材料力学第2章-杆件的内力与内力图

合集下载

杆件的内力图课件

杆件的内力图课件

ห้องสมุดไป่ตู้2
杆件内力图的绘制方法
截面法
定义截面
在杆件上选择一个截面, 该截面可以是垂直于杆件 轴线的平面,也可以是与
杆件轴线平行的平面。
计算截面内力
通过计算或实验得到截面 上的内力,包括轴力、剪
力、弯矩等。
绘制内力图
将截面内力按照一定的比 例尺绘制成图,通常采用 直角坐标系或极坐标系。
积分法
01
02
03
04
杆件内力图的实际应用案例
桥梁结构中的内力图分析
桥梁是内力图分析的重要对象之一,通 过对桥梁结构进行内力图分析,可以确 定桥梁的承载能力、刚度和稳定性等性
能指标。
在进行桥梁内力图分析时,通常需要考 虑多种荷载工况,例如车辆荷载、风荷 载和地震荷载等,以便全面评估桥梁的
安全性和可靠性。
内力图分析在桥梁结构优化设计和维护 保养方面也具有重要意义,可以通过对 桥梁结构进行内力图分析,发现潜在的 结构缺陷和安全隐患,及时采取相应的
内力图与外力图的关系
总结词
内力图和外力图是相互关联的,它们共 同反映了杆件的受力情况。
VS
详细描述
外力图表示杆件所受到的外力的大小和方 向,而内力图则表示杆件内部受力分布情 况。两者之间存在一定的关系,通常情况 下,外力图和内力图是相互匹配的,以确 保杆件在给定边界条件下达到平衡状态。 在分析过程中,需要综合考虑外力、约束 和惯性等影响因素。
定义积分域
选择杆件上的一段或多段 作为积分域,该积分域可 以是直线段、圆弧段或复 杂曲线段。
计算应力分布
根据材料力学和弹性力学 知识,计算出积分域内各 点的应力分布情况。
积分得到内力
将积分域内的应力分布乘 以面积元,并对整个积分 域进行积分,得到整个杆 件的内力。

杆件的内力分析与内力图

杆件的内力分析与内力图

F M
y
0 0
C
F l a FS FA l F l a M FA x x l
由其右边分离体的平衡条件同样可得 a FA m F 0

F
y
FB B
FS F FB 0 F l a FS F FB l
A y FA
x
m
m M 切向应力的合力, C A 称为剪力 x m FS x FS m MC 0 M C m M F a x FB l x 0
1 1 FN1
60kN
2
A
30kN
B
x
FN2
2
C
60kN
解:1、计算杆件各段的轴力。 AB 段
X 0
BC 段
FN1 30 0
FN1=30kN
1 30kN
2
X 0
FN2 60 0
FN2= 60kN
+
FN图
2、绘制轴力图。

60kN
| FN |max=60 kN
第三节 扭转和扭矩图
x
Fab l
由剪力、弯矩图知: 在集中力作用点,弯 矩图发生转折,剪力 图发生突变,其突变 值等于集中力的大小, 从左向右作图,突变 方向沿集中力作用的 方向。
Fa l
x
M
三. 弯矩、剪力与分布荷载集度之间的关系及其应用
y O m m x q(x) n n dx F Me x M ( x) m FS(x) m n M(x)+dM(x) C n FS(x)+dFS(x)
1分钟me作功
W ' M e M e (2n 1) 2nMe

材料力学基本第二章 内力与内力图

材料力学基本第二章 内力与内力图

CB段: BA段:
FN x1 0
FQ x1 F
M x1 Fx1
FN x2 F
FQ x2 0
M x2 F a
0 x1 a
0 x1 a
0 x1 a 0 x2 l
0 x2 l
0 x2 l
2.绘制剪力图和弯矩图
五、平面曲杆的内力图
平面曲杆:轴线为平面曲线的杆件。 内力的符号规定为:弯矩以使曲杆轴线曲率增加者为正,轴力和剪力的符 号规定与前面的相同。
2.6 结论与讨论

结论
论 与
• 一个重要概念
讨 论
• 三个微分方程

• 一套方法

讨论



比较前面三个梁的受力、剪力
讨 论
和弯矩图的相同 之处和不同
之处,从中能得到什么重要结

论?

FQ




FQ


FQ

确定控
结 论 与 讨
制面上剪力 和弯矩有几 种方法?怎
论 样确定弯矩
图上极值点
讨 处的弯矩数
4. 在梁的某一截面上剪力为零,则在这一截面上弯矩有极值。
5. 在梁的某一截面上若作用有集中力,则此处剪力图有突变,突变的值 恰好等于集中力的数值。
6. 在梁的某一截面上若作用有集中力偶,则剪力图不发生变化,但此处 弯矩图会发生突变,突变的值恰好等于集中力偶的数值。
二、剪力、弯矩与载荷集度之间的积分关系
AD段 MeD T3 0
C
d) T3
D
T /Nm
T3 MeD 1018.6 N m e)
1018.6 (+)

材料力学--第2章杆件的内力与内力图

材料力学--第2章杆件的内力与内力图

轴力图的画法
画轴力图的步骤:求约束反力、求控制截面上的轴 力、画轴力图。 求任一横截面轴力的简便方法:任一横截面上的轴 力等于该截面一侧杆件上所有外力(包括反力)的代数和; 外力背离截面产生拉力,外力指向截面产生压力。 在分布轴向外力作用下,轴力图为斜直线或曲线。 没有分布轴向外力作用时,整个杆件轴力图为平行于杆件
外加扭力矩Me确定后,应用截面法可以确定横截面上 的内力──扭矩,圆轴两端受外加扭力矩Me作用时,横截 面上将产生分布剪应力,这些剪应力将组成对横截面中心 的合力矩,称为扭矩(twist moment),用Mx表示。
Me Me
Me
Mx
n
- 右手螺旋定则
第2章 杆件的内力和内力图
◎ 扭矩与扭矩图
如果只在轴的两个端截面作用有外力偶矩,则沿轴线 方向所有横截面上的扭矩都是相同的,并且都等于作用在 轴上的外力偶矩。 当轴的长度方向上有两个以上的外力偶矩作用时,轴
D
E
2
FA
40kN
FN2
F
x
0, FN2 FA 40 0, FN2 50kN(拉)
第2章 杆件的内力和内力图
求CD段内的轴力
◎ 轴力与轴力图
FA
A
40kN B
55kN
25kN
20kN
C
3
D
E
FN3
25kN
20kN
F
x
0, FN3 25 20 0, FN3 5kN(压)
第2章 杆件的内力和内力图
同理,求得AB、 BC、CD段内力分 别为: FN2 B FB FN3 C FC C FC FN4 FN 2F 5F
◎ 轴力与轴力图

杆件的内力与内力图轴向拉压杆的内力轴力图轴向拉压杆的内力轴

杆件的内力与内力图轴向拉压杆的内力轴力图轴向拉压杆的内力轴

Fθθ34轴向拉压杆的内力轴向拉压杆的内力为轴力,用F N 表示轴力的大小:由平衡方程求解PN ,0F F F x ==∑轴力的正负:拉力为正;压力为负轴力的单位:N ;kN6轴向拉压杆的内力轴力图解:应用截面法,在F N1,由∑F x =0kN5.21P 1N ==F F kN5.13P 2P 1P 2N -=-=-=F F F F 在2-2截面截开,画出正向的F N2,由∑F x =089= 6 kN = -4 kN轴力图画在受力图正下方;10轴向拉压杆的内力轴力图例2 图示一砖柱,柱高3.5m ,截面尺寸370×370mm 2,柱顶承受轴向力F P =60 kN ,砖砌体容重ρ.g =18 kN/m 3。

试绘柱的轴力图。

11轴力图应用截面法,由平衡方程求得:kN46.260P y y A g F --=⋅⋅⋅-ρ,kN 6.68)5.3(,kN 60)0N -=-=F ㈠F N /kNy68.66012轴向拉压杆的内力轴力图等截面直杆在上端A 处固定,其受力如图试绘制杆件的轴力图。

kN,10kN,5P2=F l(a)Cl(b)机械传动轴杆件各相邻横截面产生绕杆轴的相对转动ϕ1720扭矩沿轴线的变化规律e21221. 外力偶矩的计算m N ⋅=1146AmN ⋅=3509549n PB m N ⋅=446n D23扭矩的计算m N 350e ⋅-=-=B M m N 700e e ⋅-=--B C M M mN 446e ⋅=D M 扭矩图问题:如将轮A 与轮C 互换,扭矩图如何?哪种布置受力更合理?mN 700max ⋅=轴力图剪力图和弯矩图组合变形杆件的内力与内力图25梁的外力和内力均可仅由静力平衡方程求解27纵向对称面内时,梁的轴线由位于纵向对称面内的直28单跨静定梁的三种基本形式由静力平衡方程无法全部确定梁所有外力和内力29平面弯曲梁的内力剪力图和弯矩图:剪力F S 和弯矩M 求内力的方法:截面法A F R =M MaF A R =30平面弯曲梁的内力剪力图和弯矩图单位;kNN ·m ;kN ·m31截面,并取右段研究221qa -33平面弯曲梁的内力剪力图和弯矩图剪力方程剪力沿梁轴线的变化规律,即F S =F S (x )弯矩方程弯矩沿梁轴线的变化规律,即M=M (x )按比例绘出F S (x )的图线按比例绘出M (x )的图线剪力图和弯矩图受力分析,画受力图,由平衡方程求支座约束力分段列出剪力方程和弯矩方程,标出变量x 的取值根据剪力方程,求各控制面的剪力值,按比例绘剪力图。

材料力学M2

材料力学M2

内力图
q(x) q(x) q(x)
q(x) q(x) q(x)
FQ FQ FQ QQ F
qa/2 qa/2
x x x
例 题 一
M
内力图
q(x) q(x) q(x) q(x) q(x) q(x)
FQ FQ FQ FQ
qa
qa2/2
qa2 x x
例 题 二
x x
M M
内力图
q(x)
q(x)
q(x)
q(x)
FQ
q(x) q(x)
比较三种情形下梁的 受力、剪力和弯矩图的 相同 之处和不同之处
q(x)
FQ
q(x)
FQ
从中能得到什么 重要结论?
结论与讨论
q(x)
确定控 制面上剪力 和弯矩有几 种方法?怎 样确定弯矩 图上极值点 处的弯矩数 值?

q(x)
FQ


结论与讨论
确定控制面上剪力和弯矩有几种 方法?怎样确定弯矩图上极值点处的 弯矩数值?
结论与讨论
力系简化方法应用于确定控制面上剪力和弯矩 FP
a FP FP
a FQ= FP
FP a
FQ= FP
M= FP a M= FP a
结论与讨论
通过平衡微分方程的积分确定弯矩图上 极值点处的弯矩数值。

q(x) q(x)
dM FQ dM FQ dx dx
a e a
dM
FP2
FQ
FQ y
M
x
FQ
z
FN
Mx
z
平衡微分方程
总体平衡与局部平衡的概 念
平衡微分方程
总体平衡与局部平衡的概念

第二章 杆件的内力分析

第二章 杆件的内力分析
A
3 3
B 6 kN
2 2
C 3 kN 1
解: 1.分段求轴力
D
6 kN
FN 1
3 kN 3 kN
1
10 kN 10 kN 10 kN
1 、CD段
F
x
0, 10 FN1 0
FN 2
FN 1 10(kN) 2、BC 段
6 kN
3 kN 3 kN
F
x
0, 10 2 3 FN 2 0
若有单位需写上单位。
9
试作图示杆在均布荷载q作用下的轴力图。
B
x
ql

q
l
x
A

FN
FN ( x) qx
10
2、T及T图
(轴:发生扭转变形的杆件)
功率:P
单位:kW, PS
转速:n
外力偶矩:
单位:rpm
r/min
P kW m N m 9549 n rpm
P (PS) m (N m) 7024 n (rpm)
FN FN
FN为正
FN为负
扭矩T :外法线方向为正,内法线方向为负
T T
T为正
T为负
4
剪力(FS):顺时针为正,逆时针为负
FS FS
FS为正
FS为负
弯矩(M):下凸上凹为正,上凸下凹为负
M为正
M为负
5
2. 内力分量的确定 利用研究对象的静力平衡条件:
F M
x
0 0
F
y
0
y
F
z
0
z
FN 3
6 kN
3 kN
10 kN

(参考资料)材料力学72-必做题

(参考资料)材料力学72-必做题

第二章杆件内力与内力图2-2(b)、(d)、(g)试作图示各杆的轴力图,并确定最大轴力| F N |max 。

2-3(b)试求图示桁架各指定杆件的轴力。

2-4(c)试作图示各杆的扭矩图,并确定最大扭矩| T |max 。

2-5图示一传动轴,转速n =200 r/min ,轮C为主动轮,输入功率P=60 kW ,轮A、B、D均为从动轮,输出功率为20 kW,15 kW,25 kW。

(1)试绘该轴的扭矩图。

(2)若将轮C与轮D对调,试分析对轴的受力是否有利。

2-8(a)、(c)、(e)、(g)、(h)试列出图示各梁的剪力方程和弯矩方程。

作剪力图和弯矩图,并确定|F s |max及|M |max值。

2-9(a)、(c)、(d)、(f)、(g)、(i)、(k)、(l)、(m)试用简易法作图示各梁的剪力图和弯矩图,并确定|F s |max及|M |max值,并用微分关系对图形进行校核。

2-10设梁的剪力图如图(a)(d)所示(见教材p39)。

试作弯矩图和荷载图。

已知梁上无集中力偶。

2-11(b)试用叠加法绘出图示梁的弯矩图。

2-6一钻探机的功率为10 kW,转速n =180 r/min。

钻杆钻入土层的深度l= 40m。

若土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m,并作钻杆的扭矩图。

2-14图示起重机横梁AB承受的最大吊重F P=12kN,试绘出横梁AB的内力图。

第三章轴向拉压杆件的强度与变形计算3-1图示圆截面阶梯杆,承受轴向荷载F1=50kN与F2的作用,AB与BC段的直径分别为d1=20mm与d2=30mm,如欲使AB与BC段横截面上的正应力相同,试求荷载F2之值。

3-5变截面直杆如图所示。

已知A1=8cm2,A2=4cm2,E=200GPa 。

求杆的总伸长量。

3-7图示结构中,AB为水平放置的刚性杆,1、2、3杆材料相同,其弹性模量E=210GPa ,已知l =1m,A1=A2=100mm2,A3=150mm2,F P=20kN 。

材料力学第2章

材料力学第2章
第二章
轴向拉伸和压缩
1
§2.1 轴向拉伸和压缩的概念
当作用于杆上的外力合力的作用线与直杆的轴线 重合时,杆的主要变形是纵向伸长或缩短,这类 构件称为拉杆或压杆。 如图 所示三 角架中的AC 杆为拉杆, BC杆为压杆 。
2
右图所示的桁架 中的杆也是主要 承受拉伸或压缩 变形的。
轴向拉力和轴向压力的 概念可由右图给出,上 图为轴向拉力;下图为 轴向压力。
若设BC段内立柱的单位长度自重为q2、横截面面 积为A2,则:
q2 γ A2 19kN/m 0.37m 0.37m 2.6kN/m
3
15
例题 2.2
(b)图:这是在集中荷载单 独作用下,柱的轴力图。图 中的负号表示轴力为压力。
(c)图:这是在自重荷载单 独作用下,柱的轴力图。即 在B处的轴力为:
①画一条与杆的轴线平行且与杆等长的直线作基 线; ②将杆分段,凡集中力作用点处均应取作分段点; ③用截面法,通过平衡方程求出每段杆的轴力; 画轴力图时,截面轴力一般先假设为正的,这样 ,计算结果是正的,则就表示为拉力,计算结果 是负的,就表示为压力。 ④按大小比例和正负号,将各段杆的轴力画在基 线两侧,并在图上表示出数值和正负号。
7
例题 2.1
图a所示等直杆,求各段内截面上的轴力并作出 轴力图的轴力图。
8
例题 2.1
解: (1) 求约束反力
由平衡方程求出约束力 FR=10 kN。 (2)求各杆段截面轴力 杆件中AB段、BC段、CD段、DE段的轴力是不 同的。分别用四个横截面:1-1、2-2、3-3、4-4 ,截杆并取四个部分为研究对象。
25kN
(e)
20kNFxFra bibliotek 0 : FN 3 F3 F4 0

内力与内力图

内力与内力图

常见载荷作用下剪力图和弯矩图的特点
若一段梁上无载荷(即q=0),则剪力图为水平直线,弯 矩图为倾斜直线。剪力为正时,弯矩图为向右上方倾斜的 直线,剪力为负时则弯矩图向右下方倾斜,剪力为零时弯 矩图成为水平直线。 若一段梁上作用着均布载荷,则剪力图为斜直线,弯矩图 为二次抛物线。若均布力方向向下,则剪力图为向右下方 倾斜的直线,弯矩图为开口向下的抛物线,抛物线的顶点 的剪力等于零的截面。 在集中力作用的截面上,剪力图有突变,变化值等于该集 中力的大小,弯矩图上由出现折角。 在集中力偶作用的截面上,剪力图无变化,弯矩图上有突 变,变化值等于该集中力偶的力偶矩的大小。
2
ql
五 弯矩、剪力与载荷集度间的关系
在例3中,将弯矩方程对x求一阶导数,得
dM qx F Q dx
将剪力方程对x求一阶导数,得
dF Q dx
q
也就是说,弯矩方程对x的一阶导数等于剪力方程;剪力方程对x的一阶导数 等于载荷集度。这一关系并非只存在于该问题中,而是普遍成立的一个规律。 根据导数的几何意义,以上关系表明:弯矩图上某点的切线的斜率,等于对 应截面上的剪力;剪力图上某点切线的斜率等于对应截面上的载荷集度。根 据这一规律,还可得到常见载荷下剪力图和弯矩图的特点。
例4
例4 外伸梁受力如图所示,试画出其剪力图和弯矩图。
解:(1)根据梁的平衡条件求出梁的支座反力。
FA
qa 4
FB
3qa 4

例1 杆件受力如图所示,求指定截面上的轴力并画出轴力图。
• • • • • • • • • • • • • • 解:(1)用截面法求内力。 沿截面1-1截开,由左侧一段的平衡,有 FN1+10=0 所以 FN1=-10(kN) 沿截面2-2截开,由左侧一段的平衡,有 FN2-40+10=0 所以 FN2=40-10=30(kN) 沿截面3-3截开,由右侧一段的平衡,有 -FN3+20=0 所以 FN3=20( kN ) (2)根据计算结果作出轴力图。 (3)讨论:由以上计算过程可以看出,将 平衡方程中的外力都移至等号右端,则有 FN=ΣFie 也就是说,横截面上的轴力,等于其左侧 (或右侧)一段杆上所有外力的代数和。掌 握这一关系,有利于快速计算轴力并画出轴 力图。

材料力学第02章 拉伸、压缩与剪切

材料力学第02章 拉伸、压缩与剪切


Ⅰ - ○ 20 kN

F
x
0
FN1
Ⅰ 80kN Ⅱ
FN2 60 80 0
FN2 20kN
FN2 第三段:

30kN
60kN
F
x
0

FN3 30 0
FN3 30kN
FN3

例2
3kN
画图示杆的轴力图
2kN 2kN 10 kN 4kN 8kN
A
3kN
B
C
D
脆性材料 u ( bc) bt

u
n

n —安全因数 —许用应力

塑性材料的许用应力
脆性材料的许用应力
s
ns
bt
nb
p 0.2 n s bc n b
§2-6
§2-7 失效、安全因数和强度计算
解: A 轴力图
A1 B
○ -
A2 60kN 20 kN C D 20 kN ⊕
AB
BC
CD
FN AB 40 103 20MPa A1 2000 FN BC 40 103 40MPa A2 1000 FN CD 20 103 20MPa A2 1000
3、轴力正负号:拉为正、 F 压为负
0 FN F 0 FN F
F
§2-2
x
4、轴力图:轴力沿杆件轴 线的变化
目录
例1
60kN
画图示杆的轴力图

80kN

Ⅲ 50kN
30kN
第一段:

材料力学PPT第二章

材料力学PPT第二章

Q235钢的主要强度指标:s = 240 MPa,
b = 390 MPa
低碳钢拉伸试件图片
试件拉伸破坏断口图片
结合压缩曲线得到结论:颈缩过程,材 料的力学性质发生变化
塑性指标
1.延伸率
l1 l 100%
l
2.断面收缩率


A A1 A
100%
l1----试件拉断后的长度
A1----试件拉断后断口处的最小 横截面面积
F 用截面法取节点B为研究对象
Fx 0 FN1 cos 45 FN 2 0
x
Fy 0 FN1 sin 45 F 0
FN1 28.3kN
FN 2 20kN
A
FN1 28.3kN FN 2 20kN
1
2、计算各杆件的应力。
45° B
C
2
FN1
F
y
FN 2 45° B x
F
a
c
b
d
F FN dA
bd
A
dA A
A
FN
A
A 1
45°
C
2
FN1
y
FN 2 45° B
F
例题2.2
图示结构,试求杆件AB、CB的
应力。已知 F=20kN;斜杆AB为直
径20mm的圆截面杆,水平杆CB为 15×15的方截面杆。
B 解:1、计算各杆件的轴力。 (设斜杆为1杆,水平杆为2杆)
≥5%—塑性材料 <5%—脆性材料 σ
Q235钢: 20% ~ 30% ≈60%
冷作硬化
O
应力-应变(σ-ε)图

注意:
(1) 低碳钢的s,b都还是以相应的抗力除以试

材料力学第二章内力计算(3课时合并)

材料力学第二章内力计算(3课时合并)



FR
关 系

M



观察变形 提出假设
变形的分布规律
应力的分布规律
建立公式
Mechanics of Material
Chapter02 Calculation of internal force
教学要求 了解杆件内力的普遍情况 掌握拉压、扭转、弯曲的内力计算方法,熟悉截 面法的应用,绘制内力图
x
Mb /l
Mechanics of Material
弯曲变形的内力计算
y
q
A xC
FAy
l
FS q l / 2
B 例5 简支梁受均布载荷作用
x
FBy 解: FAy= FBy= ql/2
F S x = q l / 2 q x 0 x l
x M x = q lx / 2 q x 2 / 2
变形后的轴线
变形后轴线为对称面内的平面曲线
用梁轴线代替梁
Mechanics of Material
弯曲变形的内力计算
梁的力学模型的简化 梁的简化 取梁的轴线代替梁 载荷类型 支座的类型
静定梁的基本形式 简支梁(simply supported beam) 外伸梁(overhanging beam) 悬臂梁(cantilever beam)
Mechanics of Material
Chapter02 Calculation of internal force
Mechanics of Material
弯曲变形的内力计算
Mechanics of Material
弯曲变形的内力计算 关于对称弯曲
纵向对称面
具有纵向对称面

材料力学第五版第二章 1

材料力学第五版第二章  1

第二章 轴向拉伸和压缩
例 一等直杆受力情况如(a)图所示。试作杆的轴力图。
解:1.先求约束力。
由平衡方程
∑F
x
=0
得:FRA = 20KN
第二章 轴向拉伸和压缩
2. 计算各段的轴力。 AB段: 得 BC段: 得 CD段: 得
∑F
x
=0
FN1 = FRA = 20KN
∑F
x
=0
FN 2 = −30KN
第二章 轴向拉伸和压缩
斜截面上的正应力:
σα = pα cosα = σ cos α
2
斜截面的切应力:
τα = pα sin α = σ cosα sin α =
σ
2
sin 2α
α正负的规定:以 x 轴为起点,逆时针转向者为正,反之为负。
第二章 轴向拉伸和压缩
α = 0o 时
σα = σα max = σ τα = 0
∑F
x
=0
− FN 3 = 40KN
第二章 轴向拉伸和压缩
3.绘制轴力图
第二章 轴向拉伸和压缩
应力﹒ §2-3 应力﹒拉(压)杆内的应力 通常情况下,受力构件不同截面上内力是不相同的, 通常情况下,受力构件不同截面上内力是不相同的, 就是在同一截面各个点上内力也是不相同的。例如, 就是在同一截面各个点上内力也是不相同的。例如,图中 吊架横梁各个横截面上的内力是不相同的; 吊架横梁各个横截面上的内力是不相同的;就 是过 A 、B 两点的同一个截面上,各点的内力 两点的同一个截面上, 大小也不相同, 两点上的内力最大。 大小也不相同, A 、B 两点上的内力最大。 可见,在研究构件强度时, 可见,在研究构件强度时,对构件内各 个点受力情况十分关心,要引入应力这个概 个点受力情况十分关心,要引入应力这个概 应力 念。

材料力学 第2章

材料力学 第2章

第二章杆件的内力分析第一节杆件拉伸或压缩的内力一、轴向拉伸或压缩的概念轴向拉伸或压缩:由一对大小相等、方向相反、作用线与杆件轴线重合的外力作用下引起的,沿杆件长度发生的伸长或缩短。

二、工程实例三、轴力轴力图1、轴力与杆轴线重合的内力合力。

轴力符号:拉伸为正,压缩为负。

∑=0X0122=-+F F N kNF F N 242212-=-=-= ∑=0X34=-N FkNF N143==任一截面上的轴力等于该截面一侧轴向载荷的代数和,轴向载荷矢量离开该截面者取正,指向该截面者取负。

2、轴力图正对杆的下方,以杆的左端为坐标原点,取平行于杆轴线的直线为x 轴,并称为基线,垂直于x 轴的N 轴为纵坐标。

正值绘在基线的上方,负值绘在基线的下方,最后在图上标上各截面轴力的大小。

注意:轴力图与基线形成一闭合曲线。

轴力图必须与杆件对齐。

在轴向集中力作用的截面上,轴力图将发生突变,其突变的绝对值等于轴向集中力的大小,而突变方向:集中力箭头向左时向上突变,集中力箭头向右时向下突变(图是从左向右画)。

例2-10第二节剪切的内力一、剪切的概念剪切:由一对相距很近、大小相等、方向相反的横向外力引起的横截面沿外力作用方向发生的相对错动。

剪切面或受剪面 m-m二、工程实例三、剪力第三节杆件扭转的内力一、扭转的概念扭转:由一对大小相等、方向相反、作用面都垂直于杆轴的力偶引起的杆的任意两个横截面绕杆轴线的相对转动。

ϕ:扭转角;γ:剪切角二、工程实例三、扭矩某一截面上的扭矩等于其一侧各外力偶矩的代数和。

外力偶矩矢量指向该截面的取负,离开该截面的取正。

四、 扭矩图在外力偶作用的截面上,扭矩图将发生突变,其突变的的绝对值等于该外力偶矩的大小,而突变方向:外力偶矩矢量方向向左的向上突变,向右则向下突变。

外力偶矩的计算公式:)(9550m N nP Mk ⋅=注意:kP 单位为kw ;n 单位为min r ;M 单位为m N ⋅第四节 梁弯曲时的内力一、 弯曲 变形的基本概念弯曲变形:由一对大小相等、方向相反,位于杆的纵向平面内的力偶引起的,杆件的轴线由直线变为曲线。

2杆件内力分析

2杆件内力分析

做图示杆件的内力图
FA=10kN
FA=10kN
2m FN
FA=10kN
20kN
5kN/m
x
2m
2m
20kN FN
FN 10kN (0 x 2m) FN 10kN (2m x 4m)
FA=10kN
20kN
5kN/m FN
FN 20 10 5(x 4) 0
FN 30 5x(kN) (4m x 6m)
FN
max

FN

2


P
内力图
PR
--
R

P
M图
M PRsin ( )
M
max

M

2


PR
弯矩符号规定:使曲率增加为正;反之为负。
P
FS Pcos
R
-
P
P
FS图
FS max FS 0 FS P
qa 极值条件:FS=0 M图
3qa 4
qa2 4
9qa2 32
3qa2 4
qa2
用叠加法作内力图
做梁的弯矩图
q
A
a
P qa
B
a
a
A
B
C
qa2
8
1 qa2

2
q

qa 2
MP
a 2
qa2
A
B
C
1 qa2
2

Mq
P qa
C
多跨静定梁、刚架及曲杆的内力图
多跨静定梁 —— 带“中间铰”的连续静定梁。

第二章 杆件的内力分析

第二章 杆件的内力分析

第二章杆件的内力分析要想对杆件进行强度、刚度和稳定性方面的分析计算,首先必须知道杆件横截面上的内力,因此,本章主要对此作分析讨论。

首先引入了内力的基本概念和求内力的基本方法——截面法,然后讨论了各种变形情况下截面上的内力及求解和内力图的绘制,这是材料力学最基本的知识。

第一节内力与截面法杆件因受到外力的作用而变形,其内部各部分之间的相互作用力也发生改变。

这种由于外力作用而引起的杆件内部各部分之间的相互作用力的改变量,称为附加内力,简称内力。

内力的大小随外力的改变而变化,它的大小及其在杆件内部的分布方式与杆件的强度、刚度和稳定性密切相关。

为了研究杆件在外力作用下任一截面m-m上的内力,可用一平面假想地把杆件分成两部分,如图2-1a。

取其中任一部分为研究对象,弃去另一部分。

由于杆件原来处于平衡状态,截开后各部分仍应保持平衡,弃去部分必然有力作用于研究对象的m-m截面上。

由连续性假设,在m-m截面上各处都有内力,所以内力实际上是分布于截面上的一个分布力系(图2-1b)。

把该分布内力系向截面上某一点简化后得到内力的主矢和主矩,以后就称之为该截面上的内力。

但在工程实际中更有意义的是主矢和主矩在确定的坐标方向上的分量,如图2-1c,这六个内力分量分别对应着四种基本变形形式,依其所对应的基本变形,把这六个内力分量分别称为轴力、剪力、扭矩和弯矩。

(1)轴力。

沿杆件轴线方向(x轴方向)的内力分量FN,它垂直于杆件的横截面,使杆件产生轴向变形(伸长或缩短)。

(2)剪力。

与截面相切(沿y轴和z轴方向)的内力分量FQy、FQz ,使杆件产生剪切变形。

(3)扭矩。

绕x轴的主矩分量Mx,它是一个力偶,使杆件产生绕轴线转动的扭转变形。

(4)弯矩。

绕y轴和z轴的主矩分量My、Mz,它们也是力偶,使杆件产生弯曲变形。

为了求出这些内力分量,只需对所研究部分列出平衡方程就可。

这种计算截面上内力的方法通常称为截面法。

其步骤可归纳为:(1) 沿需要计算内力的截面假想地把构件分成两部分,取其中的任一部分作为研究对象, 弃去另一部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
l
FRB
FQ
ql + - ql ql2/2
x
2、选择控制面,并求出其上的剪力与弯矩 C右截面:FQ=0,M=0 A左截面:FQ =ql,M=ql2/2 A右截面:FQ =0,M=ql2/2 B左截面:FQ =-ql,M=0 3 、根据 M 、 FQ 、 q 之间的关系画出剪力图和 弯矩图
x
M

材料力学
FN(B')
M(B') FQ(B') B B'
F
x
0 , ql ql FQ B 0
FQ B 0
Fy 0 , FN B
FN B ql 2
材料力学
内力与内力分量
材料力学
弹性体在外力作用下产生的附加内力
F1
F2
F3
假想截面
Fn
F1
F
2
F
3
Fn
材料力学
弹性体内力的特征:
F1
F
2
F
3
Fn
(1)连续分布力系 (2) 与外力组成平衡力系 ( 特殊情形下内力本身形成自 相平衡力系)
材料力学
内力主矢与内力主矩
F1
分布内力
F
3
F1 FR
内力主矢与主矩
B
C
qa
a
FRB
A右截面:FQ=9qa/4,M=0 B左截面:FQ =-7qa/4,M=qa2 B右截面:FQ =-qa,M=qa2 C左截面:FQ =-qa,M=0
3、建立剪力坐标系并标出控制面上的剪力
4、根据FQ、q之间的关系画出剪力图 5、建立弯矩坐标系并标出控制面上的弯矩
FQ 9qa/4
6、根据M、FQ、q之间的关系画出弯矩图 + -
材料力学
ΣFy=0: FQ+q dx- FQ-d FQ =0
ΣMC=0:
-M+(M+dM)- FQ dx-q dx · dx /2=0 略去高阶项,得到
dFQ dx
q
dM FQ dx
d2M q 2 dx
此即适用于所有平面载荷作用情形的平衡微分方程。 根据上述微分方程,由载荷变化规律,即可推知内力FQ 、M 的变化规律。
材料力学
梁(杆件)弯曲变形时的内力图
材料力学
剪力图与弯矩图
作用在梁上的平面载荷如果不包含纵向力,这时梁 的横截面上只有剪力FQ和弯矩M两种内力分量。表 示剪力和弯矩沿梁轴线方向变化的图形,分别称为 剪力图(diagram of shearing forces)和弯矩图 (diagram of bending moment)。
FQ/kN
d右
1.11
b左
x
+ -
6、根据M、FQ、q之间的关系画出弯矩图
c左/c右 d左
x
a右
M/kN· m
0.89
a右
7、求最大剪力和弯矩 从内力图上不难看出:
FQ M
max max
0.335
c右
1.335
- d左/d右
1.665
b左
1.11kN 1.665kN m
c左
材料力学
例题2-4
材料力学
剪力图与弯矩图的绘制方法与轴力图大体相似,但略有差 异。主要步骤如下:
根据载荷及约束力的作用位置,确定控制面。
应用截面法确定控制面上的剪力和弯矩数值。 建立FQ——x和M——x 坐标系,并将控制面上的剪力 和弯矩值标在相应的坐标系中。 应用平衡微分方程确定各段控制面之间的剪力图和弯矩 图的形状,进而画出剪力图与弯矩图。
轴力的正负号与观察者位置无关;
剪力的正负号与观察者位置无关;
弯矩的正负号与观察者位置有关。
材料力学
轴力的正负号与观察者位置无关
材料力学
剪力的正负号与观察者位置无关
材料力学
弯矩的正负号与观察者位置有关
材料力学
刚架内力图的画法
(1) (2) (3) (4) 无需建立坐标系; 控制面、平衡微分方程; 弯矩的数值标在受拉边; 轴力、剪力画在里侧和外侧均可, 但需标出正负号;
试画出:杆件的轴力图。 解:1 求约束反力
FRA A l
FRA
FRA
FRA F2 F1 5kN
2 求AB段轴力
FAB F1 l B F1 FBC F2 C
FAB FRA 5kN
3 求BC段轴力
FBC FRA F1 5 5 10kN
材料力学
4 画轴力图
FRA A
解方程得:FRA=9qa/4, FRB=3qa/4 2、选择控制面,并求出其上的剪力与弯矩 应用截面法和平衡方程可以求出: A右截面:FQ=9qa/4,M=0 B左截面:FQ =-7qa/4,M=qa2 B右截面:FQ =-qa,M=qa2 C左截面:FQ =-qa,M=0
材料力学
q
A
D FRA
4a
x
qa/2
材料力学
q q E F
qa/2
FQ
qa/2
qa2 ME 8
x
qa/2
qa2 8
qa2 MF 8
x
qa2 8
M
材料力学
q q
材料力学
刚架的内力图
材料力学
刚架的组成—横梁、立柱与刚节点
特点
刚节点
B
横梁
面内载荷作用下,刚架各杆横截面上的 内力分量——轴力、剪力和弯矩。
立柱
内力分量的正负号与观察者位置的关系:
材料力学
刚体平衡概念的扩展和延伸:总体平衡,则其任何局部也必 然是平衡的。
材料力学
截面法
用假想截面从所要
求的截面处将杆截为 两部分 分的平衡

考察其中任意一部
由平衡方程求得横 截面的内力分量
C
F =0, F =0, M =0,
x y C
材料力学
例题2-4(P32)
q
例题2-5(P34)
q B
A
D FRA
4a
C
qa
a
C
q l
A FRA
B
FRB
l
FRB
FQ
FQ 9qa/4
ql +
x
+ -
qa 81qa2/32 M 7qa/4
x
- ql ql2/2
M

qa2 x

x
材料力学
杆件内力变化的一般规律
在荷载无突变的一段杆的各截面上内力按相同的规律变 化(函数连续)。
材料力学
控制面
外力规律发生变化截面——集中力、集中力偶作用 点、分布荷载的起点和终点处的横截面。
第2章杆件的内力与内力图
材料力学 第1章 基本概念 第2章 杆件的内力与内力图
第4章 弹性杆件 横截面上的 正应力分析 第3章 最简单的 材料力学 问题
第5章 弹性杆件 横截面上的 切应力分析 第9章 弹性杆件 的位移分析 与刚度设计 第10章 压杆的弹性 稳定性分析 与稳定性 设计
第6章 应力状态分析 第7章 一般应力状态下的 强度失效分析与设计准则 第8章 复杂情况下的强度设计
解方程得:FRA=-0.89 kN , FRB=-1.11 kN
2、选择控制面,并求出其上的剪力与弯矩 应用截面法和平衡方程可以求出: A右截面:FQ=-0.89kN,M=0 C左截面:FQ =-0.89kN,M=-1.335kN· m C右截面:FQ =-0.89kN,M==-0.335kN· m D左截面:FQ =-0.89kN,M=-1.665kN· m D右截面:FQ =1.11kN,M=-1.665kN· m B左截面:FQ =1.11kN,M=0
C右截面:
C左
FRA 1.5 0 MC左 FRA 1.5
FRA 1.5 - 1kN m 0
M 0 M
C右
M C右 FRA 1.5 1kN m
M C右 M C左 1kN m
材料力学
例题6
q q
qQ
qa/2
材料力学
A
C
1kN.m
D
2kN
B
FRA
1.5m
1.5m
1.5m
FRB
A右截面:FQ=-0.89kN,M=0 C左截面:FQ =-0.89kN,M=-1.335kN·m C右截面:FQ =-0.89kN,M==-0.335kN·m D左截面:FQ =-0.89kN,M=-1.665kN·m D右截面:FQ =1.11kN,M=-1.665kN·m B左截面:FQ =1.11kN,M=0 3、建立剪力坐标系并标出控制面上的剪力 4、根据FQ、q之间的关系画出剪力图 5、建立弯矩坐标系并标出控制面上的弯矩
F3 M
材料力学
内力分量
FQ
FR
Mx
FN MB M
FN——轴力:产生轴向的伸长或缩短变形; FQ——剪力:产生剪切变形; Mx——扭矩:产生扭转变形; MB( My或Mz)——弯矩:产生弯曲变形。
材料力学
内力分量的正负号规则
FNx

FNx
左上右下的剪切变形 FQy

FQy
M⊕ Mz z
向上凹的变形
q
A
FRA
B
C
qa
a
4a
FRB
梁由一个固定铰链支座和一个辊轴支座所 支承,但是梁的一端向外伸出,这种梁称 为外伸梁。梁的受力以及各部分尺寸均示 于图中。试画出:其剪力图和弯矩图 , 并 确定剪力和弯矩绝对值的最大值。 解:1、求支反力 列平衡方程:
M M
A B
0, FRB 4a qa 5a q 4a 2a 0 0, FRA 4a qa a q 4a 2a 0
相关文档
最新文档