高中数学人教版必修4知识点总结
高中数学必修4(人教B版)第三章三角恒等变换3.1知识点总结含同步练习题及答案
tan 60∘ − tan 15∘ 1 + tan 60∘ ⋅ tan 15∘ = tan(60∘ − 15∘ ) = tan 45∘ = 1.
(2)根据tan α + tan β = tan(α + β)(1 − tan α tan β) ,则有 原式 = tan 120 ∘ (1 − tan 55∘ tan 65∘ ) − √3 tan 55∘ tan 65∘
π ),向左平移 m 个单位后,得到的函数为 3 π π π y = 2 sin (x + + m),若所得到的图像关于 y 轴对称,则 + m = + kπ, k ∈ Z ,所以 3 3 2 π π m = + kπ ,k ∈ Z.取 k = 0 时,m = . 6 6
高考不提分,赔付1万元,关注快乐学了解详情。
和差角公式 辅助角公式
三、知识讲解
1.和差角公式 描述: 两角差的余弦公式 对于任意角α,β 有cos(α − β) = cos α cos β + sin α sin β,称为差角的余弦公式,简记C(α−β) . 两角和的余弦公式 对于任意角α,β 有cos(α + β) = cos α cos β − sin α sin β,称为和角的余弦公式,简记C(α+β) . 两角和的正弦公式 对于任意角α,β 有sin(α + β) = sin α cos β + cos α sin β,称为和角的正弦公式,简记S (α+β) . 两角差的正弦公式 对于任意角α,β 有sin(α − β) = sin α cos β − cos α sin β,称为差角的正弦公式,简记S (α−β) . 两角和的正切公式 对于任意角α,β 有tan(α + β) = 两角差的正切公式 对于任意角α,β 有tan(α − β) =
高中数学必修4知识点清单
高中数学必修 4 知识点第一章 三角函数⎧正角:按逆时针方向旋转形成的角⎪1、任意角⎨负角:按顺时针方向旋转形成的角⎪2、象限的角:在直角坐标系内,顶点与原点重合,始边与 x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限,叫做轴线角。
{ k ⋅ 360 }第一象限角的集合为 α < α < k ⋅ 360 + 90 , k ∈ Z{ k ⋅ 360 }第二象限角的集合为 α + 90 < k ⋅ 360 + 180 , k ∈ Z{ k ⋅ 360 }第三象限角的集合为 α + 180 < α < k ⋅ 360 + 270 , k ∈ Z{k ⋅ 360 }第四象限角的集合为 α + 270 < α < k ⋅ 360 + 360 , k ∈ Z终边在 x 轴上的角的集合为{α α = k ⋅ 180 , k ∈ Z }终边在 y 轴上的角的集合为{α α = k ⋅ 180 + 90 , k ∈ Z } 终边在坐标轴上的角的集合为{α α = k ⋅ 90 , k ∈ Z }3、与角α 终边相同的角,连同角α 在内,都可以表示为集合{ β | β = α + k ⋅360 , k ∈ Z }4、弧度制:(1)定义:等于半径的弧所对的圆心角叫做 1 弧度的角,用弧度做单位叫弧度制。
半径为 r 的圆的圆心角α 所对弧的长为 l ,则角α 的弧度数的绝对值是 α = r l.(2)度数与弧度数的换算:360o = 2π ,180 = π rad ,1 rad = ( 180) ≈ 57.30 = 57 18'π 注:角度与弧度的相互转化:设一个角的角度为 n o ,弧度为α ;n o = n o ⋅ π = n π180o ⎛180α ⎫oo①角度化为弧度:180180 ,②弧度化为角度:α = α ⋅= ⎪π⎝ π ⎭(3)若扇形的圆心角为α (α 是角的弧度数),半径为 r ,则:弧长公式: ①l = n π (用度表示的),② l =| α |r (用弧度表示的) ;180扇形面积:① s = n πr 2(用度表示的) ② S = 1 | α | r 2 = 1 lr (用弧度表示的)扇扇 360 2 25、三角函数:(1)定义①:设α 是一个任意大小的角,α 的终边上任意一点 P 的坐标 是 (x , y ),它与原点的距离是 r (OP = r = x 2 + y 2 > 0),P (x ,y ) 则 sin α = r y , cos α = r x , tan α = x y(x ≠ 0)定义②:设α是一个任意角,它的终边与单位圆交于点 P (x ,y ),那么 v 叫做α的正弦,记作 sin α,即 sin α = y ; u 叫做α的余弦,记作 cos α,即 cos α=x ; 当α的终边不在 y 轴上时,y 叫做α的正切,记作 tan α, 即 tan α= y P (x ,y ). x x(2)三角函数值在各象限的符号:口诀:全正,S 正,T 正,C 正。
数学必修四知识点(15篇)
数学必修四知识点(15篇)数学必修四知识点1平面向量戴氏航天学校老师总结加法与减法的代数运算:(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).向量加法与减法的几何表示:平行四边形法则、三角形法则。
戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);两个向量共线的充要条件:(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.(2)若=(),b=()则‖b.平面向量基本定理:若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得=e1+e2 高考数学必修四学习方法养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。
虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。
学生们不得不预习课本。
我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。
在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。
同时,在课堂上安排笔记也是必要的。
在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。
这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。
高考数学必修四学习技巧养成良好的学习数学习惯多质疑、勤思考、好动手、重归纳、注意应用。
学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的'脑海中。
良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
及时了解、掌握常用的数学思想和方法中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。
最新人教版高中数学必修4第二章疱工巧解牛
疱工巧解牛知识•巧学一、向量1.数学中,我们把既有大小又有方向的量叫做向量,而把那些只有大小,没有方向的量叫做标量.2.具有大小和方向的量称为向量.更具体一些,我们先把向量理解为“一个位移”或“一点相对于另一点位置”的量.这是因为有些向量不仅有大小和方向,而且还有作用点.例如,力就是这样的量.显然,若用同样大小的力作用于一弹簧上,作用点不同,效果是不同的.有些向量是只有大小和方向,而无特定的位置,例如,位移、速度等.通常把后一类向量叫做自由向量.本章,我们所接触的向量,若无特别说明,都认为是自由向量.也就是说,本章所学的向量只有大小和方向两个要素.学法一得数学中的向量是由大小和方向唯一确定的,是与起点无关的向量.也就是说,只要不改变它的大小和方向,是可以任意平行移动的.辨析比较①数量只有大小,是一个代数量,而向量不仅有大小,还有方向(两重性);②数量能比较大小,而向量不能比较大小.例如,a>b没有意义,而|a|>|b|是有意义的;③数量可以进行代数运算,如数的加、减、乘、除运算,而向量只能按向量加法、减法的平行四边形法则和三角形法则或向量数乘的运算律去运算.二、有向线段在物理学中,表示位移的最简单方法是用一条带箭头的线段,箭头的方向表示位移的方向,线段的长度表示位移的大小.速度和力也是用这种方法表示的,箭头的方向分别表示速度和力的方向,线段的长度分别表示速度和力的大小.1.定义:一般地,在线段AB的两个端点中,规定一个顺序,假设A为起点,B为终点,我们说线段AB具有方向,具有方向的线段叫做有向线段.显然,它的方向由A指向B.2.表示方法:以A为起点,以B为终点的有向线段记作AB.应注意始点一定要写在终点的前面.如图2-1-3.图2-1-33.有向线段的三要素:已知,线段的长度也叫做有向线段AB的长度,记作||.有向线段包含三个要素:起点、方向、长度.显然有向线段的终点由它的起点、方向和长度唯一确定.辨析比较由向量与有向线段的组成要素可知,向量和有向线段是有区别的.但是当我们约定有向线段的起点也是任意的时候,它们就是相同的了.我们就可以说“向量就是有向线段,有向线段就是向量”.三、向量的表示法1.用有向线段表示向量.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.向量的长度(或称模),记作||.如图2-1-4所示.规定了合适的比例尺后,平面上的向量就可以用有向线段来表示了.2.用字母表示向量.向量印刷时可用黑体小写字母如a 、b 、c 来表示,书写用、、c 来表示,还可用表示向量的有向线段起点和终点的字母表示.四、两个特殊的向量1.零向量:长度(模)为0的向量,记作0.零向量的方向是不确定的.误区警示 注意0与0的区别:0是一个向量,具有方向,而0是数量,没有方向.2.单位向量:长度(模)为1个单位的向量叫做单位向量.显然,单位向量有无数个;单位向量的大小相等;单位向量不一定相等.五、平行向量1.定义:方向相同或相反的非零向量叫做平行向量.如图2-1-5,a ,b ,c 是平行向量.图2-1-5通常记作a ∥b ∥c .2.规定零向量与任一向量平行,即对于任意向量a ,都有0∥a .六、相等向量长度相等且方向相同的向量叫做相等向量.如图2-1-6,用有向线段表示的向量a 与b 相等,记作a =b .图2-1-6对于相等向量的理解要注意以下几个问题:(1)零向量与零向量相等,即0=0.(2)任意两个相等的非零向量,都可以用一条有向线段来表示,并且与有向线段的起点无关.(3)由相等向量的定义可知,对一个向量,只要不改变它的大小和方向,可任意平移(自由向量的起点可任意选定).如图2-1-7,容易看出:332211B A B A B A ==.由以上分析,一个平面向量的直观形象是平面上“同向且等长的有向线段的集合”.学法一得判断两个向量相等的唯一依据就是它的定义,即只需比较两个向量的模(有向线段的长度)是否相等、方向是否相同,与它们所在的直线是否共线无关.七、共线向量由于任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量.如图2-1-8,a、b、c是一组平行向量,任作一条与a所在直线平行的直线l,在l上任取一点O,则可在l上分别作出=a,=b,=c.图2-1-8学法一得任一向量都与它自身是平行向量,因为零向量的方向不确定,所以规定零向量与任一向量都是平行向量.由于平行向量的基线互相平行或重合,所以其方向相同或相反,向量平行与直线平行不同,向量平行包括基线重合的情况,而直线平行一般不包含重合的情形. 典题•热题知识点一向量例1 指出下列概念是不是向量:(1)作用于物体上的大小为10 N,方向是南偏西30°的力;(2)温度表中表示零上、零下的温度;(3)物体M沿东北方向移动了8 m的位移.思路分析:根据向量定义可以判别.解:(1)是向量.因为力是既有大小又有方向的量;(2)不是.因为温度表可以用带正负号的实数来表示;(3)是向量.因为位移是既有大小又有方向的量.知识点二向量的表示法例2 如图2-1-9,在平行四边形ABCD中,用有向线段表示图中向量,正确的是( )图2-1-9A.AD,,BC,DCB.DA,BA,BC,DCC.,,,D.,,,思路分析:向量可用有向线段来表示,箭头的指向是从向量的起点指向终点的方向.答案:C知识点三两个特殊的向量例 3 把平面上一切单位向量的起点归结到同一点,那么这些向量的终点所构成的图形是( )A.一条线段B.一段弧C.一个圆D.圆上一群孤立的点思路分析:因为单位向量的模是1,所以它的终点到公共点的距离都是1,符合圆的定义,故选C.答案:C知识点四平行向量例4 命题“若a∥b,b∥c,则a∥c”( )A.总成立B.当a≠0时成立C.当b≠0时成立D.当c≠0时成立思路分析:这里要作出正确选择,就要探求题中命题成立的条件.∵零向量与其他任何非零向量都平行,∴当两非零向量a、c不平行而b=0时,有a∥b,b∥c,但这时命题不成立,故不能选择A,也不能选择B与D,只能选择C.答案:C方法归纳本例说明向量平行的传递性要成立,就需“过渡”b向量不为零向量.事实上,在b≠0的情况下:①a≠0,c≠0时,∵a∥b,∴a与b同向或反向.又∵b∥c,∴b与c同向或反向.∴a与c同向或反向.∴a∥c.②若a与c中有一个为零向量,则另一个无论为零向量还是不为零向量,均有a∥c.由以上①②可以确定C是正确的.例5 如图2-1-10,D、E、F分别是△ABC的三边AB、BC、AC的中点,写出与平行的向量.图2-1-10思路分析:线段DF是△ABC的中位线,凡是与平行的有向线段都是与平行的向量.结合三角形中位线的性质可以得出结论.解:与平行的向量有、EC.知识点五相等向量例6 (1)如图2-1-11,D、E、F依次是等边△ABC的边AB、BC、AC的中点,在以A、B、C、D、E、F为起点或终点的向量中,找出与向量相等的向量.图2-1-11 图2-1-12(2)如图2-1-12,设点O为正八边形ABCDEFGH的中心,分别写出与、、、相等的向量.思路分析:寻找相等向量,应写出给定向量的相等向量,应结合图形的几何性质,如三角形中位线平行于底边且等于底边的一半等.先确定方向,再确定长度.解:(1)与相等的向量有,;(2)与OA相等的向量是EO与OB相等的向量是DO;与OC相等的向量是GO;与OD相等的向量是HO.方法归纳在研究相等向量时,要充分利用平面图形的几何性质,如平行四边形的对边平行且相等,对角线互相平分;三角形的中位线平行且等于底边的一半;梯形的中位线平行于两底且它的长等于两底长的和的一半等.知识点六共线向量与相等向量例7 判断下列命题的真假.(1)直角坐标系中坐标轴的非负半轴是向量;(2)若两个向量相等,则两个向量平行;(3)向量与是共线向量,则A、B、C、D必在同一条直线上;(4)向量的模是一个正实数;(5)若|a|=|b|,则a=b.思路分析:判断上述命题的真假性,需细心辨别才能识其真面目.解:(1)直角坐标系中坐标轴的非负半轴,虽有方向之别,但无大小之分,故命题是错误的.(2)由于两个向量相等,必知这两个向量的方向与长度均一致,故这两个向量一定平行,所以,此命题正确.(3)不正确.由与共线,可以推知与平行或共线,故不一定能断定A、B、C、D在同一条直线上.∴此命题不正确.(4)不正确.因为零向量的模是零.(5)不正确.当a与b的方向不同时,a与b一定不相等.例8 试讨论以下几个问题:(1)平面向量是否一定方向相同?(2)共线向量是否一定相等?(3)起点不同,但方向相同且模相等的几个向量是不是相等的向量?(4)不相等的向量,一定不平行.(5)相等的非零向量,若起点不同,终点一定不相同.(6)非零向量的单位向量唯一.解:(1)否,还可以方向相反.(2)否,共线向量的方向相同或相反,大小不一定相等.(3)是,因为向量与起点的位置无关.(4)否,例如模不等的共线向量.(5)对,可以用反证法证明.(6)不对,因为任一非零向量a 的单位向量为±||a a . 问题•探究交流讨论探究问题 在初学本节时,由于受到实数学习中的负面影响,或相关概念理解不深,易发生一些错误的判断,请问你们能不能归纳出一些常见的错误判断?探究过程:学生甲:由于向量可以用有向线段来表示,有向线段的长度表示向量的大小,方向表示向量的方向,所以容易出现“向量就是有向线段”的错误判断.学生乙:在实数中,若|a|=|b|,则有a=b 或a=-b ,受它的影响易出现“若|a |=|b |,则有a =b 或a =-b ”的错误论断.学生丙:还有一条,由于实数中零书写的影响,容易出现“若|a |=0,则a =0”的错误判断. 学生丁:由于零向量与任意向量平行,当b =0时,不共线的两个非零向量a 、c 都与b 平行,即a ∥b ,b ∥c ,但受平面几何知识的影响,就易出现“若a ∥b ,b ∥c ,则a ∥c ”的错误判断. 探究结论:在本节中易出的错误判断有:“向量就是有向线段”“若|a |=|b |,则有a =b 或a =-b ”“若|a |=0,则a =0”“向量与向量是共线向量,则点A 、B 、C 、D 必在同一条直线上”“向量AB 与向量CD 平行,线段AB 与线段CD 平行”等错误判断.误区陷阱探究问题 “向量就是有向线段”这个观点是否正确?探究过程:在画图时,向量常用有向线段来表示,有向线段的长度表示向量的大小(模),有向线段的方向表示向量的方向,因此,有向线段是向量的一种表示方法.此外有向线段是一个图形,它包括了起点、方向和长度三个要素,而向量是一个量,它只包含了方向和大小两个要素.也就是说,对于一个向量,只要不改变它的大小和方向,是可以任意平移的.因此,用有向线段表示向量时可以任意选取起点.再有起点不同,长度相等和方向相同的两个有向线段是不同的有向线段,但它们可以表示同一个向量.因此不能说向量就是有向线段.探究结论:“向量就是有向线段”这个观点是错误的.不能说向量就是有向线段,和向量相比,有向线段多了起点这个要素.材料信息探究问题 向量又称矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量,大约公元前350年,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.那么向量又是如何进入数学的?探究过程:“向量”一词来自力学、解析几何中的有向线段.向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量.例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量.在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的.这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以将线性代数方法应用到广阔的自然科学领域中去了.因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用.而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型.探究结论:向量能够进入数学并得到发展,是从复数的几何表示开始的.18世纪末,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.。
【精品】高中数学 必修4_三角函数的诱导公式_讲义 知识点讲解+巩固练习(含答案)提高
三角函数的诱导公式【学习目标】1.借助单位圆中的三角函数线导出诱导公式(απαπ±±,2的正弦、余弦、正切);2.掌握并运用诱导公式求三角函数值,化简或证明三角函数式. 【要点梳理】 要点一:诱导公式 诱导公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin αα-=-, cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式三:sin[((21)]sin k απα++=-, cos[(21)]cos k απα++=-, tan[(21)]tan k απα++=,其中k Z ∈诱导公式四:sin cos 2παα⎛⎫+= ⎪⎝⎭, cos sin 2παα⎛⎫+=- ⎪⎝⎭.sin cos 2παα⎛⎫-= ⎪⎝⎭, cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈ 要点诠释:(1)要化的角的形式为α±⋅ο90k (k 为常整数); (2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4)sin cos cos 444x x x πππ⎛⎫⎛⎫⎛⎫+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;cos sin 44x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭.要点二:诱导公式的记忆诱导公式一~三可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.诱导公式四可用口诀“函数名改变,符号看象限”记忆,“函数名改变”是指正弦变余弦,余弦变正弦,为了记忆方便,我们称之为函数名变为原函数的余名三角函数.“符号看象限”同上.因为任意一个角都可以表示为k ·90°+α(|α|<45°)的形式,所以这六组诱导公式也可以统一用“口诀”: “奇变偶不变,符号看象限”,意思是说角90k α⋅±o(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值. ①已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;②已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;③一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式. 【典型例题】类型一:利用诱导公式求值【高清课堂:三角函数的诱导公式385952 例2】例1.求下列各三角函数的值: (1)252525sincos tan()634πππ++-; (2)()()cos 585tan 300---o o(3)2222132131sin cos 6tan 10cot 243ππππ-+-⎛⎫⎛⎫⎛⎫⎪⎪⎪⎝⎭⎝⎭⎝⎭【思路点拨】利用诱导公式把所求角化为我们熟悉的锐角去求解. 【答案】(1)0(2)2-(3)16【解析】(1)原式=sin(4)cos(8)tan(6)634ππππππ+++-+sincostan634111022πππ=+-=+-=(2)原式=cos(18045)tan(36060)++-o o o o =cos 45tan 60--o o= (3)原式=2222sin (6)cos (5)6tan 10cot (10)243πππππππ+-++-+=2222sin cos 6tan 0cot 243πππ-+-=111023-+-=16【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值.(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具. 举一反三:【变式】(1)10sin 3π⎛⎫- ⎪⎝⎭;(2)31cos 6π;(3)tan (-855°).【答案】(1)2(2)2-(3)1 【解析】(1)1010sin sin 33ππ⎛⎫-=- ⎪⎝⎭44sin 2sin 33πππ⎛⎫=-+=- ⎪⎝⎭sin sin sin 3332ππππ⎛⎫⎛⎫=-+=--==⎪ ⎪⎝⎭⎝⎭.(2)3177coscos 4cos 666ππππ⎛⎫=+= ⎪⎝⎭cos cos 662πππ⎛⎫=+=-=- ⎪⎝⎭. (3)tan(-855°)=tan(-3×360°+225°)=tan225°=tan(180°+45°)=tan45°=1. 例2.已知函数()sin()cos()f x a x b x παπβ=+++,其中a 、b 、α、β都是非零实数,又知f (2009)=-1,求f (2010).【解析】 (2009)sin(2009)cos(2009)f a b παπβ=+++sin(2008)cos(2008)a b ππαππβ=+++++sin()cos()sin cos (sin cos )a b a b a b παπβαβαβ=+++=--=-+.∵f (2009)=-1 ∴sin cos 1a b αβ+=. ∴(2010)sin(2010)cos(2010)f a b παπβ=+++sin cos 1a b αβ=+=.【总结升华】 求得式子sin cos 1a b αβ+=,它是联系已知和未知的纽带.解决问题的实质就是由未知向已知的转化过程,在这个转化过程中一定要抓住关键之处.举一反三:【变式1】 已知1cos(75)3α︒+=,其中α为第三象限角,求cos(105°―α)+sin(α―105°)的值.【答案】13【解析】 ∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=13-,sin(α―105°)=―sin[180°-(75°+α)]=-sin(75°+α), ∵α为第三象限角,∴75°+α为第三、四象限角或终边落在y 轴负半轴上.又cos(75°+α)=13>0,∴75°+α为第四象限,∴sin(75)3α︒+===-.∴11cos(105)sin(105)333αα︒-+-︒=-+=.【总结升华】 解答这类给值求值的问题,关键在于找到已知角与待求角之间的相互关系,从而利用诱导公式去沟通两个角之间的三角函数关系,如:75°+α=180°-(105°-α)或105°-α=180°-(75°+α)等.【变式2】已知3sin()2παπβ⎛⎫-=+ ⎪⎝⎭))απβ-=+,且0<α<π,0<β<π,求α和β的值.【解析】由已知得sin αβ=αβ=. 两式平方相加,消去β,得22sin 3cos 2αα+=, ∴21cos 2α=,而0απ<<,∴cos 2α=±,∴4πα=或34πα=.当4πα=时,cos 2β=,又0βπ<<,∴6πβ=;当34πα=时,cos 2β=-,又0βπ<<,∴56βπ=.故4πα=,6πβ=或34πα=,56βπ=. 类型二:利用诱导公式化简 例3.化简(1)sin(180)sin()tan(360)tan(180)cos()cos(180)αααααα-++--+++-+-o o o o ;(2)sin()sin()()sin()cos()n n n Z n n απαπαπαπ++-∈+-.【思路点拨】化简时,要认真观察“角”,显然利用诱导公式,但要注意公式的合理选用.【答案】(1)-1(2)略 【解析】(1)原式sin sin tan tan 1tan cos cos tan αααααααα--==-=-+-;(2)①当2,n k k Z =∈时,原式sin(2)sin(2)2sin(2)cos(2)cos k k k k απαπαπαπα++-==+-.②当21,n k k Z =+∈时,原式sin[(21)]sin[(21)]2sin[(21)]cos[(21)]cos k k k k απαπαπαπα+++-+==-++-+.【总结升华】(1)诱导公式应用的原则是:负化正,大化小,化到锐角就终了; (2)关键抓住题中的整数n 是表示π的整数倍与公式一中的整数k 有区别,所以必须把n 分成奇数和偶数两种类型,分别加以讨论.举一反三: 【变式1】化简 (1)()()()()cos cot 7tan 8sin 2-⋅--⋅--αππαπααπ;(2)()sin2n n Z π∈; (3)()222121tan tan ,22n n n Z παπα++⎛⎫⎛⎫+--∈ ⎪ ⎪⎝⎭⎝⎭(4)sin()cos[(1)]sin[(1)]cos(]k k k k παπαπαπα---+++,()k z ∈.【解析】(1)原式=[]cos()cot()tan(2)sin(2)παπαπαπα----+=cos cot (tan )(sin )αααα-⋅-=3cot α(2)1,(41)sin1,(43)20,(2)n k n n k n k π=+⎧⎪=-=+⎨⎪=⎩ (3)原式=22cot cot αα-=0(4)由(k π+α)+(k π―α)=2k π,[(k ―1)π―α]+[(k+1)π+α]=2k π,得cos[(1)]cos[(1)]cos()k k k παπαπα--=++=-+,sin[(1)]sin()k k παπα++=-+.故原式sin()[cos()]1sin()cos()k k k k παπαπαπα-+-+==--++.【总结升华】 常见的一些关于参数k 的结论: (1)sin()(1)sin ()k k k Z παα+=-∈; (2)cos()(1)cos ()k k k Z παα+=-∈; (3)1sin()(1)sin ()k k k z παα+-=-∈; (4)cos()(1)cos ()k k k Z παα-=-∈. 类型三:利用诱导公式进行证明例4.设8tan 7m πα⎛⎫+= ⎪⎝⎭,求证:1513sin 3cos 37720221sin cos 77m m ππααππαα⎛⎫⎛⎫++- ⎪ ⎪+⎝⎭⎝⎭=+⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭. 【思路点拨】证明此恒等式可采取从“繁”到“简”,从左边到右边的方法.【证明】 证法一:左边88sin 3cos 37788sin 4cos 277πππααπππαππα⎡⎤⎡⎤⎛⎫⎛⎫++++- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦888sin 3cos tan 3777888sin cos tan 1777πππαααπππααα⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭31m m +=+=右边. ∴等式成立.证法二:由8tan 7m πα⎛⎫+= ⎪⎝⎭,得tan 7m πα⎛⎫+= ⎪⎝⎭,∴左边sin 23cos 277sin 2cos 277πππαπαππππαππα⎡⎤⎡⎤⎛⎫⎛⎫+++++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦=⎡⎤⎡⎤⎛⎫⎛⎫+-+-+++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααπππαπα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎡⎤⎡⎤⎛⎫⎛⎫-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦sin 3cos 77sin cos 77ππααππαα⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭tan 3371tan 17m m παπα⎛⎫++ ⎪+⎝⎭==+⎛⎫++ ⎪⎝⎭=右边, ∴等式成立. 举一反三:【高清课堂:三角函数的诱导公式385952 例4 】 【变式1】设A 、B 、C 为ABC ∆的三个内角,求证: (1)()sin sin A B C +=;(2)sincos22A B C+=; (3)tan cot 22A B C+=【解析】(1)左边=sin()sin()sin A B c C π+=-==右边,等式得证. (2)左边=sin2A =()sin cos cos 2222B C B C B C ππ-+++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭=右边,等式得证. (3)左边=tantan cot 2222A B C C π+⎛⎫=-= ⎪⎝⎭=右边,等式得证. 【变式2】求证:232sin cos 1tan(9)12212sin ()tan()1ππθθπθπθπθ⎛⎫⎛⎫-+- ⎪ ⎪++⎝⎭⎝⎭=-++-. 证明:∵左边2232sin sin 12sin (sin )12212sin 12sin πππθθθθθθ⎡⎤⎛⎫⎛⎫+----⋅-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦==-- 22222sin sin 12cos sin 1212sin cos sin 2sin πθθθθθθθθ⎛⎫--- ⎪--⎝⎭==-+-222(sin cos )sin cos sin cos sin cos θθθθθθθθ++==--,右边tan(9)1tan 1sin cos tan()1tan 1sin cos πθθθθπθθθθ++++===+---,∴左边=右边,故原式得证. 类型四:诱导公式的综合应用例5.已知3sin(3)cos(2)sin 2()cos()sin()f παππαααπαπα⎛⎫---+⎪⎝⎭=----.(1)化简()f α;(2)若α是第三象限的角,且31cos 25πα⎛⎫-= ⎪⎝⎭,求()f α的值. (3)若313πα=-,求()f α的值. 【解析】 (1)(sin )cos (cos )()cos (cos )sin f ααααααα-⋅⋅-==--.(2)∵3cos sin 2παα⎛⎫-=- ⎪⎝⎭, ∴1sin 5α=-,∴cos α==()f α=. (3)31315cos cos 62333f ππππ⎛⎫⎛⎫⎛⎫-=--=--⨯+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭51cos cos 332ππ=-=-=-. 【总结升华】这是一个与函数相结合的问题,解决此类问题时,可先用诱导公式化简变形,将三角函数的角度统一后再用同角三角函数关系式,这样可避免公式交错使用时导致的混乱.举一反三: 【变式1】已知α、β均为锐角,cos()sin()αβαβ+=-,若()sin cos 44f ππααα⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,求2f πα⎛⎫- ⎪⎝⎭的值. 【解析】由cos()sin()αβαβ+=-得cos()cos ()2παβαβ⎡⎤+=--⎢⎥⎣⎦,又α、β均为锐角.则()2παβαβ+=--,即4πα=.于是,sin cos 0222f ππα⎛⎫-=+= ⎪⎝⎭.【巩固练习】1.sin585°的值为( )A.2-B.2 C.2- D.2A .13 B . 13- C. D3.已知(cos )cos3f x x =,则(sin 30)f ︒的值等于( )A .―1B .1C .12D .0)A .sin2-cos2B .cos2-sin2C .±(sin2-cos2)D .sin2+cos25.若sin cos 2sin cos αααα+=-,则3sin(5)sin 2παπα⎛⎫-⋅-⎪⎝⎭等于( ) A .34 B .310 C .310± D .310-6.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形7.已知3sin()cos(2)tan 2()cos()f ππαπαααπα⎛⎫---+ ⎪⎝⎭=--,则313f π⎛⎫-⎪⎝⎭的值为( ) A .12 B .12- C.2 D.2-8.已知cos 63πα⎛⎫-= ⎪⎝⎭,则25sin cos 66ππαα⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭的值是( )A .23+B .23+-C .23- D.23-+9.计算:)425tan(325cos 625sinπππ-++= .10.若()θ+ο75cos 31=,θ为第三象限角,则()()θθ++--οο435sin 255cos 的值是 . 11.已知1sin()43πα-=,则cos()4πα+=__________. 12.(1)cos1°+cos2°+cos3°+…+cos180°的值为________;(2)cos 21°+cos 22°+cos 23°+…+cos 289°的值为________。
高中数学必修4知识点
P xyA O M T高中数学必修4知识点⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 α原来是第几象限对应的标号即为 终边所落在的区域.5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是.7、弧度制与角度制的换算公式:2360π=8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为 C ,面积为S ,则 l r α=,2C r l =+,. 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()220r r x y =+>,则,10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-; .13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.口诀:正弦与余弦互换,符号看象限.14、函数s i n y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数s i n y x =的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移 个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数()()s i n 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期: ③频率: ④相位:x ωϕ+; ⑤初相:ϕ.函数()s i n y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则15、正弦函数、余弦函数和正切函数的图象与性质:sin y x =cos y x = tan y x =图象定义域 R R值域 []1,1-[]1,1-R最值 当 ()k ∈Z 时,max 1y =; 当 ()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性 奇函数偶函数奇函数单调性在 ()k ∈Z 上是增函数;在 ()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数. 在 ()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z 对称轴对称中心对称轴()x k k π=∈Z对称中心 无对称轴16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a bb a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+= .⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ .18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- .baCBA设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③()a b a b λλλ+=+ .⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP时,点P 的坐标是.23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b同向时,a b a b ⋅=;当a 与b反向时,a b a b ⋅=- ;22a a a a ⋅== 或a a a =⋅ .③a b a b ⋅≤ .⑶运算律:①a b b a ⋅=⋅ ;②()()()a b a b a b λλλ⋅=⋅=⋅ ;③()a b c a c b c +⋅=⋅+⋅ .⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则 1212a b x x y y ⋅=+ .若(),a x y = ,则222a x y =+ ,或22a x y =+ . 设()11,a x y = ,()22,b x y = ,则 12120a b x x y y ⊥⇔+= . 设a 、b 都是非零向量,()11,a x y =,()22,b x y = ,θ是a 与b 的夹角,则.24、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()()tan tan tan 1tan tan αβαβαβ-=-+; ⑹ ()()t a nt a n t a n1t a n t a n αβαβαβ+=+-.25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- ⑶.26、()22sin cos sin αααϕA +B =A +B +,其中.。
人教版高中数学必修四常见公式及知识点总结(完整版)
必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
高中数学人教版必修4知识点汇总
1”作巧
妙的变形,
1. 3 诱导公式
1、诱导公式(五)
sin(
ห้องสมุดไป่ตู้) cos
2
cos(
) sin
2
2、诱导公式(六)
sin(
) cos
2
总结为一句话:函数正变余,符号看象限
小结:
①三角函数的简化过程图:
cos(
) sin
2
任意负角的 三角函数
公式一或三 任意正角的 三角函数
公式一或二或四 00~3600 间角 的三角函数
..
..
1.1 . 1 任意角
1.角的有关概念: ①角的定义:
角可以看成平面一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
始边 B
终边
③角的分类:
O
A
顶点
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下, “角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0 °; ⑶角的概念经过推广后,已包括正角、负角和零角. 2.象限角的概念: ①定义:若将角顶点与原点重合, 角的始边与 x 轴的非负半轴重合, 那么角的终边 ( 端点除外 ) 在第几象限,我们就说这个角是第几象限角.
tan cot
1(
k ,k
Z) ;
2
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用) ,如:
cos
1 sin2
,
2
sin
2
1 cos
,
cos
sin 等。
人教版A版高中数学必修4:二倍角的正弦、余弦、正切公式
2、二倍角公式与和角、差角公式一样,反 映的都是如何用单角的三角函数值表示 复角(和、差、倍)的三角函数值,结 合前面学习到的同角三角函数关系式和 诱导公式可以解决三角函数中有关的求 值、化简和证明问题。
返回
六、作业
135页 4,5 138页 15,17
cos( ) coscos sin sin
cos2 cos2 sin2
tan( ) tan tan 1 tan tan
tan( ) tan tan 1 tan tan
tan
2
1
2
tan tan2
若 我们可以得到怎样的结论?
讲授新课
令
sin( ) sin cos sin cos sin( ) sin cos sin cos
sin 2 2sin cos
Байду номын сангаас
cos( ) coscos sin sin
一、倍角公式
sin 2 2sin cos (S2) tan 2 2 tan
c c
os2 os2
c 1
os2 2
sin sin2
2
1 tan2
(C2 )
(T2 )
公式左端的角是右端角的二倍
cos2 2cos2 1 sin2 1 cos2
cos2 1 2sin2 1 2( 5 )2 119
13 169
tan 2 sin 2 (120)169 120 cos2 169 119 119
高中数学必修4知识点总结归纳(人教版最全)
高中数学必修4知识点汇总第一章:三角函数1、任意角①正角:按逆时针方向旋转形成的角 ②负角:按顺时针方向旋转形成的角 ③零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角集合为{}360,k k ββα=⋅+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在区域.5、长度等于半径长的弧所对的圆心角叫做1弧度6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.7、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.8、若扇形的圆心角为α(α为弧度制),半径为r ,弧长为l ,周长为C ,面积为S则αr l =,l r C +=2,22121r lr S α==9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 10、三角函数在各象限的符号:一全正,二正弦,三正切,四余弦.11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .12、同角三角函数的基本关系:()221sin cos 1αα+=;()sin 2tan cos ααα=; 13、三角函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=.()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2πα⎛⎫-= ⎪⎝⎭. ()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.14、要由sin y x =的图像得到sin()y A x φ=+的图像主要有下列两种方法:sin sin()sin()sin()y x y x y x y A x φωφωφ=−−−→=+−−−→=+−−−→=+相位周期振幅变换变换变换sin sin sin()sin()y x y x y x y x ωωφωφ=−−−→=−−−→=+−−−→=+周期相位振幅变换变换变换注:第二种φωω+→x x 的情况需要平移ωφ个单位 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ; ④相位:x ωϕ+;⑤初相:ϕ.α) A α)(1)(2)15、正弦函数、余弦函数和正切函数的图象与性质:sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数 奇函数单调性 在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在 32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心 ()(),0k k π∈Z 对称轴 ()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴函 数 性质第二章:平面向量1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则),(AB 1212y y x x --=4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.baC BAa b C C -=A -AB =B设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭. 8、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③a b a b ⋅≤. ⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+ 设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos a b a bx θ⋅==+.第三章:三角恒等变换1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.⑵2222cos2cos sin 2cos 112sin ααααα=-=-=- (2cos 21cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=-.3、()sin cos αααϕA +B =+,其中tan ϕB =A.。
高中数学必修4知识点总结:第二章 平面向量
高中数学必修4知识点总结第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量〔共线向量〕:方向一样或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向一样的向量.17、向量加法运算:⑴三角形法那么的特点:首尾相连. ⑵平行四边形法那么的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++;③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,那么()1212,a b x x y y +=++. 18、向量减法运算:⑴三角形法那么的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y =,()22,b x y =,那么()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,那么()1212,x x y y AB =--.19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向一样;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,那么()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,那么当且仅当12210x y x y -=时,向量a 、()0b b ≠共线. 21、平面向量根本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,baC BAa b C C -=A -AB =B有且只有一对实数1λ、2λ,使1122a e e λλ=+.〔不共线的向量1e 、2e 作为这一平面内所有向量的一组基底〕22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.〔当时,就为中点公式。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
高中数学必修4知识点总结(精华实用版)
第一章 三角函数{1、任意角正角: 负角: 零角:2、象限角:角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 如:-1350( )1350( )950( )-950( )-6300( )6300( )-7000( )7000( )第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为3、与角α终边相同的角的集合为 4 、1弧度的角:半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是α= .5、弧度制与角度制的换算公式:π=( )0,180157.3π⎛⎫=≈ ⎪⎝⎭.1800= rad ,10= rad 如:150= rad, 512π= 06、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l = ,2C r l =+,S = = .7、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()r r =>,则sin α= ,cos α= ,()tan 0x α=≠ .8、三角函数在各象限的符号:9、同角三角函数的基本关系:()221sin cos 1αα+=(变式: , );()sin 2tan cos ααα=.(变式: , )10、三角函数的诱导公式:(口诀:函数名称不变,符号看象限.)()()1sin 2k πα+= ,()cos 2k πα+= ,()tan 2k πα+= . ()()2sin πα+= ,()cos πα+= ,()tan πα+= . ()()3sin α-= ,()cos α-= ,()tan α-= . ()()4sin πα-= ,()cos πα-= ,()tan πα-= .()5sin 2πα⎛⎫-=⎪⎝⎭ ,cos 2πα⎛⎫-= ⎪⎝⎭ .()6sin 2πα⎛⎫+= ⎪⎝⎭ ,cos 2πα⎛⎫+= ⎪⎝⎭ .1112、(课本52页第二段)关于ωϕA 、、对()()sin 0,0y x ωϕω=A +A >>的影响 函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅A ;②周期2πωT =;③频率12f ωπ==T;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为m in y ;当2x x =时,取得最大值为max y ,则()m ax m in 12y y A =-,()m axm in12y y B =+,()21122x x x x T =-<第二章 平面向量1、向量: 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.如:A B 记作零向量:长度为 的向量.记作 单位向量:长度等于1个单位的向量. 平行向量(共线向量): 的非零向量.零向量与任一向量 .记作 相等向量: . 2、向量加法运算:⑴三角形法则的特点:首尾相连.首尾连⑵平行四边形法则的特点:共起点.共起点之对角线⑶三角形不等式: a b a b a b -≤+≤+r r r r r r⑷运算性质:①交换律: a b b a +=+r r r r ;②结合律: ()()a b c a b c ++=++r r r r rr ;③00a a a +=+=r r r r r⑸坐标运算:设()11,a x y =r ,()22,b x y =r ,则a b +=rr ( ).3、向量减法运算:⑴减去一个向量相当于加上这个向量的相反向量。
高中数学必修4第一章三角函数的知识点
2
1,1
k
; 当 当 x 2 k k 时,
y m ax 1 ;当 x 2 k
R
倍(纵坐标
不变) ,得到函数 y sin x 的图象;再将函数 y sin x 的图象上所有点的纵坐标 伸长(缩短)到原来的 倍(横坐标不变) ,得到函数 y sin x 的图象. 函数 y sin x 的图象上所有点的横坐标伸长(缩短)到原来的
2
奇函数
偶函数
奇函数
2
, 2k
2
;③频率: f
1
2
;④相位: x ;⑤初相: .
函数 y s in x ,当 x x1 时,取得最小值为 y m in ;当 x x 2 时,取得最大值为
y m a x ,则
sin , co s
co s , tan
, tan
tan .
3、与角 终边相同的角的集合为 k 3 6 0 , k
sin , co s
co s
tan .
终边所落在的区域.
co s , co s sin , tan co t . 2 2 2 co s , co s sin , tan co t . 2 2 2
1 2
y m ax
y m in ,
高中数学必修四第三章三角恒等变换
必修四 第三章:三角恒等变换【知识点梳理】:考点一:两角和、差的正、余弦、正切公式两角差的余弦:cos()cos cos sin sin αβαβαβ-=+ 两角和的余弦:()cos cos cos sin sin αβαβαβ+=- 两角和的正弦:()sin αβ+sin cos cos sin αβαβ=+ 两角差的正弦:()sin sin cos cos sin αβαβαβ-=- 两角和的正切:()tan tan tan 1tan tan αβαβαβ++=-两角差的正切:()tan tan tan 1tan tan αβαβαβ--=+注意:对于正切,,()222k k k k z πππαβπαπβπ+≠+≠+≠+∈.【典型例题讲解】:例题1.已知3sin ,5αα=-是第四象限角,求sin ,cos ,tan 444πππααα⎛⎫⎛⎫⎛⎫-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.例题2.利用和、差角余弦公式求cos 75、cos15的值。
例题3.已知()sin αβ+=32,)sin(βα-=51,求βαtan tan 的值。
例题4.cos13计算sin43cos 43-sin13的值等于( )A .12B .33C .22D .32例题5.已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值.例题6.已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____例题7.如图,在平面直角坐标系xoy 中,以ox 轴为始边做两个锐角,αβ,它们的终边分别与单位圆相交于A ,B 两点,已知A ,B 225(1) 求tan()αβ+的值; (2) 求2αβ+的值。
例题8.设ABC ∆中,tan A tan B Atan B +=,sin Acos A =,则此三角形是____三角形【巩固练习】练习1. 求值(1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;练习2.0sin 45cos15cos 225sin15⋅+⋅的值为(A ) -2 1(B ) -2 1(C )2 (D )2练习3.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.13练习4. 已知α,β为锐角,1tan 7α=,sin 10β=,求2αβ+.考点二:二倍角公式及其推论:在两角和的三角函数公式βαβαβαβα=+++中,当T C S ,,时,就可得到二倍角的三角函数公式222,,S C T ααα:()sin 2sin sin cos cos sin 2sin cos ααααααααα=+=+=;()22cos2cos cos cos sin sin cos sin ααααααααα=+=-=-;22222cos 2cos sin 1sin sin 12sin αααααα=-=--=-;22222cos2cos sin cos (1cos )2cos 1αααααα=-=--=-.()2tan tan 2tan tan 2tan 1tan tan 1tan ααααααααα+=+==--.注意:2,22k k ππαπαπ≠+≠+ ()k z ∈二倍角公式不仅限于2α是α的二倍的形式,其它如4α是2α的二倍,24αα是的二倍,332αα是的二倍等等,要熟悉这多种形 式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键.二倍角公式的推论升幂公式:21cos 22cos αα+=, 21cos 22sin αα-=降幂公式:ααα2sin 21cos sin =; 22cos 1sin 2αα-=; 22cos 1cos 2αα+=.【典型例题讲解】例题l. ) A .2sin15cos15 B .22cos 15sin 15- C .22sin 151-D .22sin 15cos 15+例题2..已知1sin cos 5θθ+=,且432πθπ≤≤,则cos 2θ的值是 .例题3.化简0000cos10cos 20cos30cos 40••• 例题4.23sin 702cos 10-=-( )A .12B .2C .2D例题5.已知02x π<<,化简:2lg(cos tan 12sin ))]lg(1sin 2)24x x x x x π⋅+-+--+.例题6.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 。
高中数学必修4知识点(完美版)
高中数学必修4知识点(完美版)高中数学必修4第一章三角函数角是指由两条射线(或直线)共同端点所组成的图形。
按照旋转方向,角可以分为正角、负角和零角。
其中,正角是按逆时针方向旋转形成的角,负角是按顺时针方向旋转形成的角,零角是不作任何旋转形成的角。
如果一个角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,就称这个角为第几象限角。
各象限角的集合可以表示为:第一象限角的集合为:α ∈ {α | k360° < α < k360° + 90°,k∈Z};第二象限角的集合为:α ∈ {α | αk360° + 90° < α < k360° + 180°,k∈Z};第三象限角的集合为:α ∈ {α | αk360° + 180° < α < αk360° + 270°,k∈Z};第四象限角的集合为:α ∈ {α | αk360° + 270° < α < αk360° + 360°,k∈Z};终边在x轴上的角的集合为:α ∈{α | α = k180°,k∈Z};终边在y轴上的角的集合为:α ∈ {α | α = k180° + 90°,k∈Z};终边在坐标轴上的角的集合为:α ∈ {α | α = k90°,k∈Z}。
根据终边所在的象限,可以将角分为四个象限。
第一象限角的终边落在第一象限,第二象限角的终边落在第二象限,以此类推。
在第一象限,角的值在0°到90°之间;在第二象限,角的值在90°到180°之间;在第三象限,角的值在180°到270°之间;在第四象限,角的值在270°到360°之间。
高中数学必修4知识点总结归纳[1]
高中数学必修4知识点14、函数s in y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()s i n y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y xω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为m in y ;当2x x =时,取得最大值为max y ,则()m axm in 12y y A =-,()m axm in12y y B =+,()21122x x x x T =-<.周期问题()()()()()()ωπωϕωωπωϕωωπωϕωωπωϕωωπωϕωωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=xACosy xASin y x ACos y xASin y x ACos y xASin y()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T,,A,cotT,,A,tanT,,A,cotT,,A,tanxAyxAyxAyxAy15、正弦函数、余弦函数和正切函数的图象与性质:siny x=cosy x=tany x=图象定义域R R,2x x k kππ⎧⎫≠+∈Z⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x kππ=+()k∈Z时,m ax1y=;当22x kππ=-()k∈Z时,m in1y=-.当()2x k kπ=∈Z时,m ax1y=;当2x kππ=+()k∈Z时,m in1y=-.既无最大值也无最小值周期性2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.函数性质()k ∈Z 上是减函数.对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴向量:16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为0的向量.单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.⑷运算性质:①交换律:a b b a +=+ ;②结合律:()()a b c a b c ++=++;③00a a a +=+= .⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB=--.19、向量数乘运算:⑴实数λ与向量a的积是一个向量的运算叫做向量的数乘,记作a λ.①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ=.baCBAa b C C -=A -AB =B⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③()a b a b λλλ+=+.⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.21、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫ ⎪++⎝⎭.23、平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅= .②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a =.③a b a b ⋅≤.⑶运算律:①a b b a ⋅=⋅ ;②()()()a b a b a b λλλ⋅=⋅=⋅ ;③()a b c a c b c +⋅=⋅+⋅.⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ⋅=+.若(),a x y = ,则222ax y =+,或a =设()11,a x y = ,()22,b x y = ,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y = ,()22,b x y = ,θ是a与b 的夹角,则cos x x y y a ba bθ+⋅==.恒等变换:24、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).25、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=. ⑵2222cos 2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-.26、()sin cos αααϕA +B =+,其中tan ϕB =A.。
高中数学必修四第一章三角函数公式总结
高中数学必修四第一章三角函数公式总结锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=2tanA/1-tanA^2注:SinA^2 是sinA的平方 sin2A三倍角公式sin3α=4sinα·sinπ/3+αsinπ/3-αcos3α=4cosα·cosπ/3+αcosπ/3-αtan3a = tan a · tanπ/3+a· tanπ/3-a三倍角公式推导sin3a=sin2a+a=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=A^2+B^2^1/2sinα+t,其中sint=B/A^2+B^2^1/2cost=A/A^2+B^2^1/2tant=B/AAsinα+Bcosα=A^2+B^2^1/2cosα-t,tant=A/B降幂公式sin^2α=1-cos2α/2=versin2α/2cos^2α=1+cos2α/2=covers2α/2tan^2α=1-cos2α/1+cos2α半角公式tanA/2=1-cosA/sinA=sinA/1+cosA;cotA/2=sinA/1-cosA=1+cosA/sinA.sin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa三角和sinα+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcosα+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtanα+β+γ=tanα+tanβ+tanγ-tanα·tanβ·tanγ/1-tanα·tanβ-tanβ·tanγ-tanγ·tanα两角和差cosα+β=cosα·cosβ-sinα·sinβcosα-β=cosα·cosβ+sinα·sinβsinα±β=sinα·cosβ±cosα·sinβtanα+β=tanα+tanβ/1-tanα·tanβtanα-β=tanα-tanβ/1+tanα·tanβ和差化积sinθ+sinφ = 2 sin[θ+φ/2] cos[θ-φ/2]sinθ-sinφ = 2 cos[θ+φ/2] sin[θ-φ/2]cosθ+cosφ = 2 cos[θ+φ/2] cos[θ-φ/2]cosθ-cosφ = -2 sin[θ+φ/2] sin[θ-φ/2] tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanB tanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB 积化和差sinαsinβ = [cosα-β-cosα+β] /2cosαcosβ = [cosα+β+cosα-β]/2sinαcosβ = [sinα+β+sinα-β]/2cosαsinβ = [sinα+β-sinα-β]/2诱导公式sin-α = -sinαcos-α = cosαtan —a=-tanαsinπ/2-α = cosαcosπ/2-α = sinαsinπ/2+α = cosαcosπ/2+α = -sinαsinπ-α = sinαcosπ-α = -cosαsinπ+α = -sinαcosπ+α = -cosαtanA= sinA/cosAtanπ/2+α=-cotαtanπ/2-α=cotαtanπ-α=-tanαtanπ+α=tanα抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4知识点
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l
r
α=. 7、弧度制与角度制的换算公式:2360π=,1180π
=
,180157.3π⎛⎫=≈ ⎪⎝⎭
. 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,
则l r α=,2C r l =+,211
22
S lr r α==.
9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点
的距离是()
0r r =>,则sin y r α=
,cos x r α=,()tan 0y
x x
α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.
11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 12、同角三角函数的基本关系:()2
2
1sin cos 1αα+=
()2
222sin
1cos ,cos 1sin αααα=-=-;()
sin 2tan cos α
αα
= sin sin tan cos ,cos tan αααααα⎛
⎫== ⎪⎝⎭
.
13、三角函数的诱导公式: 口诀:奇变偶不变,符号看象限.
14 sin y x =→向左(右)平移ϕ个单位长度→ ()sin y x ϕ=+的图象→横坐标伸长(缩短)到原来的
1
ω
倍(纵坐标不变)→()sin y x ωϕ=+→纵坐标伸长(缩短)到原来的A 倍(横坐标不变)→()sin y x ωϕ=A +.
sin y x =→横坐标伸长(缩短)到原来的
1
ω
倍(纵坐标不变),→sin y x ω=→向左(右)平移ϕ
ω个单位长度→→纵坐标伸长(缩短)到原来的A 倍(横坐标不
变)→()sin y x ωϕ=A +
函数()()sin 0,0y x ωϕω=A +A >>的性质:
①振幅:A ;②周期:2π
ω
T =
;③频率:12f ω
π
=
=
T ;④相位:x ωϕ+;⑤初相:
ϕ.
函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得
最大值为max y ,则()max min 12y y A =
-,()max min 12y y B =+,()21122
x x x x T
=-<. 15、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x = 图
象
定义域 R R
,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
值域
[]1,1-
[]1,1-
R
最
值
当22
x k π
π=+
()
k ∈Z 时,max 1y =;当
22
x k π
π=-
()k ∈Z 时,min 1y =-.
当()2x k k π=∈Z 时,
max 1y =;当2x k ππ=+
()k ∈Z 时,min 1y =-.
既无最大值也无最小
值
周期性 2π
2π
π
奇偶性
奇函数 偶函数 奇函数
单
调性
在2,222k k ππππ⎡
⎤-+⎢⎥⎣⎦
()k ∈Z 上是增函数;在 32,222k k ππππ⎡
⎤++⎢⎥⎣
⎦ ()k ∈Z 上是减函数.
在[]()
2,2k k k πππ-∈Z 上是增函数
;在[]2,2k k πππ+
()k ∈Z 上是减函数.
在,22k k ππππ⎛⎫-+ ⎪⎝
⎭
()k ∈Z 上是增函数.
函
数 性
质
对称性
对称中心()(),0k k π∈Z
对称轴()2
x k k π
π=+∈Z
对称中心
(),02k k ππ⎛⎫+∈Z
⎪⎝
⎭ 对称轴()x k k π=∈Z 对称中心
(),02k k π⎛⎫
∈Z
⎪⎝⎭
无对称轴
16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.
单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算:
⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:
a b a b a b -≤+≤+
⑷运算性质:①交换律:a b b a +=+;②结合律:()()
a b c a b c ++=++;③
00a a a +=+=.
⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量.
⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 19、向量数乘运算:
⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ.①
a a λλ=;
②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当
0λ=时,0a λ=.
⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()
a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.
20、向量共线定理:向量()
0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.
b
a
C
B
A
a b C C -=A -AB =B
设()11,a x y =,()22,b x y =,
其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()
0b b ≠共线.
21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)
22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫
⎪++⎝⎭
.
23、平面向量的数量积:
⑴()cos 0,0,0180
a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.
⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,
a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;2
2
a a a a ⋅==或a a a =⋅.③a
b a b ⋅≤. ⑶运算律:①a b b a ⋅=⋅;②()()()
a b a b a b λλλ⋅=⋅=⋅;③()
a b c a c b c +⋅=⋅+⋅. ⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则2
2
2
a x y =+,或2a x y =
+
设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=. 设a 、b 都是非零向量,()11,a x y =,()22,b x y =,
θ是a 与b 的夹角,则
12
1
cos x x a b a b
x θ⋅=
=
+.
24、两角和与差的正弦、余弦和正切公式: 25、二倍角的正弦、余弦和正切公式:
26、()sin cos αααϕA +B =+,其中tan ϕB =
A
.。