =和直线1=x 所围成.若改变积分次序,即将区域D 视为-Y 型区域,则需要将D 分块: 21D D D ⋃=.其中⎪⎩⎪⎨⎧≤≤≤≤,1041:21y yx y D ,⎪⎩⎪⎨⎧≤≤≤≤,21141:22y x y D .所以 ()⎰⎰102,xxdy y x f dx()⎰⎰=10412,y y dx y x f dy ()⎰⎰+211412,y dx y x f dy .(4)()⎰⎰--0121,ydx y x f dy ()⎰⎰++1021,ydx y x f dy .【解】积分区域21D D D ⋃=.其中⎩⎨⎧≤≤-≤≤-,0121:1y x y D ,⎩⎨⎧≤≤≤≤+,1021:2y x y D 因此积分区域D 是由三直线1,1=-=+y x y x 及2=x 所围成的三角形区域.若改变积分次序,即将区域D 视为-X 型区域,则⎩⎨⎧≤≤-≤≤-21,11:x x y x D所以 ()⎰⎰--0121,y dx y x f dy ()⎰⎰++1021,ydx y x f dy ()⎰⎰--=2111,x x dy y x f dx .5.计算⎰⎰-10122xy dy e dx x .【解】积分区域D 是由直线x y =、1=y 及y 轴所围成的三角形区域. 改变积分次序得⎰⎰-10122x y dy e dx x ⎰⎰-=10022y y dx x dy e ⎰⎪⎭⎫ ⎝⎛=-1003|312dy x e y y⎰-=103231dy e y y ()⎰--=102261y ed y 【分部】 ()⎥⎦⎤⎢⎣⎡-+-=⎰--10210222|61y d e e y y y ⎥⎦⎤⎢⎣⎡+-=--|101261y e e 6131+-=e .6.求由平面0,0==y x 及1=+y x 所围成的柱体被平面0=z 及抛物面z y x -=+622截得的立体的体积.【解】根据二重积分的几何意义知()⎰⎰--=Ddxdy y x V 226.其中积分区域D 是xoy 面内由直线1=+y x 及x 轴、y 轴所围成的平面区域.V ()dy y x dx x⎰⎰---=1010226⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=-101032|316dx y y x y x()()()⎰⎰⎪⎭⎫ ⎝⎛+--=⎥⎦⎤⎢⎣⎡-----=101023323175234131116dx x x x dx x x x x .617317253231|10234=⎪⎭⎫ ⎝⎛+--=x x x x . 7.利用极坐标计算下列各题. (1)⎰⎰+Dy xd e σ22,其中D 是圆形区域:422≤+y x ; 【解】⎰⎰+Dy xd e σ22⎰⎰+=1224D y xd e σ【极坐标】()121244202020|22-=⎪⎭⎫⎝⎛==⎰⎰e e rdr e d r r ππθπ.(2)()⎰⎰++Dd y x σ221ln ,其中D 是圆周122=+y x 及坐标轴在第一象限内所围成的区域;【解】()⎰⎰++Dd y x σ221ln 【极坐标】()=+=⎰⎰rdr r d 20121ln πθ【令t r =2】()dt t ⎰+=11ln 4π【分部】()⎥⎦⎤⎢⎣⎡+-+=⎰dt t t t t 101011ln 4|π()⎥⎦⎤⎢⎣⎡+-+-=⎰dt t t 101112ln 4π []()12ln 241ln 42ln 4|10-=+--=πππt t .(3)σd x yD⎰⎰arctan ,其中D 是由圆周122=+y x ,422=+y x 及直线xy y ==,0在第一象限内所围成的区域;【解】rdr r r d dxdy x y I D.cos sin arctan arctan 4021⎰⎰⎰⎰==πθθθ==⎰⎰rdr d .421πθθ .64321.21.22124024021||πθθθππ=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰r dr r d(4)⎰⎰Dxdxdy ,(){}x y x y x D 22|,22≤+≤=;【解】⎰⎰Dxdxdy ⎰⎰=12D xdxdy 【极坐标】⎥⎦⎤⎢⎣⎡+=⎰⎰⎰⎰24cos 204020.cos .cos 2ππθπθθθθrdr r d rdr r d⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎰⎰⎰24cos 20340202|31cos .cos 2ππθπθθθθd r dr r d ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰24420340cos 3831sin 2||πππθθθd r θθππd ⎰+=244cos 3163424132331634ππ=⎥⎦⎤⎢⎣⎡-+=.【其中θθππd ⎰244cos θθππd 22422cos 1⎰⎪⎭⎫ ⎝⎛+=()θθθππd ⎰++=2422cos 2cos 2141⎰=2441ππθd ()⎰+2422cos 41ππθθd +⎰+2424cos 141ππθθd 413234sin 3214812sin 41441||2424-=⎥⎦⎤⎢⎣⎡+⨯++⨯=πθπθπππππ】. 【注意:此题书中答案有误】.(5)⎰⎰-Ddxdy y x ,(){}0,0,1|,22≥≥≤+=y x y x y x D ;【解】以直线x y =将积分区域D 分块:21D D D ⋃=其中1D 由圆周()0,0122≥≥=+y x y x 及x 轴和直线x y =所围成; 其中2D 由圆周()0,0122≥≥=+y x y x 及y 轴和直线x y =所围成.⎰⎰-Ddxdy y x ()+-=⎰⎰1D dxdy y x ()⎰⎰-2D dxdy x y 【极坐标】()rdr r r d ⎰⎰-=14sin cos θθθπ()rdr r r d ⎰⎰-+124cos sin θθθππ()dr r d ⎰⎰-=1240sin cos πθθθ()dr r d ⎰⎰-+1224cos sin ππθθθ()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+=||1034031.cos sin r πθθ()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+-+||1032431.sin cos r ππθθ ()()12311231-+-=()1232-=. (6)()⎰⎰+Ddxdy y x y 23,(){}0,4|,22≥≤+=y y x y x D .【解】()⎰⎰+Ddxdy y x y 23⎰⎰=Dydxdy ⎰⎰+Ddxdy y x 230+=⎰⎰Dydxdy【极坐标】rdr r d ⎰⎰=20.sin θθπdr r d ⎰⎰=220sin πθθ31631cos ||2030=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=r πθ. 8.把()⎰⎰+=Ddxdy y xfI 22化为单重积分,其中(){}1|,22≤+=y x y x D .【解】()⎰⎰+=Ddxdy y xfI 22【极坐标】()⎰⎰=1204rdr r f d πθ()⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰1020.4rdr r f d πθ()⎰=102rdr r f π.9.把下列积分化为极坐标形式,并计算其积分值. (1)()⎰⎰-+ay a dx y xdy 002222;【解】()⎰⎰-+ay a dx y xdy 02222【极坐标】404228412|a r rdr r d aaππθπ=⎪⎭⎫ ⎝⎛==⎰⎰. (2)()⎰⎰-+ax ax dy y xdx 2020222;【解】()⎰⎰-+ax ax dy y xdx 2020222【极坐标】==⎰⎰rdr r d a 20cos 202πθθ⎰⎪⎭⎫ ⎝⎛20cos 204|41πθθd r a . 44244432.!!4!!34cos 4a a d a ππθθπ=⎪⎭⎫ ⎝⎛==⎰.(3)⎰⎰+axdy y x dx 022;【解】⎰⎰+axdy y x dx 022【极坐标】==⎰⎰rdr r d a 40sec 0.πθθ⎰⎪⎭⎫ ⎝⎛40sec 03|31πθθd r a ⎰=4033sec 31πθθd a []|403tan sec ln tan .sec 61πθθθθ++=a()[]21ln 2613++=a【其中,()⎰⎰==θθθθtan sec sec 3d d I 【分部】()⎰-=θθθθsec tan tan .sec d⎰-=θθθθθd 2tan sec tan .sec ()⎰--=θθθθθd 1sec sec tan .sec 2 I d d -++=+-=⎰⎰θθθθθθθθθθtan sec ln tan .sec sec sec tan .sec 3所以,[]C I +++=θθθθtan sec ln tan .sec 21.】 (4)⎰⎰+1222xxdx y x dx .【解】⎰⎰+10222xxdx y x dx 【极坐标】==⎰⎰rdr r d a 40sec tan 0.πθθθ⎰⎪⎭⎫ ⎝⎛40tan sec 03|31πθθθd r a ⎰=40333tan sec 31πθθθd a ()()⎰-=40223sec 1sec sec 31πθθθd a()12452sec 31sec 5131|40353+=⎥⎦⎤⎢⎣⎡-=πθθa .10.设()x f 为连续函数,且()()⎰⎰+=Ddxdy y x f t F 22,其中(){}222|,t y x y x D ≤+=,求极限()tt F t '→0lim.【解】()()⎰⎰+=Ddxdy y x f t F 22【极坐标】()rdr r f d t⎰⎰=πθ202()r dr r f t⎰=022π.故 ()()22t tf t F π='. ① 所以()t t F t '→0lim【代入 ①】()()022lim 0f t t tf t ππ==→. 【注意:怀疑此题本身有问题,故对题目本身作了合理修正】11*.设()x f 在[]1,0上连续,并设()A dx x f =⎰10,求()()⎰⎰101xdy y f x f dx .【解】 记⎩⎨⎧≤≤≤≤,10,1:1x y x D ⎩⎨⎧≤≤≤≤,10,0:2x x y D ,21D D D ⋃=.则 ()()()()dxdy y f x f dy y f x f dx I D x⎰⎰⎰⎰==1111. ①()()()()dxdy y f x f dy y f x f dx I D x⎰⎰⎰⎰==2102. ②又交换积分次序后()()==⎰⎰111x dy y f x f dx I ()()⎰⎰10y dx y f x f dy ()()⎰⎰=10xdy y f x f dx ,即21I I =.所以有 ()()()dxdy y f x f I I I D⎰⎰=+=2121211 ()()210102121A dy y f dx x f ==⎰⎰. 12*.设()x ϕ为[]1,0上的正值连续函数,证明:()()()()()b a dxdy x y x b y a D+=++⎰⎰21ϕϕϕϕ,其中b a ,为常数,(){}10,10|,≤≤≤≤=y x y x D . 【证明】因为积分区域D 关于直线x y =对称,则 ()()()=+=⎰⎰Ddxdy y x x I ϕϕϕ()()()⎰⎰+Ddxdy y x y ϕϕϕ. ① 故有()()()()212121==⎥⎦⎤⎢⎣⎡++=⎰⎰⎰⎰DD dxdy dxdy y x y x I ϕϕϕϕ. ② 所以有()()()()=++⎰⎰D dxdy x y x b y a ϕϕϕϕ()()()b dxdy y x y a D++⎰⎰ϕϕϕ()()()⎰⎰+Ddxdy y x x ϕϕϕ ).(21b a bI aI +=+= 13*.设闭区间[]b a ,上()x f 连续且恒大于零,试利用二重积分证明不等式()()()21a b dx x f dx x f baba-≥⎰⎰. 【证法一】考虑到定积分与变量的记号无关.故有: ()()⎰⎰=b a bay f dy x f dx. ① 以及()().dy y f dx x f baba⎰⎰= ②所以有()()()()..⎰⎰⎰⎰=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D b a b a dxdy y f x f x f dx dx x f ③其中,⎩⎨⎧≤≤≤≤.,:b y a b x a D 同时()()()()..⎰⎰⎰⎰=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D b a b a dxdy x f y f x f dx dx x f ④ ③+④,得()()()()()()()()()().2.2⎰⎰⎰⎰⎰⎰≥⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡D Db a b a dxdy y f x f x f y f dxdy y f x f x f y f x f dx dx x f ()222.Ddxdy b a ==-⎰⎰即: ()()()2..b b a a dx f x dx b a f x ⎡⎤⎡⎤≥-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰ 【证法二】:因为()0≥x f ,所以有20b a dx ⎡⎤⎢≥⎢⎣⎰,即 ()()()220.bbaadxf x dx b a f x λλ⎡⎤+-+≥⎢⎥⎣⎦⎰⎰① ①式左边是λ的非负二次三项式,因此必有判别式()()()20b b a a dx b a f x dx f x ⎡⎤⎡⎤∆=--≤⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰. ② 故由②得到()()()2..b b a a dx f x dx b a f x ⎡⎤⎡⎤≥-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰14*.设()x f 在闭区间[]b a ,上连续.试利用二重积分证明不等式()()()dx x fa b dx x f ba ba ⎰⎰-≤⎥⎦⎤⎢⎣⎡22.【证明】由于()2⎥⎦⎤⎢⎣⎡⎰dx x f b a ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰dx x f dx x f b a b a ()()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰⎰dy y f dx x f ba b a . ① 令 ⎩⎨⎧≤≤≤≤.,:b y a b x a D 则 由①得到()()()dxdy y f x f dx x f Dba ⎰⎰⎰=⎥⎦⎤⎢⎣⎡2. ②又 ()()()()222y fx fy f x f +≤.③故()()()dxdy y fx f dx x f Db a ][21222+≤⎥⎦⎤⎢⎣⎡⎰⎰⎰()()⎥⎦⎤⎢⎣⎡+=⎰⎰⎰⎰b a b a b a b a dy y f dx dx x f dy 2221 ()()dx x f a b b a ⎰-=221()()dy y f a b b a ⎰-+221【定积分与变量记号无关()()dx x fa b ba⎰-=2.15*.设区域(){}0,1|,22≥≤+=x y x y x D ,求二重积分⎰⎰+++Ddxdy y x xy2211.【解】⎰⎰+++Ddxdy y x xy 2211⎰⎰++=D dxdy y x 2211⎰⎰+++D dxdy yx xy221 0112122+++=⎰⎰D dxdy y x 【极坐标】rdr r d ⎰⎰+=2102112πθ ()().2ln 21ln 21112|1022102πππ=+=++=⎰rr d r习题9.31.利用定积分、二重积分和三重积分计算空间立体体积时,被积函数和积分区域各有什么不同? 【解】略.2.将三重积分()dxdydz z y x f I ⎰⎰⎰Ω=,,化为三次积分,其中空间区域分别为:(1)由曲面22y x z +=,0=x ,0=y ,1=z 所围成且在第一卦限内的区域;【解】⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤≤≤+Ω.10,10,1:222x x y z y x Ω向xoy 面上投影区域为⎪⎩⎪⎨⎧≤≤-≤≤.10,10:2x x y D xy ,所以()dz z y x f dy dx I y x x ⎰⎰⎰+-=1101222,,.(2)由双曲抛物面xy z =及平面01=-+y x ,1=z 所围成的区域;【解】⎪⎩⎪⎨⎧≤≤-≤≤≤≤Ω.10,10,0:x x y xy z Ω向xoy 面上投影区域为⎩⎨⎧≤≤-≤≤.10,10:x x y D xy ,所以()dz z y x f dy dx I xyx⎰⎰⎰-=01010,,.(3)由曲面222y x z +=及22x z -=所围成的区域. 【解】联立⎪⎩⎪⎨⎧-=+=,2,2222x z y x z 消去z ,得 Ω向xoy 面上的投影区域为 1:22≤+y x D xy . 故⎪⎪⎩⎪⎪⎨⎧≤≤--≤≤---≤≤+Ω.11,11,22:22222x x y x x z y x所以()dz z y x f dy dx I x y x x x ⎰⎰⎰-+----=22222221111,,.3.利用直角坐标系计算下列三重积分.(1)dV z xy ⎰⎰⎰Ω32,其中Ω是由平面x y =,1=x ,0=z 及曲面xy z =所围区域.【解】Ω在xoy 坐标面上的投影区域为三角形区域.10,0:⎩⎨⎧≤≤≤≤x x y D 故dz z dy y xdx dV z xy xyx⎰⎰⎰⎰⎰⎰=Ω03021032⎰⎰⎥⎦⎤⎢⎣⎡=xxy dy z y xdx 004210|41⎰⎰=x dy y dx x 0610541⎰⎥⎦⎤⎢⎣⎡=10075|7141dx y x x 3641131281281|10131012=⨯==⎰x dx x . (2)()⎰⎰⎰Ω+++31z y x dV,其中Ω是由平面0=x ,0=y ,0=z 及1=++z y x 所围成的四面体;【解】Ω在xoy 坐标面上的投影区域为三角形区域.10,10:⎩⎨⎧≤≤-≤≤x x y D 故()dxdydz z y x ⎰⎰⎰Ω+++311=()dz z y x dy dx x y x ⎰⎰⎰---+++101010311()()z y x d z y x dy dx xyx ++++++=⎰⎰⎰---1111010103()⎰⎰---⎥⎦⎤⎢⎣⎡+++-=1010102|11.21xy x dy z y x dx ()⎰⎰-⎥⎦⎤⎢⎣⎡-++=10102411121xdy y x dx ⎰-⎪⎪⎭⎫ ⎝⎛-++-=1010|411121dx y y x x⎰⎪⎭⎫⎝⎛+++-=101144321dx x x ().1652ln 21811ln 4321|102-=⎪⎭⎫ ⎝⎛+++-=x x x (3)()dxdydz z x y ⎰⎰⎰Ω+cos ,其中Ω是由抛物柱面x y =以及平面0=y ,0=z ,2π=+z x 所围成区域.【解】Ω在xoy 坐标面上的投影区域为.20,0:⎪⎩⎪⎨⎧≤≤≤≤πx x y D 故()dxdydz z x y ⎰⎰⎰Ω+cos =()dz z x ydy dx xx⎰⎰⎰-+2020cos ππ()⎰⎰⎥⎦⎤⎢⎣⎡+=-200|2sin ππxxdy z x y dx ()⎰⎰-=200sin 1πx ydy x dx ()⎰⎥⎦⎤⎢⎣⎡-=2002|21sin 1πdx y x x ()⎰-=20sin 121πdx x x⎰=2021πxdx 21161sin 21220-=-⎰ππxdx x .【其中2202201614121|πππ==⎰x xdx ;()⎰⎰=-2020cos 21sin 21ππx xd xdx x 【分部】⎥⎦⎤⎢⎣⎡-=⎰2020cos cos 21|ππxdx x x 21sin 21|20-=-=πx .】4.利用柱面坐标计算三重积分.(1)()d V y x ⎰⎰⎰Ω+22,其中Ω是由曲面z y x 222=+及平面2=z 所围成的区域;【解】本题宜采用“切片法”计算()()dxdy y x dz dz dxdy y xzD ⎰⎰⎰⎰⎰⎰+=+Ω22222.3163242.||20320202422020πππθπ====⎰⎰⎰⎰z dz r rdr r d dz z z如采用柱面坐标系:()dz dxdy y x⎰⎰⎰Ω+22.3166.2142222.2|206420223222202πππθπ=⎥⎦⎤⎢⎣⎡-=⎪⎪⎭⎫⎝⎛-==⎰⎰⎰⎰r r dr r r dz r rdr d r (2)()d V y x ⎰⎰⎰Ω+22,其中Ω是由曲面()222254y x z +=及平面5=z 所围成的区域;【解】(柱面坐标法)Ω在xoy 坐标面上的投影区域为.4:22≤+y x D()V d y x⎰⎰⎰Ω+22dr z r dz r rdr d r r ⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛==20205253525220|.2πθπ dr r r ⎪⎭⎫ ⎝⎛-=⎰255223πππ82452|2054=⎥⎦⎤⎢⎣⎡-=r r .(3)dV xyz ⎰⎰⎰Ω,其中Ω是由球面1222=++z y x 及三个坐标面所围且在第一卦限内的区域.【解】(球面坐标法)Ω在xoy 坐标面上的投影区域为V xyzd ⎰⎰⎰Ω⎰⎰⎰=2015320cos sin cos sin ππρρϕϕϕθθθd d d48161.sin 41.sin 21|||106204202=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=ρϕθππ.5.利用球面坐标计算三重积分.(1)()d V z y x ⎰⎰⎰Ω++222,其中()(){}222223,|,,y x z z z y x z y x +≥≤++=Ω;【解】(球面坐标法)()d V z y x⎰⎰⎰Ω++222⎰⎰⎰=60cos 02220.sin πϕπρρρϕϕθd d dϕρϕππϕd ⎰⎥⎦⎤⎢⎣⎡=6cos 05|51sin 2ϕϕϕππd ⎰=605sin cos 52()ϕϕππcos cos 52605d ⎰-=πϕππ96037cos 6152|606=⎥⎦⎤⎢⎣⎡-=.(2)dxdydz z ⎰⎰⎰Ω2,其中Ω是由抛物面22y x z +=之上,球面2222=++z y x 之内的部分围成;【解】(柱面坐标法)联立⎩⎨⎧+==++22222,2y x z z y x 消z ,得Ω在xoy 坐标面上投影区域.1:22≤+y x D 所以dz dxdy z⎰⎰⎰Ω2⎰⎰⎰-=1222022r rdz z rdr d πθ⎰⎥⎦⎤⎢⎣⎡=-123|22312r r z r π()⎰⎥⎦⎤⎢⎣⎡--=10632232dr r r r π()⎰-=1032232dr r r π()πππππ121228151121232107--=-=-⎰dr r ()1323260-=π.【其中()⎰-1032232dr r r π【令t r sin 2=】⎰=404cos .sin 328ππtdt t ()()πππππ228151cos 51328cos cos 328|405404-=⎥⎦⎤⎢⎣⎡-=-=⎰t t td ; .121813232|108107πππ-=⎥⎦⎤⎢⎣⎡-=-⎰r dr r 】(3)dxdydz x ⎰⎰⎰Ω,其中()(){}0,0,0|,,2222≥≥>≤++=Ωy x a a z y x z y x .【解】(球面坐标法)⎰⎰⎰Ωxdxdydz ⎰⎰⎰=ππρρθϕρϕϕθ00220.cos sin sin ad d d ⎰⎰⎰=ππρρρϕϕθθ0222.sin cos ad d d404020841.2sin 4121.sin |||a a πρϕϕθππ=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡=.6.采用三种坐标计算三重积分dxdydz z ⎰⎰⎰Ω2,其中()2222|,,{R z y x z y x ≤++=Ω()}2,0222Rz z y x R ≤++>.【解法一】(柱面坐标法)联立⎩⎨⎧=++=++,2,222222Rz z y x R z y x 消z ,得Ω在xoy 坐标面上的投影区域为 .43:222R y x D ≤+dz dxdy z ⎰⎰⎰Ω2 dr z r dz z rdr d R R r R r R R r R r R R ⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛==------232303220|222222223.2πθπ()()⎰⎥⎦⎤⎢⎣⎡----=R dr rR R r R r 23032232232π(令t R r sin =)()[]⎰--=30333cos .cos cos sin 32ππtdt R t R R t R t R[]⎰-+-=30235cos sin cos 3cos 31cos 232ππtdt t t t t R⎰=3045sin cos 34ππtdt t R ⎰-305sin cos 32ππtdt t R⎰+3025sin cos 2ππtdt t R⎰-3035sin cos 2ππtdt t R|30555cos 34ππt R -=|30252cos 32ππt R +|30353cos 2ππt R -|30454cos 2ππt R + ⎪⎭⎫ ⎝⎛--=32311545R π⎪⎭⎫ ⎝⎛-+4335R π⎪⎭⎫ ⎝⎛--87325R π⎪⎭⎫ ⎝⎛-+161525R π .480595R π=【解法二】(球面坐标法)球面坐标计算:这时首先要把积分区域Ω分成两个子区域: .21Ω⋃Ω=Ω 其中⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω,0,30,20:1R ρπϕπθ ⎪⎩⎪⎨⎧≤≤≤≤≤≤Ω,cos 20,232,20:2ϕρπϕππθR则dz dxdy z ⎰⎰⎰Ω2=dz dxdy z ⎰⎰⎰Ω12dz dxdy z ⎰⎰⎰Ω+22ρρϕρϕϕθππd d d R⎰⎰⎰=2030222.cos sinρρϕρϕϕθπππϕd d d R ⎰⎰⎰+2023cos 20222.cos sin⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎰⎰R d d 04302cos .sin 2ρρϕϕϕππ ⎪⎪⎭⎫ ⎝⎛+⎰⎰ϕππρρϕϕϕπcos 204232cos .sin 2R d d ⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=||0530351cos 312R ρϕππ⎪⎪⎭⎫ ⎝⎛+⎰2375cos .sin 32512ππϕϕϕπd R 551.247.2R π=⎪⎪⎭⎫ ⎝⎛-+|2385cos 81564ππϕπR 5607R π=⎪⎭⎫ ⎝⎛+81.25615645R π5607R π=5160R π+.480595R π= 【解法三】(直角坐标系之“切片法”)将Ω分块为21Ω⋃Ω=Ω.其中()()⎪⎩⎪⎨⎧∈≤≤Ω11,,20z D y x R z :,()22212:z Rz y x D z -≤+; ()()⎪⎩⎪⎨⎧∈≤≤Ω22,,2z D y x R z R:,()22222:z R y x D z -≤+. ()()()()[]dz z Rz z dz D S z dxdy dz z dz dxdy zR z D R R z220212022022211-===⎰⎰⎰⎰⎰⎰⎰⎰Ωπ5205440151412|R z z R Rππ=⎥⎦⎤⎢⎣⎡-=;()()()()[]dz z R z dz D S z dxdy dz z dz dxdy z RR z D RR R R z222222222222-===⎰⎰⎰⎰⎰⎰⎰⎰Ωπ 52532480475131|R z z R R R ππ=⎥⎦⎤⎢⎣⎡-=. 所以dz dxdy z ⎰⎰⎰Ω2=dz dxdy z ⎰⎰⎰Ω12dz dxdy z ⎰⎰⎰Ω+225554805948047401R R R πππ=+=. 7.若柱面122=+y x 与平面0=z ,1=z 所围成的柱体内任一点()z y x ,,处的密度22y x z --=μ,试计算该柱体的质量.【解】()()⎪⎩⎪⎨⎧Ω∈-+Ω∈--=--=.,,,,,22212222y x z y x y x y x z y x z μ 其中()⎩⎨⎧∈≤≤+ΩD y x z y x ,,1221:;()⎩⎨⎧∈+≤≤ΩD y x y x z ,,0222:;1:22≤+y x D . 所以 =M ()dz dxdy y xz ⎰⎰⎰Ω--122()πππ316161222=+=-++⎰⎰⎰Ωdz dxdy z y x .【其中()dz dxdy y xz ⎰⎰⎰Ω--122【柱面坐标】()dr z r z r dz r z rdr d r r ⎰⎰⎰⎰⎪⎪⎭⎫ ⎝⎛-=-=10101221220|222.2πθπ()πππ6161222|10642153=⎪⎪⎭⎫ ⎝⎛+-=+-=⎰r r r dr r r r ;()dz dxdy z y x⎰⎰⎰Ω-+222【柱面坐标】()dr z z r r dz z r rdr d r r ⎰⎰⎰⎰⎪⎭⎫ ⎝⎛-=-=110022220|2221.2πθππππ6161|10615=⎪⎭⎫ ⎝⎛==⎰r dr r .】8.分别用定积分、二重积分和三重积分求由22y x z +=和22y x z +=所围成的立体Ω的体积.【解】联立⎪⎩⎪⎨⎧+=+=,,2222y x z y x z 消z ,得Ω在xoy 坐标面上的投影区域为 .1:22≤+y x D(一)定积分过z 轴上任意一点z 作Ω的截面,则该截面的面积为 ()()()[]1,0,222∈-=-=z z z z z z A πππ所以Ω的体积为()()πππ613121|103210210=⎪⎭⎫ ⎝⎛-=-==⎰⎰z z dz z z dz z A V .(二)二重积分 ()[]d xdy y x y xV D⎰⎰+-+=2222【极坐标】()ππθπ61432|10432012=⎪⎪⎭⎫ ⎝⎛-=-=⎰⎰r r rdr r r d . (三)三重积分⎰⎰⎰Ω=dV V 【球面坐标】ρρϕϕθπϕϕππd d d ⎰⎰⎰=20sin cos 02242sin()ϕϕπϕϕϕπϕρϕπππππππϕϕcot cot 32sin cos 3231sin 2243245324sin cos 03|2d d d ⎰⎰⎰-==⎥⎦⎤⎢⎣⎡=πϕπππ61cot 4132|244=⎥⎦⎤⎢⎣⎡-=. 9.设()x f 在0=x 处可导,且()00=f ,求极限()d xdydz z y x f t t ⎰⎰⎰Ω→++22241lim,其中(){}2222|,,t z y x z y x ≤++=Ω.【解】()d xdydz z y x f tt ⎰⎰⎰Ω→++222401lim ()⎰⎰⎰=ππρρρϕϕθ00220.sin ad f d d()ρρρϕππd f a 200.cos 2|⎰⎥⎦⎤⎢⎣⎡-=()ρρρπd f a 20.4⎰=. ①所以()d xdydz z y x ft t ⎰⎰⎰Ω→++22241lim【由①】()4204lim t f tt ⎰→=ρρπ【洛必达法则】()32044lim t t t f t π→=()t t f t 0lim →=π()()00lim 0--=→t f t f t π()0f '=π. 习题9.41.求由曲线()xy y x C =+222:所围平面图形D 的面积.【解】化曲线C 为极坐标表示:θθsin cos 2=r ,⎥⎦⎤⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡∈πππθ23,2,0.由对称性知()⎰⎰=12D d D S σ【极坐标】θθπθθπθθd r dr r d ⎰⎰⎰⎥⎦⎤⎢⎣⎡==20cos sin 0220cos sin 0|2122()21sin 21sin sin cos sin |2022020====⎰⎰πππθθθθθθθd d d .2.求由曲面222y x z +=及2226y x z --=所围成的立体Ω的体积. 【解】联立⎪⎩⎪⎨⎧--=+=,26,22222y x z y x z 消去z ,得 Ω向xoy 面上的投影区域为 2:22≤+y x D xy .所以Ω的体积为 ()()[]d xdy y x y xV xyD ⎰⎰+---=2222226()d xdy y xxyD ⎰⎰--=22336()ππθπ6433236|2422022=⎥⎦⎤⎢⎣⎡-=-=⎰⎰r rrdr r d . 3.求由曲面()xyz a z y x S 332223:=++所围立体的体积.【解】做球坐标变换:⎪⎩⎪⎨⎧===,cos ,sin sin ,cos sin ϕρθϕρθϕρz y x 则S 在球坐标下的方程为θθϕϕρsin cos cos sin 3233a =ρρϕϕθθθϕϕππd d d dV V a ⎰⎰⎰⎰⎰⎰Ω==3231cos sin cos sin 3022020sin 44⎰⎰⎥⎦⎤⎢⎣⎡=2020cos sin cos sin 303|32331sin 4ππθθϕϕϕρϕθd d a ⎰⎰=22033cos sin cos sin 4ππϕϕϕθθθd d a.21sin 41sin 21432042023||a a =⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=ππϕθ4.证明:曲面2214:y x z S ++= ① 任一点处的切平面与曲面22:2y x z S +=所围立体图形Ω的体积为定值.【证明】任取曲面1S 上一点()0000,,z y x M .令 ()z y x z y x F -++=224,,.则1S 在点()0000,,z y x M 处的切平面的法向量为 ()()(){}{}1,2,2,,00000-='''=y x M F M F M F z y x .1S 在点()0000,,z y x M 处的切平面π的法平面为()()()02200000=---+-z z y y y x x x .即 ()0222:02020000=-+---+z y x z z y y x x π. ②又由于()10000,,S z y x M ∈,故402020-=-+z y x . ③ 将③式代入②式得0822:000=+--+z z y y x x π. ④ 联立⎩⎨⎧+==+--+,,082222000y x z z z y y x x 消去z ,得 ()()8020202020+-+=-+-z y x y y x x 【由③】4=,故Ω向xoy 面上的投影区域为()()4:2020≤-+-y y x x D xy . ⑤所以,Ω的体积为 ()()[]d xdy y x z y yx x V xyD ⎰⎰+-+-+=2200822()()()[]d xdy y y x x z y xxyD ⎰⎰----+-+=202002028【由③】()()[]d xdy y y x x xyD ⎰⎰----=2024令⎩⎨⎧+=+=.sin ,cos 00θθr y y r x x 则()()r r r y r y xrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,所以()dr d r r V r D θθ⎰⎰-=24()ππθπ841224|20422022=⎥⎦⎤⎢⎣⎡-=-=⎰⎰r r rdr r d .从而:2S 与π所围立体图形Ω的体积为定值π8.5.形状如22y x z +=,100≤≤z (单位:米)的“碗”,计划在其上刻上刻度使其成为一个容器.求对应于容积为1立方米的液体在该容器内的高度是多少? 【解】设对应于容积为1立方米的液体在该容器内的高度是h (米). 由题意知()()σπd y xh h D⎰⎰+-⨯=222.1. ①其中222:h y x D ≤+.()⎰⎰⎰⎰=+πθσ200222.h Drdr r d d y x20421412|h r h ππ=⎥⎦⎤⎢⎣⎡=. ②将②式代入①式得2221.1h h ππ-=,即 2211h π=,解之得π2=h (米).6.求均匀密度的半椭圆平面薄片()01:2222≥≤+y by a x D 的质心.【解】设D 的质心坐标为()y x ,.由质心坐标公式得⎰⎰⎰⎰=DDxd d x σσ1; ①⎰⎰⎰⎰=DDyd d y σσ1②【其中令⎩⎨⎧==,sin ,cos θθbr y ar x 则()()abrbr b ar a y ry xrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,由对称性知0=⎰⎰σd x D;()⎰⎰⎰⎰⎰⎰==πθθθθσθ0102.sin sin rdr r d ab drd J br d y r D D⎰⎥⎦⎤⎢⎣⎡=πθθ01032|31sin d r ab2020232cos 31sin 31|ab ab d ab =-==⎰ππθθθ;又 ()ab D S d Dπσ2121==⎰⎰. 故⎰⎰⎰⎰==DDxd d x 01σσ;ππσσ34213212bab ab yd d y DD===⎰⎰⎰⎰. 所以,平面薄片()01:2222≥≤+y b y a x D 的质心为⎪⎭⎫⎝⎛π34,0b .7.社平面薄片所占的区域D 由抛物线2x y =及直线x y =所围成,它在点()y x ,处的面密度()y x y x 2,=ρ,求此薄片的质心.【解】设D 的质心坐标为()y x ,.由质心坐标公式得()()⎰⎰⎰⎰=DDd y x x d y x x σρσρ,,1σσ⎰⎰⎰⎰=DDyd x yd x 321; ① ()()⎰⎰⎰⎰=D D d y x y d y x y σρσρ,,1⎰⎰⎰⎰=DDd y x yd xσσ2221②ydy x dx yd x xx D⎰⎰⎰⎰=10222σ⎰⎪⎭⎫ ⎝⎛=1022|221dx y x x x ()⎰-=106421dx x x 351715121|1075=⎪⎭⎫ ⎝⎛-=x x ; ③ydy x dx yd x x x D⎰⎰⎰⎰=10332σ⎰⎪⎭⎫ ⎝⎛=1023|221dx y x x x ()⎰-=107521dx x x 481816121|1086=⎪⎭⎫ ⎝⎛-=x x ; ④ dy y x dx d y x xx D2102222⎰⎰⎰⎰=σ⎰⎪⎭⎫⎝⎛=1032|231dx y x x x ()⎰-=108531dx x x 541916131|1096=⎪⎭⎫ ⎝⎛-=x x . ⑤故 4835351481==x ;5435351541==y .所以此薄片的质心为⎪⎭⎫⎝⎛5435,4835.8.平面薄片D 由ax y x ≥+22,222a y x ≤+确定,其上任一点处的面密度与离原点的距离成正比,求此薄片的质心.【解】由题意知,面密度()22,y x k y x +=ρ)0(>k .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学(2)第9章空间解析几何典型例题分析
例1 填空题:
(1)两向量b a ,相互垂直的充分必要条件是.
(2)两向量b a ,相互平行的充分必要条件是.
(3)点)1,2,1(-A 到平面0532=+-+z y x 距离是.
(4)向量}3,2,1{-=a 的单位向量是=0a .
(5)012=-x 是平行于坐标平面的平面.
解:(1)由定理9.2知,两向量b a ,相互垂直的充分必要条件是0=⋅b a .应该填0=⋅b a .
(2)由定理9.3知,两向量b a ,相互平行的充分必要条件是0b a =⨯.应该填0b a =⨯.
其中}3,2,1{},,{-=C B A ,()1,2,1(),,111-=z y x
于是得 1413)
3(215)1()3(2211222=-+++-⨯-+⨯+⨯=d 故应该填:14
13 (4)单位向量)143,142,141()3,2,1(3
)2(112220-=-+-+==a a a . 应该填写:)143
,142
,141
(-
(5)由平面与坐标平面的位置关系知,平面012=-x 的方程中缺z y ,两个变量,故平面平行于OYZ 平面.
应该填写:OYZ
例2 单项选择题:
(1)向量( )是单位向量.
A .)1,1,1(-
B .)31,31,31(
C .)0,0,1(-
D .)2
1,0,21(
(2
).
A
D ).
A B
C D .与OYZ 面平行
解:(1)单位向量的条件是向量的模为1,且向量模的计算公式为
23
2221a a a ++=a 分别验证,则C 正确.
(2)1,3,1(
)1,3,1()3,1,6(31611--=--k j i i
则B 正确.
(3}2,3,0{-与的方向向量}0,0,1{点乘为零,说明此平面平行与x 轴平行,则C 正确.
例3 求解下列问题
(1)求通过点)2,3,1(--M ,且通过直线5
2131:
z y x =--=+l 的平面方程. (2)求过点)1,2,1(-,且平行于直线⎩⎨⎧=+-+=+-+012012z y x z y x 的直线方程.
解 (1)分析:设法找出所求平面的法向量.
因为直线在平面上,所以直线上的点)0,1,1(-与点)2,3,1(--所连的向量为)2,2,0(-且直线的方向向量为5,2,3(-=l ),则平面的法向量n 为
k j i k j i
n 66652
3220)5,2,3()2,2,0(--=--=-⨯-=
所以,平面方程为0)2(6)3(6)1(6=+---+z y x
即02=+--z y x
(2)分析:设法找到所求直线的方向向量.
因为所求直线平行于直线

⎨⎧=+-+=+-+012012z y x z y x 所以所求直线的方向向量l 为
l =k j i k
j i +-=--=-⨯-31
21211)1,2,1()2,1,1(
所以,直线方程为: 111231-=--=+z y x .。

相关文档
最新文档