三角函数复习专题(教师版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数复习专题
核心知识点归纳:
1.三角函数公式
⎧⎪
⎨⎪⎩
正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角
2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.
第一象限角的集合为{}
36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z
第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z
终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z 终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z
3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z
4、已知α是第几象限角,确定
()*
n n
α
∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n
α
终边所落在的区域. 5、长度等于半径长的弧所对的圆心角叫做1弧度.
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l
r
α=.
7、弧度制与角度制的换算公式:2360π=,
1180
π
=,180157.3π⎛⎫
=≈
⎪⎝⎭
. 8、若扇形的圆心角为()α
α为弧度制,半径为r 则l r α=,
,2
1
1
22
S lr r α==
.
9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是(
)
0r r =
>,则
sin y r α=
,cos x r α=,()tan 0y
x x
α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.口诀:
一全正,二正弦,三正切,四余弦。
11、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .
12、同角三角函数的基本关系:()2
21sin
cos 1αα+=;
()
sin 2tan cos α
αα
=sin sin tan cos ,cos tan αααααα⎛
⎫== ⎪⎝
⎭
(3)1cot tan =•αα;;
13、三角函数的诱导公式:(同名函数)
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.
口诀:函数名称不变,符号看象限. 异名函数
()5sin cos 2π
αα⎛⎫-=
⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫
+=- ⎪⎝⎭
口诀:奇变偶不变,符号看象限.。 六组诱导公式可统一概括为()2
k
k Z π
α±∈的形式,当K 为偶数时,得α 的同名函数值;当K 为奇数时,得α的
异名函数值,前面加上个把α看成锐角时原函数值的符号。诱导公式中常如此变形: A +B =π-C,2A +2B =2π-2C ,A 2+B 2+C 2=π2等,于是可得sin(A +B )=sin C ,cos A +B 2=sin C
2
重要公式
⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ
αβαβ
--=
+(()()tan tan tan 1tan tan αβαβαβ-=-+);
⑹()tan tan tan 1tan tan αβ
αβαβ
++=
-(()()tan tan tan 1tan tan αβαβαβ+=+-).
二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=. ⑵2
222cos2cos sin 2cos 112sin ααααα=-=-=-(2cos 21cos 2αα+=
,2
1cos 2sin 2
αα-=). ⑶22tan tan 21tan α
αα
=-.
公式的变形:
()βαβαβαtan tan 1)tan(tan tan •±=±,
2
cos 12
cos
α
α
+±
=;αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=
辅助角公式
()22sin cos αααϕA +B =A +B +,其中tan ϕB
=
A
. 2
tan 12tan
2sin 2
α
α
α+=
,2
tan 12tan 1cos 2
2α
αα+-=
,2
tan 12tan
2tan 2
α
α
α-=万能公式其实是二倍角公式的另外一种变形:
14、函数sin y x =的图象上所有点向左(右)平移
ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数
()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的
1
ω
倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数
()sin y x ωϕ=A +的图象.
函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的
1
ω
倍(纵坐标不变),得到函数 sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移
ϕ
ω
个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数
()sin y x ωϕ=A +的图象.
函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2π
ω
T =
;③频率:12f ω
π
=
=T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x B ωϕ=A ++,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则
()max min 1
2
y y A =
-,()max min 12y y B =+,()21122x x x x T =-<.