第五单元《鸽巢问题》例1例2教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五单元数学广角

第一课时《鸽巢问题》例1例2 教学设计

教学内容:

人教版教材六年级数学上册第68--69 页。

教学目标:

1.知识与技能:经历“鸽巢原理”的探究过程,初步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。

2.过程与方法:通过操作发展学生的类推能力,形成比较抽象的数学思维。

3.情感态度价值观:通过“鸽巢原理”的灵活应用感受数学的魅力。

教学重、难点:

经历“鸽巢原理”的探究过程,理解“鸽巢原理”,并对一些简单实际问题加以“模型化”。

课时安排:一课时

教具学具:多媒体课件、每人一枚一元硬币

教学过程

一、问题引入。

师:同学们,你们玩过抢椅子的游戏吗现在,老师这里准备了3把椅子,请4个同学上来,谁愿来

1.游戏要求:开始以后,请你们5个都坐在椅子上,每个人必须都坐下。

2.讨论:“不管怎么坐,总有一把椅子上至少坐两个同学”这句话说得对吗

游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象。

引入:不管怎么坐,总有一把椅子上至少坐两个同学你知道这是什么道理吗这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。?

二、探究新知

(一)教学例1

1.出示题目:有4枝铅笔,3个盒子,把4枝铅笔放进3个盒子里,怎么放有几种不同的放法

师:请同学们实际放放看,谁来展示一下你摆放的情况(指名摆)根据学生摆的情况,师出示各种情况。

板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

问题:4个人坐在3把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。4支笔放进3个盒子里呢

引导学生得出:不管怎么放,总有一个盒子里至少有2枝笔。

问题:

(1)“总有”是什么意思(一定有)?

(2)“至少”有2枝什么意思(不少于两只,可能是2枝,也可能是多于2枝)

教师引导学生总结规律:我们把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,你们能不能找到一种更为直接的方法得到这个结论呢学生思考并进行组内交流,教师选代表进行总结:如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。首先通过平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。

问题:把6枝笔放进5个盒子里呢还用摆吗把7枝笔放进6个盒子里呢把8枝笔放进7个盒子里呢把9枝笔放进8个盒子里呢……你发现什么(笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。)

总结:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。

2.完成课下“做一做”,学习解决问题。

问题:6只鸽子飞回5个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么

(1)学生活动—独立思考自主探究

(2)交流、说理活动。

引导学生分析:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。

总结:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。

(二)教学例2

1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

(留给学生思考的空间,师巡视了解各种情况)

2.学生汇报,教师给予表扬后并总结:

总结1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

总结2:“总有一个抽屉里的至少有2本”只要用“商+1”就可以得到。

问题:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书用“商+2”可以吗(学生讨论)

引导学生思考:到底是“商+1”还是“商+余数”呢谁的结论对呢(学生小组里进行研究、讨论。)

总结:用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。

师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

(三)学生自学例题3并进行自主交流,试着用手中的用具模拟演示场景。

作业设计:把红黄蓝白四种颜色的球各10个放到一个袋子里,至少取出多少个球,可以保证取到两个颜色相同的球?

板书设计

数学广角

--“鸽巢原理”

物体数÷抽屉数=商…余数

至少数=商+1

第五单元数学广角

第二课时《鸽巢问题》例3 教学设计

教学内容:

小学数学六年级下册P93例7及练习十八6题。

教学目标:

1. 通过观察、猜测、实验、推理等活动,寻找隐藏在实际问题背后的“抽屉问题”的一般模型。体会如何对一些简单的实际问题“模型化”,用“抽屉原理”加以解决。

2.在经历将具体问题“数学化”的过程中,发展数学思维能力和解决问题的能力,感受数学的魅力。同时积累数学活动的经验与方法,在灵活应用中,进一步理解“抽屉原理”。

教学重点、难点:

1.教学重点:利用“抽屉原理”解决实际问题。

2.教学难点:怎样把具体问题转化为“抽屉问题”。

教学准备:

一个袋子、4个红球和4个蓝球为一份,准备这样的教、学具若干份。小抽屉、6个红球和6个篮球。

教学过程:

相关文档
最新文档