伽罗瓦对数学的贡献

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SHANGHAI UNIVERSITY

上海大学第一学年春季学期

(新生研讨课)

课程名称:数学进展中的几个案例和启示

课程号:0100Y035

授课教师:郭秀云

学号:_____13122070____

姓名:_____曹颖_______

所属:____理工二组____

成绩:_______________

评语:

论伽罗瓦对数学的贡献

曹颖(13122070)

摘要:埃瓦里斯特·伽罗瓦法国数学家,与尼尔斯·阿贝尔并称为现代群论的创始人,被公认为数学界两个最具浪漫主义色彩的人物之一。他在21年的人生中为数学领域做出了杰出的贡献,可惜他的一生只能被称为“天才的悲剧”,令人惋惜悲叹。

关键词:伽罗瓦、群论、贡献、体会

一、引言

在数学中,代数方程的求解有悠久的历史。很早就会解1次和2次方程,16世纪也成功解决了3次和4次方程,它们的根都可以表示为系数的根的四则运算,我们称它们有根式解。而5次和5次以上代数方程求解遇到了严重的障碍,经过300年的努力仍然得不出求解公式。经过多次失败之后,阿贝尔和伽罗华从反方向来看问题。在19世纪20年代,他们证明:一般的5次和5次以上代数方程没有根式解。而伽罗华走得更远,他引进群的概念来判断一个5次或5次以上方程是否有根式解。

二、正文

1.伽罗瓦理论的产生背景

用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。三次、四次方程的解法直到16世纪上半叶才得到。从此以后、数学家们转向求解五次以上的方程。经过两个多世纪,一些著名的数学家,如欧拉、旺德蒙德、拉格朗日、鲁菲尼等,都做了很多工作,但都未取得重大的进展。

伽罗瓦从1828年开始研究代数方程理论,他试图找出为了使一个方程存在根式解,其系数所应满足的充分和必要条件。到1832年他完全解决了这个问题。在他临死的前夜,他将结果写在一封信中,留给他的一位朋友。1846年他的手稿才公开发表。伽罗瓦完全解决了高次方程的求解问题,他建立于用根式构造代数方程的根的一般原理,这个原理是用方程的根的某种置换群的结构来描述的,后人称之为“伽罗瓦理论”。

2.伽罗瓦群论的实质

我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式△1=a1x1+a2x2+…+anxn,其中ai(i=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程=0 (2) 该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设f(x)=是的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△i中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群

是方程根的可能的最大置换群s(n),s(n)是由n!个元素集合构成的,s(n)中的元素乘积实际上是指两个置换之积。现在把s(n)中的元素个数称为阶,s(n)的阶是n!。

伽罗瓦找出方程系数域中的伽罗瓦群g后,开始寻找它的最大子群h1,找到h1后用一套仅含有理运算的手续(即寻找预解式)来找到根的一个函数。的系数属于方程的系数域r,并且在h1的置换下不改变值,但在g的所有别的置换下改变值。再用上述方法,依次寻找h1的最大子群h2,h2的最大子群h3,…于是得到h1,h2,…,hm,直到hm里的元素恰好是恒等变换(即hm为单位群i)。在得到一系列子群与逐次的预解式的同时,系数域r也随之一步步扩大为r1,r2,…,rm,每个ri对应于群hi。当hm=i时,rm就是该方程的根域,其余的r1,r2,…,rm-1是中间域。一个方程可否根式求解与根域的性质密切相关。例如,四次方程x4+px2+q=0 (3) p与q独立,系数域r添加字母或未知数p、q到有理数中而得到的域,先计算出它的伽罗瓦群g,g是s(4)的一个8阶子群,g={e,e1,e2,…e7},其中

e=,e1=,e2=,e3=,e4=,e5=,e6=,e7=。

要把r扩充到r1,需在r中构造一个预解式,则预解式的根,添加到r中得到一个新域r1,于是可证明原方程(3)关于域r1的群是h1,h1={e,e1,e2,e3},并发现预解式的次数等于子群h1在母群g中的指数8÷4=2(即指母群的阶除以子群的阶)。第二步,构造第二个预解式,解出根,于是在域r1中添加得到域r2,同样找出方程(3)在r2中的群h2,h2={e,e1},此时,第二个预解式的次数也等于群h2在h1中的指数4÷2=2。第三步,构造第三个预解式,得它的根,把添加到r2中得扩域r3,此时方程(3)在r3中的群为h3,h3={e},即h3=i,则r3是方程(3)的根域,且该预解式的次数仍等于群h3在h2中的指数2÷1=2。在这个特殊的四次方程中,系数域到根域的扩域过程中每次添加的都是根式,则方程可用根式解。这种可解理论对于一般的高次方程也同样适用,只要满足系数域到根域的扩域过程中每次都是添加根式,那么一般的高次方程也能用根式求解。现仍以四次方程(3)为例,伽罗瓦从中发现了这些预解式实质上是一个二次的二项方程,既然可解原理对高次方程也适用,那么对于能用根式求解的一般高次方程,它的预解式方程组必定存在,并且所有的预解式都应是一个素数次p的二项方程xp=a。由于高斯早已证明二项方程是可用根式求解的。因此反之,如果任一高次方程所有的逐次预解式都是二项方程,则能用根式求解原方程。于是,伽罗瓦引出了根式求解原理,并且还引入了群论中的一个重要概念“正规子群”。

他是这样给正规子群下定义的:设h是g的一个子群,如果对g中的每个g都有gh=hg,则称h为g的一个正规子群,其中gh表示先实行置换g,然后再应用h的任一元素,即用g 的任意元素g乘h的所有置换而得到的一个新置换集合。定义引入后,伽罗瓦证明了当作为约化方程的群(如由g 约化到h1)的预解式是一个二项方程xp=a (p为素数)时,则h1是g的一个正规子群。反之,若h1是g的正规子群,且指数为素数p,则相应的预解式一定是p 次二项方程。他还定义了极大正规子群:如果一个有限群有正规子群,则必有一个子群,其阶为这有限群中所有正规子群中的最大者,这个子群称为有限群的极大正规子群。一个极大正规子群又有它自己的极大正规子群,这种序列可以逐次继续下去。因而任何一个群都可生成一个极大正规子群序列。他还提出把一个群g生成的一个极大正规子群序列标记为g、h、i、j…, 则可以确定一系列的极大正规子群的合成因子[g/h],[h/i],[i/g]…。合成因子[g/h]=g 的阶数/ h的阶数。对上面的四次方程(3),h1是g的极大正规子群,h2是h1的极大正规子群,h3又是h2的极大正规子群,即对方程(3)的群g 生成了一个极大正规子群的序列g、h1、h2、h3。

随着理论的不断深入,伽罗瓦发现对于一个给定的方程,寻找它在伽罗瓦群及其极大不变子群序列完全是群论的事。因此,他完全用群论的方法去解决方程的可解性问题。最后,伽罗瓦提出了群论的另一个重要概念“可解群”。他称具有下面条件的群为可解群:如果它所生成的全部极大正规合成因子都是质数。

相关文档
最新文档