一次函数复习课教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数复习课教学设计

教材分析

本课的内容是人教版八年级上册第11章复习课,是对本章关于一次函数重点内容的复习。本章中关于一次函数的知识结构如图

通过本课的学习使学生巩固一次函数图象的画法和一次函数的性质,并对一次函数进行拓展,是今后继续学习其它函数的基础,本章起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。

学情分析

本节课主要是复习巩固一次函数的图象与性质,是在学完一次函数之后,并初步了解了如何研究一个具体函数的图象与性质的基础上进行的。原有知识与经验对本节课的学习有着积极的促进作用,在复习巩固的过程中,学生进一步理解知识,促进认知结构的完善,进一步体验研究函数的基本思路,而这些目标的达成要求教学必须发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,不以老师的讲演代替学生的探索。

教学目标

知识技能:

1、进一步理解一次函数和正比例函数的意义;

2、会画一次函数的图象,并能结合图象进一步研究相关的性质;

3、巩固一次函数的性质,并会应用。

过程与方法:

1、通过先基础在提升的过程,使学生巩固一次函数图象和性质,并能进一步提升自己应用的能力;

2、通过习题,使学生进一步体会“数形结合”、“方城思想”、“分类思想”以及“待定系数法”。

情感态度:

1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

教学重点、难点

教学重点:复习巩固一次函数的图象和性质,并能简单应用。

教学难点:在理解的基础上结合数学思想分析、解决问题。

教法学法

1、教学方法

依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:

1、自学体验法——让学生通过作图经历体验并发现问题,分析问题,进一步解决问题。

目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创

新意识。

2、直观教学法——利用多媒体现代教学手段。

目的:通过几何画板动画演示来激发学生学习兴趣,把抽象的知识直观的展现在学生

面前,逐步将他们的感性认识引领到理性的思考。

2、学法指导

做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本

着这样的原则,课上指导学生采用以下学习方法。

1、自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。

2、合作交流。在独立思考的基础上,进行小组合作,培养学生合作意识。

教学过程

教学过程分为三部分

知识回顾

先独立填空,在四人小组交流纠错、讲解、补充。

一、一次函数与正比例函数的概念

一般地,形如 的函数,叫做正比例函数。

一般地,形如 的函数,叫做一次函数。

二、一次函数的图象和性质

1、 形状

一次函数的图象是一条直线

2、 画法

确定 个点就可以画一次函数图像。一次函数与x 轴的交点坐标( ,0),与y 轴的交点坐标(0, ),正比例函数的图象必经过两点分别是(0, )、(1, )。

3、 性质

(1)一次函数)0(≠+=k b kx y ,当k 0时,y 的值随x 值得增大而增大;当k 0时,y 的值随x 值得增大而减小。

(2)正比例函数,当k 0时,图象经过一、三象限;当k 0时,图象经过二、四象限。

(3)一次函数)0(≠+=k b kx y 的图象如下图,请你将空填写完整。

(1)k 决定过一、三象限还是二、四象限; k 决定函数的增减性; k 相同时直线位置关系是平行;

(2)b 决定着:①直线与y 轴交点在正半轴、负半轴还是原点。②上下平移方向。

(3)正比例函数是特殊的一次函数,即b =0时,但一次函数并不一定是正比例函数。 设计意图:揭示知识间的内在联系,提升、归纳有用的结论是复习课的关键所在,也是本节课的难点和核心内容,让学生大胆发表自己的见解,增强学生学习的自信心和成就感。

三、一次函数与正比例函数的关系:正比例函数是特殊的一次函数,一次函数包含正比例函数。一次函数当k 0,b 0时是正比例函数。

k 0,b 0 k 0,b 0 k 0,b 0 k 0,b 0

一次函数b kx y +=可以看作是由正比例函数kx y =平移︱b ︱个单位得到的,当b >0时,向 平移b 个单位;当b <0时,向 平移︱b ︱个单位。

四、待定系数法确定一次函数解析式

通过两个条件(两个点或两对数值)来确定一次函数解析式。

例:已知一次函数y=kx+b(k ≠0)当x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。解:把x=1时, y=5;x=6时,y=0分别代入解析式,得∴此一次函数的解析式为 y= - x+6

设计意图:通过几个填空题让学生回顾一下一次函数的知识要点,通过小组合作及时纠错、讲解、补充,让学生体会小组合作的必要性。

五、夯实基础

本部分是本节课的重点内容,所以采取先独立完成,再小组交流,再生生答疑、师生答疑,最后独立修改。

相信你的选择

1、下列函数中是一次函数的是( )

A.122-=x y

B.x y 1-=

C.31+=x y

D.1232-+=x x y 2、关于函数x y 5

1-=,下列说法中正确的是( ) A.函数图象经过点(1,5) B.函数图像经过一、三象限

C. y 随x 的增大而减小

D.不论x 取何值,总有0

3、一次函数34y x =-的图象不经过...

( )。 A.第一象限 B.第二象限 C.第三象限 D.第四象限

4、如果点M 在直线1y x =-上,则M 点的坐标可以是( )

A .(-1,0) B.(0,1) C.(1,0) D.(1,-1)

5、在平面直角坐标系中,将直线23+-=x y 向下平移动4个单位长度后,所得直线的解析式为( )。

A .43--=x y B.43+-=x y C.63+-=x y D.23--=x y

6、如图,直线AB 对应的函数表达式是( )

相关文档
最新文档