随机变量及其分布知识点总结典型例题

随机变量及其分布知识点总结典型例题
随机变量及其分布知识点总结典型例题

2-3随机变量及其分布

离散型随机变量及其分布列(1)随机变量:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.通常用字母X ,Y ,ξ,η等表示.

(2)离散型随机变量:所有取值可以一一列出的随机变量称为离散型随机变量.(3)离散型随机变量的分布列:

要点归纳

一、

1.

一般地,若离散型随机变量X 可能取的不同值为x 1,x 2…,x i ,…x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:

X x 1x 2…x i …x n P

p 1

p 2

p i

p n

我们将上表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了简单起见,也用等式P (X =x i )=p i ,

i =1,2,…,n 表示X 的分布列.(4)离散型随机变量的分布列的性质:①p i ≥0,i =1,2,…,n ;

② i =1n

p i =1.

(5)常见的分布列:

两点分布:如果随机变量X 的分布列具有下表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率.

X 01P

1-p

p

两点分布又称0-1分布,伯努利分布.

超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k }发生的概率为P (X =

k )=C k M C n -

k

N -M C n N

,k =0,1,2,…,m ,即

X 0

1

…m

P

C 0M C n -

N -M

C n N

C 1M C n -

1

N -M

C n N

C m M C n -

m

N -M

C n

N

其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *.如果随机变量X 的分布列具有上表的形式,则称随机变量X

服从超几何分布.二项分布及其应用2.

(1)条件概率:一般地,设A 和B 是两个事件,且P (A )>0,称P (B |A )=

P (AB )

P (A )

为在事件A 发生的条件下,事件B 发生

的条件概率.P (B |A )读作A 发生的条件下B 发生的概率.

(2)条件概率的性质:①0≤P (B |A )≤1;

②必然事件的条件概率为1,不可能事件的条件概率为0;

(4)独立重复试验:一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.

(5)二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为

③如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).

(3)事件的相互独立性:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立.如果事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立.

P (X =k )=C p k (1-p )n -k ,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概

率.两点分布是当n =1时的二项分布,二项分布可以看成是两点分布的一般形式.离散型随机变量的均值与方差

(1)均值、方差:一般地,若离散型随机变量X 的分布列为

3.X

x 1

x 2

x i

x n

P

p 1p 2

p i

p n

则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的

均值或数学期望,它反映了离散型随机变量取值的平均水平.

(2)均值与方差的性质:若Y =aX +b ,其中a ,b 是常数,X

是随机变量,则Y 也是随机变量,且E (aX +b )=aE (X )+b ,

D (aX +b )=a 2D (X ).

(3)常见分布的均值和方差公式:①两点分布:若随机变量

X 服从参数为p 的两点分布,则均值E (X )=p ,方差D (X )=p (1-p ).

②二项分布:若随机变量X ~B (n ,p ),则均值E (X )=np ,

方差D (X )=np (1-p ).

称D (X )= i =1n

(x i -E (X ))2p i 为随机变量X 的方差,D (X )为

随机变量X 的标准差.

④曲线与x 轴之间的面积为1.

(3)μ和σ对正态曲线的影响:

①当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x

轴平移;

②当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,

表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.

(2)正态曲线的特点:

①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,它关于直线x =μ对称; ③曲线在x =μ处达到峰值

1

σ2π

(4)正态分布的3σ原则:若随机变量X ~N (μ,σ2),则P (μ

-σ<X ≤μ+σ)=0.682 6,P (μ-2σ<X ≤μ+2σ)=0.954 4,P (μ-3σ<X ≤μ+3σ)=0.997 4.

在实际应用中,通常认为服从于正态分布N (μ,σ2)的随机变量X 只取(μ-3σ,μ+3σ)之间的值,并简称之为3σ原则.

专题一条件概率

1.条件概率的求法

(1)利用定义,分别求出P (A )和P (AB ),解得P (B |A )= P (AB )

P (A )

.

(2)借助古典概型公式,先求事件A 包含的基本事件数 n (A ),再在事件A 发生的条件下求事件B 包含的基本事 件数n (AB ),得P (B |A )=n (AB )

n (A )

.

解决概率问题要注意“三个步骤,一个结合”(1)求概率的步骤是:第一步,确定事件性质;第二步,判断事件的运算;第三步,运用公式.

(2)概率问题常常与排列、组合知识相结合.

2.

在5道题中有3道理科题和2道文科题.如果不放回地依

次抽取2道题,求:

(1)第1次抽到理科题的概率;

(2)第1次和第2次都抽到理科题的概率;

(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.

解设“第1次抽到理科题”为事件A ,“第2次抽到理科题”为事件B ,则“第1次和第2次都抽到理科题”为事件AB .

【例1】(1)从5道题中不放回地依次抽取2道题的事件数为n (Ω)=A 25=20.

根据分步乘法计数原理,n (A )=A 13×A 14=12.

于是P (A )=n (A )n (Ω)=1220=35

.

求相互独立事件一般与互斥事件、对立事件结合在一起进行考查,解答此类问题时应分清事件间的内部联系,在些基础上用基本事件之间的交、并、补运算表示出有关事件,并运用相应公式求解.特别注意以下两公式的使用前提(1)若A ,B 互斥,则P (A ∪B )=P (A )+P (B ),反之不成立.(2)若A ,B 相互独立,则P (AB )=P (A )P (B ),反之成立.

专题二相互独立事件的概率

1.

2.

【例2】

甲、乙、丙三台机床各自独立加工同一种零件,甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,

乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲丙两台机床加工的零件都是一等品的概率为2

9.

(1)分别求出甲、乙、丙三台机床各自独立加工的零件是一等品的概率;

(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.

离散型随机变量的分布列在高中阶段主要学习两种:超几何分布与二项分布,由于这两种分布列在生活中应用较为

广泛,故在高考中对该知识点的考查相对较灵活,常与期望、方差融合在一起,横向考查.

对于分布列的求法,其难点在于每个随机变量取值时相关概率的求法,计算时可能会用到等可能事件、互斥事件、相互独立事件的概率公式等.

均值与方差都是随机变量重要的数字特征,方差是建立在均值这一概念之上的,它表明了随机变量所取的值相对于它的均值的集中与离散程度,二者联系密切,在现实生产生活中特别是风险决策中有着重要意义,因此在当前的高考中是一个热点问题.

专题三离散型随机变量的分布列、均值与方差

1.

2.

3.

(1)求该学生考上大学的概率;

(2)如果考上大学或参加完5次测试就结束,记该生参加测试的次数为X ,求X 的分布列及X 的数学期望.

【例3】 某地区试行高考考试改革:在高三学年中举行5次统一

测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是13,每次测试时

间间隔恰当.每次测试通过与否互相独立.

X 2345P

P (X =5)=C 14

·13·? ??

??233+? ??

??234=16

27

. 故X 的分布列为:

E (X )=2×19+3×427+4×427+5×1627=38

9

.

1

9

427

427

1627

(1)写出ξ的概率分布列(不要求计算过程),并求出E (ξ),E (η);

(2)求D (ξ),D (η).请你根据得到的数据,建议该单位派哪

个选手参加竞赛?

【例4】 (2012·

枣庄检测)某单位为了参加上级组织的普及消防知识竞赛,需要从两名选手中选出一人参加.为此,设计了一个挑选方案:选手从6道备选题中一次性随机抽取3题.通过考查得知:6道备选题中选手甲有4道题能够答对,2道题答错;选手乙答对每题的概率都是2

3,且各题答对与否互不影响.设

选手甲、选手乙答对的题数分别为ξ,η.

解(1)ξ的概率分布列为

ξ

123P

15 35 15

所以E (ξ)=1×15+2×35+3×1

5

=2.

由题意,η~B ? ????3,23,E (η)=3×2

3=2,

或者P (η=0)=C 03

? ????133=127; P (η=1)=C 13? ????231? ??

??132=2

9; P (η=2)=C 23? ????232? ????13=49;P (η=3)=C 33? ??

??233=827,

专题四 正态分布

某市去年高考考生成绩服从正态分布N (500,502),现

有25 000名考生,试确定考生成绩在550~600分的人数.

【例5】解 ∵考生成绩X ~N (500,502), ∴μ=500,σ=50, ∴P =(550<X ≤600)

=1

2[P (500-2×50<X ≤500+2×50)-P (500-50<X ≤500+50)]

=1

2

(0.954 4-0.682 6)=0.135 9. 故考生成绩在550~600分的人数约为25 000×0.135 9 ≈3 398(人).

圆与方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1).设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦?(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x . (1) 当0422>-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2E D C ,半径2 422F E D r -+=. (2) 当0422=-+F E D 时,方程表示一个点??? ??--2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形.

注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离22B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0r r d ; ② 条公切线外切321??+=r r d ; ③ 条公切线相交22121??+<<-r r d r r ; ④ 条公切线内切121??-=r r d ; ⑤ 无公切线内含??-<<210r r d ;

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

13章内能的知识点总结

第13章《内能》知识点总结 1、.分子动理论:物质是由分子和原子组成的;分子在永不停息地做无规则运动,分子之间有间隙。 2.热运动:分子运动快慢与温度有关,温度越高,分子热运动越剧烈。 3. 不同物质相互接触时,彼此进入对方的现象叫做扩散现象,固体、液体和气体都能发生扩散现象,温度越高,扩散越快。 4、物体内部所有分子热运动的动能和分子势能的总和叫做物体的内能。物体的内能和物体的质量、温度、状态有关。 5、改变物体内能的方法有热传递和做功,热传递是能量的转移,做功是能量的转化。这两种方法对改变物体的内能上是等效的。 6、在热传递过程中,传递能量的多少叫做热量。温度不同的两个物体相互接触,高温物体内能减少,低温物体内能增大;对物体做功时,物体内能会增大,物体 对外做功时,物体内能会减少 7、比热容是物质的一种特性,与物质的种类和状态有关,与物质的质量、温度和吸热、放热的多少无关。 水的比热容是 4.2×103J/(Kg·℃),表示的物理意义是:1千克的水温度升高1℃吸收的热量是 4.2×103J。 8、热量的计算: 吸热:Q吸=cm△t= cm(t-t0) 放热:Q放=cm△t= cm(t0- t) Q吸——吸收的热量——焦——J Q放——放出的热量——焦——J c——比热容——焦每千克摄氏度——J/(Kg·℃)

m——质量——千克——kg △t——变化的温度(升高或降低的温度)——摄氏度——℃ t0——初始温度——摄氏度——℃t——末温——摄氏度——℃ 第13章《内能》知识点填空 1、分子动理论:物质是由组成的;分子在永不停息地做,分子之间有。 2.热运动:分子运动快慢与有关,温度越,分子热运动越。 3. 不同物质相互接触时,彼此进入对方的现象叫,、 和都能发生扩散现象,温度越,扩散越。 4、物体内部所有分子热运动的的总和叫做物体的内能。物体的内能和物体的、、有关。 5、改变物体内能的方法有和,热传递是能量的,做功是能量的。这两种方法对改变物体的内能上是等效的。 6、在热传递过程中,传递能量的多少叫做。温度不同的两个物体相互接触,高温物体内能,低温物体内能;对物体做功时,物体内能会,物体对外做功时,物体内能会。 7、水的比热容是:,表示的物理意义是: 。 8、热量的计算: 吸热:Q吸= =放热:Q放= = Q吸—————— Q放——————

圆的知识点总结

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或 两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等;推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线;(3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB=,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB=,半径OM⊥AB,∴AN=BN= ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60°

《圆》知识点归纳及相关题型整理

第五章中心对称图形(二) ——知识点归纳以及相关题目总结 一、和圆有关的基本概念 1.圆: 把线段OP的一个端点O固定,使线段OP绕着点O在平面内旋转1周,另一个端点P运动所形成的图形叫做圆。其中,定点O叫做圆心,线段OP叫做半径。 以点O为圆心的圆,记作“⊙O”,读作“圆O”。 圆是到定点的距离等于定长的点的集合。 2.圆的内部可以看作是到圆心的距离小于半径的点的集合。 3.圆的外部可以看作是到圆心的距离大于半径的点的集合。 4.弦:连接圆上任意两点的线段。 5.直径:经过圆心的弦。 6.弧:圆上任意两点间的部分。 优弧:大于半圆的弧。 劣弧:小于半圆的弧。 半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。 7.同心圆:圆心相同,半径不相等的两个圆叫做同心圆。 8.等圆:能够重合的两个圆叫做等圆。(圆心不同) 9.等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。(在大小不等的两个圆中,不存在等弧。 10.圆心角:顶点在圆心的角。 11.圆周角:顶点在圆上,两边与圆相交的角。 12.圆的切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长。 13.正多边形: ①定义:各边相等、各角也相等的多边形 ②对称性:都是轴对称图形;有偶数条边的正多边形既是轴对称图形有是中心对称图形。 14.圆锥: ①:母线:连接圆锥的顶点和底面圆上任意一点的线段。 ②:高:连接顶点与底面圆的圆心的线段。 15.三角形的外接圆:三角形三个顶点确定一个圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。

16.三角形的内切圆:与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。 二、和圆有关的重要定理 1.圆是中心对称图形,圆心是它的对称中心。 2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。 3.在同圆或等圆中,如果两个圆心角、两条弦、两条弧中有一组量相等,那么它们所对应的其余各组量都分别相等。 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 4.圆心角的度数与它所对的弧的度数相等。 5.圆是轴对称图形,过圆心的任意一条直线都是它的对称轴。 6.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。 垂径定理的实质可以理解为:一条直线,如果它具有两个性质:(1)经过圆心;(2)垂直于弦,那么这条直线就一定具有另外三个性质:(3)平分弦,(4)平分弦所对的劣弧,(5)平分弦所对的优弧。 推论:圆的两条平行弦所夹的弧相等。 7.同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。 8.直径(或半圆)所对的圆周角是直角,90°的圆周角所对的弦是直径。 9.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 10.确定圆的条件 不在同一条直线上的三个点确定一个圆 经过三角形三个顶点可以画一个圆,并且只能画一个.这个三角形叫做这个圆的内接三角形。 经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心。 三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。 11.三角形的外接圆的圆心是三边的垂直平分线的交点 12.圆的切线垂直于经过切点的半径。 13.经过半径的外端并且垂直于这条半径的是直线是圆的切线。

第三章--多维随机变量及其分布总结

第三章--多维随机变量及其分布总结

第三章 多维随机变量及其分布 第一节 二维随机变量 一、二维随机变量的分布函数 设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量. 一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究. 首先引入(X , Y )的分布函数的概念. 定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数 F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y } 称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数. 分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率.. 由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为 P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) (1) 与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质: 1? F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2? 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3? F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ). 4? 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0. 注: 二元分布函数具有性质1?~ 4?, 其逆也成立(2?中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1?~ 4?, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4?是必不可少的, 即它不能由1?~ 3?推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量 如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量. 设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0; 111 =∑∑∞=∞ =i j ij p . 我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为 = ),(y x F ∑∑≤≤==x x y y j i i j y Y x X P },{=∑∑≤≤x x y y ij i j p 这里 ∑∑ ≤≤x x y y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和. 例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数.. 解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}= 3 12231=?.

《内能》与《内能的利用》知识点总结

初三物理《内能》与《内能的利用》知识总结 第十三章热和能 第一节分子热运动 1、扩散现象: 定义:不同物质在相互接触时,彼此进入对方的现象。 扩散现象说明:①一切物质的分子都在不停地做无规则的运动;②分子之间有间隙。 固体、液体、气体都可以发生扩散现象,只是扩散的快慢不同,气体间扩散速度最快,固体间扩散速度最慢。 汽化、升华等物态变化过程也属于扩散现象。 扩散速度与温度有关,温度越高,分子无规则运动越剧烈,扩散越快。 由于分子的运动跟温度有关,所以这种无规则运动叫做分子的热运动。 2、分子间的作用力: 分子间相互作用的引力和斥力是同时存在的。 ①当分子间距离等于r0(r0=10-10m)时,分子间引力和斥力相等,合力为0,对外不显 力; ②当分子间距离减小,小于r0时,分子间引力和斥力都增大,但斥力增大得更快,斥 力大于引力,分子间作用力表现为斥力; ③当分子间距离增大,大于r0时,分子间引力和斥力都减小,但斥力减小得更快,引 力大于斥力,分子间作用力表现为引力; ④当分子间距离继续增大,分子间作用力继续减小,当分子间距离大于10 r0时,分子 间作用力就变得十分微弱,可以忽略了。 第二节内能 1、内能: 定义:物体内部所有分子热运动的动能与分子势能的总和,叫做物体的内能。 任何物体在任何情况下都有内能。内能的单位为焦耳(J)。 内能具有不可测量性。 2、影响物体内能大小的因素: ①温度:在物体的质量、材料、状态相同时,物体的温度升高,内能增大,温度降低,内能减小;反之,物体的内能增大,温度却不一定升高(例如晶体在熔化的过程中要不断吸热,内能增大,而温度却保持不变),内能减小,温度也不一定降低(例如晶体在凝固的过程中要不断放热,内能减小,而温度却保持不变)。 ②质量:在物体的温度、材料、状态相同时,物体的质量越大,物体的内能越大。 ③材料:在温度、质量和状态相同时,物体的材料不同,物体的内能可能不同。 ④存在状态:在物体的温度、材料质量相同时,物体存在的状态不同时,物体的内能也可能不同。 3、改变物体内能的方法:做功和热传递。 ①做功: 做功可以改变内能:对物体做功物体内能会增加(将机械能转化为内能)。 物体对外做功物体内能会减少(将内能转化为机械能)。 做功改变内能的实质:内能和其他形式的能(主要是机械能)的相互转化的过程。 如果仅通过做功改变内能,可以用做功多少度量内能的改变大小。 ②热传递:

圆的知识点总结史上最全的

A 图4 图5 圆的总结 集合: 圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹: 1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆; 2、到线段两端点距离相等的点的轨迹是:线段的中垂线; 3、到角两边距离相等的点的轨迹是:角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线 点与圆的位置关系: 点在圆内 dr 点A 在圆外 直线与圆的位置关系: 直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 dR+r 外切(图2) 有一个交点 d=R+r 相交(图3) 有两个交点 R-r

圆的知识点总结与典型例题

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴;圆是以 圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论 1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就可推 出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径);④ 平分弦所对的优弧;⑤平分弦所对的劣弧。 推论2 圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆心角或两 条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论 1 同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论 2 半圆(或直径)所对的圆周角是直角;90 °的圆周角所对的弦是直径;推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质圆内接四边形的对角互补,并且任何一个外角都等于它的内对 角。 探8.轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; 2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; 3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1.已知:如图1,在。O中,半径0M丄弦AB于点N。 图1 ①若AB = , ON = 1,求MN的长; ②若半径0M = R,/ AOB = 120。,求MN的长。 解:①??? AB =,半径0M 丄AB,二AN = BN =

随机变量及其分布考点总结

第二章 随机变量及其分布 复习 一、随机变量. 1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验. 2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量. 3、分布列:设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x x ξ取每一个值),2,1(Λ=i x 的概率p x P ==)(,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数. 典型例题: 1、随机变量ξ的分布列为(),1,2,3(1) c P k k k k ξ== =+……,则P(13)____ξ≤≤= 2、袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为1 7 ,现在甲乙两人从袋中轮流摸去一 球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时终止,用ξ表示取球的次数。(1)求ξ的分布列(2)求甲取到白球的的概率 3、5封不同的信,放入三个不同的信箱,且每封信投入每个信箱的机会均等,X 表示三哥信箱中放有信件树木的最大值,求X 的分布列。 4 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为5 . (1)请将上面的列联表补充完整; (2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由; (3)已知喜爱打篮球的10位女生中,12345,,A A A A A ,,还喜欢打羽毛球,123B B B ,,还喜欢打乒乓球,12C C ,还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率. (参考公式:2 ()()()()() n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)

最新新人教版八年级下册物理第10章内能知识点全面总结

10 浮力 10.1 浮力 知识点1、什么是浮力 (1)浮力:浸在液体(或气体)中的物体受到向上的力叫做浮力。 注意:①“浸在”包括“部分浸入”和“全部浸入(浸没)”两种情况,也就是说浸在液体内部和浮在液体表面的物体都受到浮力,浸在气体中的物体也受到浮力。 ②浮力的施力物体是液体或气体,受力物体为浸在液体或气体中的物体。 ③浮力的方向总是竖直向上的。 (2)称重法测浮力 先在空气中用弹簧测力计测出物体的重力G,在把物体浸在液体中读出弹簧 测力计的示数F拉,弹簧测力计两次示数的差就是浸在液体中的物体所受的浮力大 小,即F浮=G-F拉。 知识拓展:称重法测浮力的受力分析 物体浸在水中时,受到三个力的作用——重力G弹簧测力计的拉力F拉和浮力 F浮,其中重力方向竖直向下,弹簧测力计的拉力和浮力的方向都是竖直向上的,根据力的平衡原理可知,物体处于静止状态,则物体受到的向上的力与受到的向下的力相等,即F浮+F拉=G,所以F浮=G-F拉。 知识点2、浮力产生的原因 (1)探究:浮力产生的原因 位置深度压强压力图示 前、后两个面相等由公式p=ρgh 知,ρ、h相同, 因此前、厚两个 面受到的压强相 等由公式F=pS知,p、S相同,因此前、后两个面受到的压力F前=F后,且二力作用在同一物体上,大小相等,方向相反,作用在同一直线上,因此F前、F后是一对平衡力 左、右两个面相等相等F左、F右是一对平衡力 上、下两个面上表面所处液体的 深度小于下表面所 处液体的深度上表面所受压强 小于下表面所受 压强 上表面所受压力F1小于下表面所 受压力F2,即F1<F2,F差=F2-F1 浮向上向下

总是竖直向上,与重力方向相反。 (2)根据浮力产生的原因,我们应了解两种特殊情况。 ①当物体部分浸入液体中时,上表面不受液体压力,则F浮=F向上。 ②若浸没在液体中的物体下表面和容器底紧密接触,则液体对物体向上的压力F向上为零,物 体将不受浮力的作用,只受向下的压力,如在水中的桥墩、深陷在淤泥中的沉船等不会受到水的浮力。 (3)关于浮力的两个问题 ①浮力的方向总是竖直向上。 ②一切浸入液体或气体中的物体,都受到液体或气体对他竖直向上的浮力;无论物体的形状如 何,怎样运动,只要是浸在液体或气体中(除物体下表面与容器底紧密接触外),都会受到液体或气体竖直向上的浮力。 知识点3、决定浮力大小的因素 实验探究:浮力大小跟那些因素有关。 实验 序号 实验目的不变量和变化量图示现象分析 1 物体浸没的深度 的关系 同一物体浸没在液体中的体积相 同,液体密度相同,使物体浸没在 液体中的深度不同 ①④ ⑤ 两种情况下 弹簧测力计 的示数相同 根据F浮=G-F拉,物体所受浮力相 同,浮力的大小与物体浸没在液体中 的深度无关 2 物体浸在液体中 的体积的关系 液体的密度相同,同一物体,浸在 液体中的体积(排开液体的体积) 不同 ①③ ④ 两种情况下 弹簧测力计 的示数不同 根据F浮=G-F拉,物体所受浮力不 同,说明物体受到的浮力与物体排开 液体的体积有关

圆知识点总结及归纳

第一讲圆的方程 (一)圆的定义及方程 1、圆的标准方程与一般方程的互化 (1)将圆的标准方程 (x-a)2+(y-b)2=r2 展开并整理得x2+y2-2ax-2by+a2+b2-r2=0,取D=-2a,E=-2b,F=a2+b2-r2,得x2+y2+Dx+Ey+F=0. (2)将圆的一般方程x2+y2+Dx+Ey+F=0通过配方后得到的方程为:

(x +D 2)2+(y +E 2 )2= D 2+ E 2-4F 4 ①当D 2 +E 2 -4F >0时,该方程表示以(-D 2,-E 2)为圆心, 1 2 D 2+ E 2-4 F 为半径的圆; ②当D 2 +E 2 -4F =0时,方程只有实数解x =-D 2,y =-E 2,即只表示一个点(-D 2,-E 2);③当D 2+E 2-4F <0时,方程没有实数解, 因而它不表示任何图形. 2、圆的一般方程的特征是:x 2和y 2项的系数 都为 1 ,没有 xy 的二次项. 3、圆的一般方程中有三个待定的系数D 、E 、F ,因此只要求出这三个系数,圆的方程就确定了. 2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2

方法一: 方法二: (四)圆与圆的位置关系 1 外离 2外切 3相交 4内切 5内含 (五)圆的参数方程 (六)温馨提示 1、方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的条件是: (1)B=0;(2)A=C≠0;(3)D2+E2-4AF>0.

圆知识点总结及典型例题.docx圆知识点总结及典型例题

《圆》章节知识点复习 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂 线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内 ?d r ? 点A 在圆外; 三、直线与圆的位置关系 1、直线与圆相离 ?d r >?无交点; 2、直线与圆相切 ?d r =?有一个交点; 3、直线与圆相交 ?d r

四、圆与圆的位置关系 外离(图1)?无交点 ?d R r >+; 外切(图2)? 有一个交点 ?d R r =+; 相交(图3)? 有两个交点 ?R r d R r -<<+;内切(图4)? 有一个交点 ?d R r =-; 内含(图5)? 无交点 ?d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 图1 图 3 r R d 图2

随机变量及其分布小结与复习

复习课: 随机变量及其分布列 教学目标 重点:理解随机变量及其分布的概念,期望与方差等的概念;超几何分布,二项分布,正态分布等的特点;会求条件概率,相互独立事件的概率,独立重复试验的概率等. 难点:理清事件之间的关系,并用其解决一些具体的实际问题. 能力点:分类整合的能力,运算求解能力,分析问题解决问题的能力. 教育点:提高学生的认知水平,为学生塑造良好的数学认识结构. 自主探究点:例题及变式的解题思路的探寻. 易错点:容易出现事件之间的关系混乱,没能理解问题的实际意义. 学法与教具 1.学法:讲授法、讨论法. 2.教具:投影仪. 一、【知识结构】 二、【知识梳理】 1.随机变量 ⑴随机变量定义:在随机试验中,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.简单说,随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.常用希腊字母x、y、ξ、η等表示. ⑵如果随机变量可能取的值可以按次序一一列出(可以是无限个)这样的随机变量叫做离散型随机变量.

⑶如果随机变量可能取的值是某个区间的一切值,这样的随机变量叫做连续型随机变量. 2.概率分布定义(分布列) 设离散型随机变量ξ可能取的值为123,,,,i x x x x L L ,ξ取每一个值(1,2,)i x i =L 的概率 ()i i P x p ξ==,则称表 ξ 1x 2x L i x L P 1P 2P L i P L 称为随机变量ξ的概率分布列,简称ξ的分布列. 注:1.离散型随机变量的分布列具有下述两个性质: (1)0,123≥,,,i p i =L ;123(2)1p p p +++=L 3.常见的分布列 ⑴二项分布:在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰发生k 次的概 率为()(1)k k n k n p X k C p p -==-,显然x 是一个随机变量.随机变量x 的概率分布如下: x 1 L k L n P 00n n C p q 111 n n C p q - L k k n k n C p q - L n n n C p q 我们称这样的随机变量x 服从二项分布,记作~(,)X B n p ⑵两点分布列:如果随机变量ξ的分布列为: ξ 0 1 P 1P - P 这样的分布列称为两点分布列,称随机变量服从两点分布,而称(1)p P ξ==为成功概率.两点分布是特殊的二项分布(1)p ξ~B , ⑶超几何分布:一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有x 件次品数,则事件{} x k =发生的概率为(),0,1,2,3,,k N k M N M n N C C P X k k m C --===L .其中{}min ,m M n =,且*,,,,n N M N n M N N ≤≤∈,则称分布列

内能知识点总结

内能知识点总结 The Standardization Office was revised on the afternoon of December 13, 2020

内能总结 一、内能的概念: 1、内能:物体内部所有分子由于热运动而具有的动能,以及分子势能的总和叫做物体的内能。 2、物体在任何情况下都有内能:既然物体内部分子永不停息地运动着和分子之间存在着相互作用,那么内能是无条件的存在着。无论是高温的铁水,还是寒冷的冰块。 3、影响物体内能大小的因素: ①温度:物体的内能跟物体的温度有关,同一个物体温度升高,内能增大;温度降低,内能减小。 ②质量:在物体的温度、材料、状态相同时,物体的质量越大,物体的内能越大。 ③材料:在温度、质量和状态相同时,物体的材料不同,物体的内能可能不同。 ④存在状态:在物体的温度、材料质量相同时,物体存在的状态不同时,物体的内能也可能不同。 4、内能与机械能的区别: (1)机械能是宏观的,是物体作为一个整体运动所具有的能量,它的大小与机械运动情况有关(2)内能是微观的,是物体内部所有分子做无规则运动的分子动能和分子势能的总和。内能大小与分子做无规则运动快慢及分子间的相互作用有关。这种无规则运动是分子在物体内的运动,而不是物体的整体运动。 (3)内能的大小不影响机械能,而机械能的大小也不影响内能,但机械能和内能可以相互转化。 二、内能的改变: 1、内能改变的外部表现: (1)物体温度升高(降低)--物体内能增大(减小)。 (2)物体存在状态改变(熔化、汽化、升华等)--内能改变。 2、改变物体内能的方法:做功和热传递。 A、做功改变物体的内能: ①做功可以改变内能:对物体做功,物体内能会增加。物体对外做功,物体内能会减少。 ②做功改变物体内能的实质:内能和其他形式的能的相互转化 ③如果仅通过做功改变内能,可以用做功多少度量内能的改变大小。(W=△E) B、热传递可以改变物体的内能。 (1)热传递是热量从高温物体向低温物体或从同一物体的高温部分向低温部分传递的现象。 (2)热传递的条件:物体之间有温度差,高温物体将能量向低温物体传递,直至各物体温度相同(即达到热平衡)。 (3)热传递的方式是:传导、对流和辐射。 (4)热传递改变物体内能的实质:热传递传递的是内能(热量),而不是温度。热传递的实质是内能的转移。 (5)热传递过程中:低温物体吸收热量,温度升高,内能增加;高温物体放出热量,温度降低,内能减少。 (6)热量:热传递过程中,传递的能量的多少叫热量。热量的单位:焦耳。 3、做功和热传递改变内能的区别:

九年级数学圆的知识点总结大全

r B 一、知识回顾 第四章:《圆》 圆的周长 : C=2πr 或 C=πd 、圆的面积 : S=πr 2 圆环面积计算方法: S=πR2- πr 2或 S=π( R2-r 2) (R 是大圆半径, r 是小圆半径) 二、知识要点一、圆的概念 集合形式的概念: 1 、 圆可以看作是到定点的距离等于定长的点的集合; 2 、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3 、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; 固定的端点 O 为圆心。连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点之间的部分叫做圆弧,简称弧。 2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是: 平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系 1、点在圆内 d r 点C 在圆内; A d 2、点在圆上 d r 点B 在圆上; O d 3、点在圆外 d r 点 A 在圆外; C 三、直线与圆的位置关系 1、直线与圆相离 d r 无交点; 2、直线与圆相切 d r 有一个交点; 3、直线与圆相交 d r 有两个交点; r d d=r r d

C D 四、圆与圆的位置关系 外离(图 1) 无交点 d R r ; 外切(图 2) 有一个交点 d R r ; 相交(图 3) 有两个交点 R r d R r ; 内切(图 4) 有一个交点 d R r ; 内含(图 5) 无交点 d R r ; d d d R r R r R r 图 1 图2 图 3 d d r R r R 图4 图 5 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2) 弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共 4 个定理,简称 2 推 3 定理:此定理中共 5 个结论中,只要知道其中 2 个即可推出其 它 3 个结论,即: ① AB 是直径 ② AB CD ③ CE DE ④ 弧 BC 弧 BD ⑤ 弧 AC 弧 AD 中任意 2 个条件推出其他 3 个结论。 A 推论 2:圆的两条平行弦所夹的弧相等。 C D 即:在⊙ O 中,∵ AB ∥ CD O O ∴弧 AC 弧BD A B E B 六、圆心角定理 顶点到圆心的角,叫圆心角。 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定

相关文档
最新文档