牛顿第二定律

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2 牛顿第二定律

教学目标:

1.理解牛顿第二定律,能够运用牛顿第二定律解决力学问题

2.理解力与运动的关系,会进行相关的判断

3.掌握应用牛顿第二定律分析问题的基本方法和基本技能

教学重点:理解牛顿第二定律

教学难点: 力与运动的关系

教学方法:讲练结合,计算机辅助教学

教学过程:

一、牛 顿 第 二 定 律

1.定律的表述

物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F =ma (其中的F 和m 、a 必须相对应)

点评:特别要注意表述的第三句话。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。 若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。

2.对定律的理解:

(1)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。合外力变化时加速度也随之变化。合外力为零时,加速度也为零

(2)矢量性:牛顿第二定律公式是矢量式。公式m

F a 只表示加速度与合外力的大小关系.矢量式的含义在于加速度的方向与合外力的方向始终一致.

(3)同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言,即 F 与a 均是对同一个研究对象而言.

(4)相对性;牛顿第二定律只适用于惯性参照系

(5)局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子

3.牛顿第二定律确立了力和运动的关系

牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。联系物体的受力情况和运动情况的桥梁或纽带就是加速度。

4.应用牛顿第二定律解题的步骤

①明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为m i,对应的加速度为a i,则有:F合=m1a1+m2a2+m3a3+……+m n a n 对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律:∑F1=m1a1,∑F2=m2a2,……∑F n=m n a n,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。

②对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。

③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。

④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。

解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,标出运动情况,那么问题都能迎刃而解。

二、应用举例

1.力与运动关系的定性分析

【例1】如图所示,如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是

A.小球刚接触弹簧瞬间速度最大

B.从小球接触弹簧起加速度变为竖直向上

C.从小球接触弹簧到到达最低点,小球的速度先增大后减小

D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。选CD。

【例2】如图所示.弹簧左端固定,右端自由伸长到O点并系住物体m.现将弹簧压缩到A点,然后释放,物体一直可以运动到B点.如果物体受到的阻力恒定,则A.物体从A到O先加速后减速

B.物体从A到O加速运动,从O到B减速运动

C.物体运动到O点时所受合力为零

D.物体从A到O的过程加速度逐渐减小

解析:物体从A到O的运动过程,弹力方向向右.初始阶段弹力大于阻力,合力方向向右.随着物体向右运动,弹力逐渐减小,合力逐渐减小,由牛顿第二定律可知,此阶段物体的加速度向右且逐渐减小,由于加速度与速度同向,物体的速度逐渐增大.所以初始阶段物体向右做加速度逐渐减小的加速运动.

当物体向右运动至AO间某点(设为O′)时,弹力减小到等于阻力,物体所受合力为零,加速度为零,速度达到最大.

此后,随着物体继续向右移动,弹力继续减小,阻力大于弹力,合力方向变为向左.至O 点时弹力减为零,此后弹力向左且逐渐增大.所以物体从O′点后的合力方向均向左且合力逐渐增大,由牛顿第二定律可知,此阶段物体的加速度向左且逐渐增大.由于加速度与速度反向,物体做加速度逐渐增大的减速运动.

正确选项为A、C.

点评:(1)解答此题容易犯的错误就是认为弹簧无形变时物体的速度最大,加速度为零.这显然是没对物理过程认真分析,靠定势思维得出的结论.要学会分析动态变化过程,分析时要先在脑子里建立起一幅较为清晰的动态图景,再运用概念和规律进行推理和判断.

(2)通过此题,可加深对牛顿第二定律中合外力与加速度间的瞬时关系的理解,加深对

速度和加速度间关系的理解.譬如,本题中物体在初始阶段,尽管加速度在逐渐减小,但由于它与速度同向,所以速度仍继续增大.

2.牛顿第二定律的瞬时性

【例3】(2001年上海高考题)如图(1)所示,一质量为m 的物体系于长度分别为L 1 、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。现将L 2线剪断,求剪断瞬时物体的加速度。

(1)下面是某同学对该题的某种解法:

解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下处于平衡。=θcos 1T mg ,21sin T T =θ,解得2T =mg tan θ,剪断线的瞬间,T 2突然消失,物体却在T 2反方向获得加速度,因为mg tan θ=ma 所以加速度a =g tan θ,方向在T 2反方向。你认为这个结果正确吗说明理由。

(2)若将图(1)中的细线L 1改为长度相同,质量不计的轻弹簧,如图(2)所示,其它条件不变,求解的步骤和结果与(1)完全相同,即a =g tan θ,你认为这个结果正确吗请说明理由。

解析:(1)这个结果是错误的。当L 2被剪断的瞬间,因T 2突然消失,而引起L 1上的张力发生突变,使物体的受力情况改变,瞬时加速度沿垂直L 1斜向下方,为a =g sin θ。

(2)这个结果是正确的。当L 2被剪断时,T 2突然消失,而弹簧还来不及形变(变化要有一个过程,不能突变),因而弹簧的弹力T 1不变,它与重力的合力与T 2是一对平衡力,等值反向,所以L 2剪断时的瞬时加速度为a =g tan θ,方向在T 2的反方向上。

点评:牛顿第二定律F 合=ma 反映了物体的加速度a 跟它所受合外力的瞬时对应关系.物体受到外力作用,同时产生了相应的加速度,外力恒定不变,物体的加速度也恒定不变;外力随着时间改变时,加速度也随着时间改变;某一时刻,外力停止作用,其加速度也同时消失.

3.正交分解法

【例4】如图所示,质量为4 kg 的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20N,与水平方向成30°角斜向上的拉力F 作用时沿水平面做匀加速运动,求物体的加速度是多大?(g 取10 m/s 2)

解析:以物体为研究对象,其受力情况如图所示,建立平面直角坐标系把F 沿两坐标轴方向分解,则两坐标轴上的合力分别为

物体沿水平方向加速运动,设加速度为a ,则x 轴方向上的加速度a x =a ,y 轴方向上物体

相关文档
最新文档