离散数学ppt

合集下载

1.3等值演算(离散数学) PPT

1.3等值演算(离散数学) PPT
解答
等值 不等值
基本等值式
1.双重否定律
A ┐┐A
2.幂等律
A A∨A, A A∧A
3.交换律
A∨B B∨A, A∧B B∧A
4.结合律
(A∨B)∨C A∨(B∨C) (A∧B)∧C A∧(B∧C)
5.分配律
A∨(B∧C) (A∨B)∧(A∨C) (∨对∧的分配律)
A∧(B∨C) (A∧B)∨(A∧C) (∧对∨的分配律)
等值演算的应用 –证明两个公式等值
–判断公式类型 –解判定问题
等值演算的应用举例
例3 证明两个公式等值 (p→q)→r (p∨r)∧(┐q∨r)
解答
(p→q)→r (┐p∨q)→r
(蕴含等值式、置换规则)
┐(┐p∨q)∨r (蕴含等值式、置换规则)
(p∧┐q)∨r
(德摩根律、置换规则)
(p∨r)∧(┐q∨r) (分配律、置换规则)
(蕴含等值式) (分配律) (德摩根律) (蕴含等值式)
例题
例5 证明:(p→q)→r 与 p→(q→r) 不等值
解答 方法一、真值表法。
方法二、观察法。易知,010是(p→q)→r的成假赋值,而010 是p→(q→r)的成真赋值,所以原不等值式成立。
方法三、通过等值演算化成容易观察真值的情况,再进行判断。
1.3 等值演算
两公式什么时候代表了同一个命题呢?
抽象地看,它们的真假取值完全相同时即代 表了相同的命题。
设公式A,B共同含有n个命题变项,若A与B有 相同的真值表,则说明在2n个赋值的每个赋 值下,A与B的真值都相同。于是等价式AB 应为重言式。
等值的定义及说明
定义1.10 设A,B是两个命题公式,若A,B构成的 等价式AB为重言式,则称A与B是等值的,记 作AB。

离散数学-第2讲-同态与同构ppt课件.ppt

离散数学-第2讲-同态与同构ppt课件.ppt

*abcd aabcd bbbdd ccdcd ddddd
*0123
00110 11121 21232 30123
可以验证在函数h: S→S′中,其中h(a)=0, h(b)=1, h(c)=0, h(d)=1,保持 运算。因此, h: S→S′是A到B的同态。
二、同态代数的性质
例2:设S = {a, b, c, d}, S′={0, 1, 2, 3}, 代数A=<S, *>和B=<S′, >由* 下表定 义:
一、同态与同构
同构定义:
设A=<S, *, △, k>和A′=<S′, *′, △′, k′>是同构的, 如果存在 一双射函数h,使
(1) h: S → S′;
(2) h(a*b) = h(a) *′h(b); (3) h(△a) = △′h(a);
在h作用下,A的 每一运算都保持, 简称为运算保持
f 0表示A上的恒等函数;f 1表示f;f 2表示合成函数f·f;f 3表示f 2·f; f 4表示 f 3·f;则f 4=f 0。设F={f 0, f 1, f 2, f 3}, 则代数<F, ·, f 0>可以用左下方的运算 表给定, 这里f 0是么元。集合N4={0, 1, 2, 3},+4是模4加法,代数<N4,+4,0>用 右下方的运算表给定, 这里0是么元。
(1)
p=h(x)=h((x-1)+1)=h(x-1)·h(1)
(2)
但因为p是一质数, 唯一的因子是p和1, 根据(1), h(x)=1或h(0)=1; 根据(2), h(1)=1或h(x-1)=1。
因为0<1≤x-1<x, 所以,在映射h下, 1至少是两个元素的象, 得出h 不是双射函数,因此< N, +>和< I+, ·>不同构。

离散数学树ppt课件.ppt

离散数学树ppt课件.ppt
知,G-e已不是连通图, 所以,e为桥。
(5)(6)
如果G是连通的且G中任何边均为桥,则G中没有回路,但在任 何两个不同的顶点之间加一条新边,在所得图中得到唯一的 一个含新边的圈。
因为G中每条边均为桥,删掉任何边,将使G变成不连通图, 所以,G中没有回路,也即G中无圈。
又由于G连通,所以G为树,由(1) (2)可知,
根树的分类
(1)设T为根树,若将T中层数相同的顶点都标定次序, 则称T为有序树。
(2)分类:根据根树T中每个分支点儿子数以及是否有序 r叉树——每个分支点至多有r个儿子
r叉有序树——r叉树是有序的 r叉正则树——每个分支点恰有r个儿子
r叉正则有序树——r叉正则树是有序的 r叉完全正则树——树叶层数均为树高的r叉正则树
1,1,1,2,2,2,3
由度数列可知,Ti中有一个3度顶点vi,vi的邻域N(vi)中有3个顶 点,这3个顶点的度数列只能为以下三种情况之一:
1,1,2
1,2,2
2,2,2
设它们对应的树分别为T1,T2,T3。此度数列只能产生这三棵 非同构的7阶无向树。
例16.2
例题
例题 已知无向树T中,有1个3度顶点,2个2度顶点,其余 顶点全是树叶,试求树叶数,并画出满足要求的非同构 的无向树。
无向树的性质
定理16.2 设T是n阶非平凡的无向树,则T中至少有两片树叶。
证明
设T有x片树叶,由握手定理及定理16.1可知,
2(n 1) d(vi ) x 2(n x)
由上式解出x≥2。
例16.1
例16.1 画出6阶所有非同构的无向树。
解答 设Ti是6阶无向树。 由定理16.1可知,Ti的边数mi=5, 由握手定理可知,∑dTi(vj)=10,且δ(Ti)≥1,△(Ti)≤5。 于是Ti的度数列必为以下情况之一。

离散数学及应用PPT课件

离散数学及应用PPT课件
28.04.2020
引 言(续)
二、该课程的主要内容: 离散数学课程的主要内容可以分为四个部分: 数理逻辑,包括命题逻辑和谓词逻辑。(教材的第一、二章) 集合论,包括集合、关系和函数。(教材的第三、四章) 代数系统,包括代数系统的一般概念,几类典型的代数系
统和格。(教材的第五、六章) 图论,包括图的基本概念,几种特殊的图。 (教材的第七章)
数理逻辑:人工智能,数据库,形式语言及自动机, 高级程序设计语言。
集合论: 信息结构与检索,数据结构。 图论: 可计算性理论,计算机网络,数据结构。 代数结构:开关理论,逻辑设计和程序理论,语法
分析。 2. 通过学习离散数学,可以培养和提高自己的抽象思
维和逻辑推理能力,获得解决实际问题能力,为以 后的软、硬件学习和研究开发工作,打下坚实的数 学基础。
版) (美)Kenneth H.Rosen 著 机械工业出版社
28.04.2020
引 言(续)
七、考核方式: 期末考试成绩占70%, 平时成绩占30%.
28.04.2020
第一部分 数理逻辑(Mathematical Logic)
❖ 逻辑:是研究推理的科学。公元前四世纪由希腊的 哲学家亚里斯多德首创。作为一门独立科学,十七 世纪,德国的莱布尼兹(Leibniz)给逻辑学引进了符 号, 又称为数理逻辑(或符号逻辑)。
➢ 因此,离散数学是随着计算机科学的发 展而逐步建立的,它形成于七十年代初期, 是一门新兴的工具性学科。
28.04.2020
引 言(续)
➢ 离散数学是现代数学的一个重要分支, 是计算机科学与技术的理论基础,是计算机 科学与技术专业的核心、骨干课程。
➢ 它 以研究离散量的结构和相互间的关系 为主要目标,其研究对象一般是有限个或可 数个元素,因此它充分描述了计算机科学离 散性的特点。

离散数学PPT课件

离散数学PPT课件
定义2.1设A,B是两个命题公式,若A,B构成的等价 式AB为重言式,则称A与B等值,记为AB。
20
例2.1判断下面两个公式是否等值: (pq), pq 例2.2判断下面各组公式是否等值: (1)p(qr) 与 (pq)r (2) ( pq)r与 (pq)r
21
置换规则 : 设(A)是含公式A的命题公式, (B) 是用公式B置换了(A)中所有的A以后得到的命题公式, 若BA,则(B) (A)。
定义1.2 设p,q为两命题,复合命题“p并且q”称为p与 q的合取式,记作“pq”。 pq为真当且仅当 p, q同 时为真。
定义1.3 设p,q为两命题,复合命题“p或q”称为p与q的 析取式,记作“pq”。 p q为假当且仅当 p, q同时为 假。
7
例1.3将下列命题符号化 (1)吴影既用功又聪明。 (2)吴影不仅用功而且聪明。 (3)吴影虽然聪明,但不用功。 (4)张辉与王丽都是三好学生。 (5)张辉与王丽是同学
16
例1.8求下列公式的真值表,并求成真赋值。 (1) (pq)r (2) (pp)(qq) (3) (p q) q r
定义1.10设A为一命题公式 (1)若A在它的各种赋值下取值均为真,则称A是重 言式或永真式。 (2)若A在它的各种赋值下取值均为假,则称A是矛 盾式或永假式。 (3)若A不是矛盾式,则称A是可满足式。
离散数学
1
离散数学课件
离散数学是计算机科学的核心理论课程, 是计算机专业的专业基础课。
第一部分 数理逻辑 第二部分 集合与关系代数 第三部分 图论
2
第一部分数理逻辑
第一章 命题逻辑基本概念 第二章 命题逻辑等值演算 第三章 命题逻辑推理理论 第四章 一阶逻辑基本概念 第五章 一阶逻辑等值演算与推理

离散数学-耿素云PPT第5版1.5-6.ppt

离散数学-耿素云PPT第5版1.5-6.ppt

x y
x∧y x y
x∨y x
x
与门
或门
非门
7
组合电路的例子
(x∨y)∧x的组合电路
x y
x y
第一种画法
x 第二种画法
8

例 楼梯的灯由上下2个开关控制, 要求按动任何一个 开关都能打开或关闭灯. 试设计一个这样的线路. 解 x,y:开关的状态, F:灯的状态, 打开为1, 关闭为0. 不妨设当2个开关都为0时灯是打开的.
2
复合联结词
与非式: pq(pq) 或非式: pq(pq)
和与, ∧,∨有下述关系: p(p∧p)pp p∧q( p∧q)(pq)(pq)(pq) p∨q(p∧q)(p)(q)(pp)(qq)
3
复合联结词(续)
ppp p∧q(pp)(qq) p∨q(pq)(pq)
定理 {}, {}是联结词4
表示串
0 1
标记*表示该项已被合并
14
例(续)
项 x1∧x3∧x4 x1∧x2∧x3 x2∧x3∧x4
x1∧x4
覆盖 (1,4) (2,4) (2,6) (3,5,6,7)
运算符数 3 3 3 2
选择(1,4), (2,4)和(3,5,6,7), 或者(1,4), (2,6)和(3,5,6,7). 最简展开式为
联结词的全功能集
定义 设S是一个联结词集合,如果任何n(n1) 元 真值函数都可以由仅含S中的联结词构成的公式表 示,则称S是联结词全功能集.
说明:若S是联结词全功能集,则任何命题公式都 可用S中的联结词表示.
设S1, S2是两个联结词集合,且S1 S2. 若S1是全
功能集,则S2也是全功能集. 反之,若S2不是全功能 集,则S1也不是全功能集.

离散数学群与子群-PPT

离散数学群与子群-PPT

解:由题意,R上得二元运算★得运算表如上所示,由表知,运算★在R上就 是封闭得。
对于任意a, b, cR,(a★b)★c表示将图形依次旋转a, b和c,而 a★(b★c)表示将图形依次旋转b,c和a,而总得旋转角度都就是 a+b+c(mod 360),因此(a★b)★c= a★(b★c),即★运算满足结合性。
a
b
c
d
b
d
a
c
定理5、4、4 群〈G,*〉得运算表中任一行(列)得元素都就是G中元 素得一个置换。且不同行,不同列得置换都不同。 证明 首先,证明运算表中得任一行或任一列所含G中得一个元素不可能多 于一次。用反证法,如果对应于元素a∈G得那一行中有两个元素都就 是c,即有 a*b1=a*b2=c 且b1≠b2 由可约性可得 b1=b2,这与b1≠b2矛盾。
其次,要证明G中得每一个元素都在运算表得每一行和每一列中出现。考 察对应于元素a∈G得那一行,设b就是G中得任一元素,由于 b=a*(a1*b),所以b必定出现在对应于a得那一行中。
再由运算表中没有两行(或两列)相同得事实,便可得出:<G,*>得运算表中 每一行都就是G得元素得一个置换,且每一行都就是不相同得。同样得 结论对于列也就是成立得。
结果都等于另一个元素, ) 3) G中任何元素得逆元就就是她自己; 。 故〈G,*〉为一个群。 此外,运算就是可交换得,一般称这个群为克莱因(Klein)四元群,简称四元群。
思考练习
已知:在整数集 I 上得二元运算定义为:a,b∈I,
a b=a+b-2
证明:< I , >为群。
么元为:2 逆元:x-1=4-x
离散数学群与子群
一、群得概念

左孝凌离散数学ppt课件

左孝凌离散数学ppt课件

第七章 图论 7.1 图的基本概念
完全图:任意两个不同的结点都是邻接的简单图称为
完全图。n个结点的无向完全图记为Kn。
图7.1.5给出了K3和K4。从图中可以看出K3有3条边,
K4有6条边。容易证明Kn有条边。
n(n 1) 2
图7.1.5K3与K4示意图
图7.1.6
第七章 图论 7.1 图的基本概念
一个图G可用一个图形来表示且表示是不唯一的。
第七章 图论 7.1 图的基本概念
【例7.1.2】设G=〈V(G),E(G)〉,其中
V(G)={a,b,c,d},E(G)={e1,e2,e3,e4,e5,e6,e7},e1=(a,b), e2=(a,c),e3=(b,d),e4=(b,c),e5=(d,c),e6=(a,d),e7=(b,b) 。
1)若e1,e2,…,ek都不相同, 则称路μ为迹;
2)若v0,v1,…,vk都不相同, 则称路μ为通路;
3)长度大于2的闭的通路(即 除v0=vk外,其余结点均不相同的 路)μ称作圈。
图7.1.1
第七章 图论
7.2 路与回路
例如在图7.2.1中,有连接v5 到v3的路v5e8v4e5v2e6v5e7v3,这 也是一条迹;路v1e1v2e3v3是一 条通路;路v1e1v2e3v3e4v2e1v1是 一条回路,但不是圈;路 v1e1v2e3v3e2v1是一条回路,也是 圈。
定 义 7.2.1 给 定 图 G = 〈V,E〉, 设 v0,v1,…,vk∈V , e1 , e2,…,ek∈E,其中ei是关联于结点vi-1和vi的边,称 交替序列v0e1v1e2…ekvk为连接v0到vk的路,v0和vk分别 称为路的起点与终点。路中边的数目k称作路的长度。 当v0=vk时,这条路称为回路。

离散数学高等教育出版社配套PPT课件屈婉玲耿素云张立昂

离散数学高等教育出版社配套PPT课件屈婉玲耿素云张立昂
15
子群判定定理2
定理10.6 (判定定理二) 设G为群,H是G的非空子集. H是G的子群当且仅当a,b∈H 有ab1∈H.
证 必要性显然. 只证充分性. 因为H非空,必存在a∈H. 根据给定条件得aa1∈H,即e∈H. 任取a∈H, 由e,a∈H 得 ea1∈H,即a1∈H. 任取a,b∈H,知b1∈H. 再利用给定条件得a(b1) 1∈H,即 ab∈H. 综合上述,可知H是G的子群.
13
10.2 子群与群的陪集分解
定义10.5 设G是群,H是G的非空子集, (1) 如果H关于G中的运算构成群,则称H是G的子群, 记作
H≤G. (2) 若H是G的子群,且HG,则称H是G的真子群,记作
H<G.
例如 nZ (n是自然数) 是整数加群<Z,+> 的子群. 当n≠1时, nZ是Z的真子群.
11
实例
例 5 设G是群,a,b∈G是有限阶元. 证明
(1) |b1ab| = |a|
(2) |ab| = |ba|
证 (1) 设 |a| = r,|b1ab| = t,则有
(b1ab)r (b1ab)(b1ab)...(b1ab)
r个
b1arb b1eb e
从而有t | r. 另一方面,由 a = (b1)1(b1ab)b1可知 r | t. 从而 有 |b1ab| = |a|.
实例: <Z,+>和<R,+>是无限群,<Zn,>是有限群,也是 n 阶群. Klein四元群是4阶群. <{0},+>是平凡群. 上述群都是交换群,n阶(n≥2)实可逆矩阵集合关于矩阵乘法 构成的群是非交换群.
5
群中元素的幂

1.7推理理论(离散数学)PPT

1.7推理理论(离散数学)PPT

例2. 构造下列推理的证明
前提:p∨q, p→ r, s→t, s→r, t
结论:qБайду номын сангаас
①s→t
前提引入
② t
前提引入
③ s
①②拒取式
④ s→r
前提引入
⑤r
③④假言推理
⑥p→ r
前提引入
⑦ p
⑤⑥拒取式
⑧p∨q
前提引入
⑨q
⑦⑧析取三段论
例3. 构造下列推理的论证
前提:p→q, r→ q, r∨s, s→ q
称(A1∧A2∧…∧Ak)→B 为由前提A1,A2,…,Ak推结论 B 的推理的形式结构.
说明:
同用“A B”表示“AB”是重言式类似,用 “AB”表示“AB”是重言式.因而,若由前提 A1,A2,···,Ak推结论B的推理正确,也记
(A1∧A2∧…∧Ak)B.
于是,判断推理是否正确的方法就是判断重言蕴涵 式的方法.比如真值表法,等值演算法,主析取范式 法等.
8.(A→B)∧(C→D)∧(A∨C) (B∨D). 构造性二难
推理规则
(1)前提引入规则 在证明的任何步骤上都可以引入前提。
(2)结论引入规则 在证明的任何步骤上所得到的结论都可以作为
后继证明的前提。
(3)置换规则 在证明的任何步骤上,命题公式中的子公式都
可以用与之等值的公式置换,得到公式序列中的又 一个公式。
①p∨ s
前提引入
②s
附加前提引入
③p
①②析取三段论
④p→ (q→r)
前提引入
⑤q→r
③④假言推理
⑥q
前提引入
⑦r
⑤⑥假言推理
四、归谬法
若A1∧A2∧…∧An 是可满足式,则称A1 ,A2,…,An 是相 容的,

精品课程《离散数学》PPT课件(全)(1)

精品课程《离散数学》PPT课件(全)(1)
13
1.1 命题符号化及联结词
命题与命题变项象程序语言中常量与变量的关系一样。
例:5是一个常量,是一个确定的数字,而x是一个变量, 赋给它一个什么值它就代表什么值,即x的值是不定的。
例3:判断下列句子是否为命题?
1.张校长的头发有一万根。
(是)
2.我所说的是假的。
(否)
14
1.1 命题符号化及联结词
式公式。 (2)称A是n+1(n≥0)层公式是指下列情况之一:
(a) A= B,B是n层公式; (b)A=B∧C,其中B,C分别为i层和j层公式,且n=max(i,j) ; (c) A=B ∨ C,其中B,C的层次及n同(b); (d) A=B ∨ C,其中B,C的层次及n同(b); (e) A=B C,其中B,C的层次及n同(b); (f) A=B C,其中B,C的层次及n同(b);
4
第一章 命题逻辑
❖ 数理逻辑是研究推理(即研究人类思维的形式 结构和规律)的科学,起源于17世纪,它采用 数学符号化的方法,因此也称为符号逻辑。
❖ 从广义上讲,数理逻辑包括四论、两演算—— 即集合论、模型论、递归论、证明论和命题演 算、谓词演算,但现在提到数理逻辑,一般是 指命题演算和谓词演算。本书也只研究这两个 演算。
6
第一章 命题逻辑
❖ 数理逻辑与计算机学、控制论、人工智能的相 互渗透推动了其自身的发展,模糊逻辑、概率 逻辑、归纳逻辑、时态逻辑等都是目前比较热 门的研究领域。
❖ 本篇我们只从语义出发,对数理逻辑中的命题 演算与谓词演算等作一简单的、直接的、非形 式化的介绍,将不涉及任何公理系统。
7
1.1 命题符号化及联结词
运算规则:
p
q
p q

离散数学一阶逻辑.ppt

离散数学一阶逻辑.ppt
义可以看出,对于任意的谓词A(x), 都有:
xA(x) A(a1)∧A(a2) ∧…∧A(an); xA(x) A(a1)∨A(a2) ∨…∨A(an).
多个量词同时出现时,不能随意颠倒他们的顺序。
15
例题
对任意的x,存在着y,使得 x+y=5.
H(x,y)表示x+y=5 可符号化成:x y H(x,y) 不可符号化成: y x H(x,y)
P37. 例题2.2、2.3、2.4、2.5
16
第二章 一阶逻辑
第2章 一阶逻辑
2.1 一阶逻辑基本概念 2.2 一阶逻辑合式公式及解释 2.3 一阶逻辑等值式
17
2.2 一阶逻辑公式及解释
合式公式(简称公式) 个体变项的自由出现和约束出现 解释与分类
18
一阶逻辑合式公式采用字母表
个体词:是可以独立存在的客体. 个体常项:用小写的英文字母
a,b,c,d…. 个体变项:用小写的英文字母
x,y,z…. 个体域:个体的取值范围. 全总个体域:指宇宙中的一切事物.
7
2.谓词的相关概念
谓词: 表示个体词性质或相互之间关系的词
谓词常项:F(a):a是人 谓词变项:F(x):x具有性质F
在解释N下,下面那些公式为
真命题;
真?那些公式为假?
(3) x+y=y+z
(1)xF(g(x,a),x);
真值不确定,不是命题.
(2)xy(F(f(x,a),y)→F(f(y,a) ,x));
(3)F(f(x,y),f(y,z))
30
公式的分类
设A为一公式(谓词公式) 如果A在任何解释下都是真的, 称A为 逻辑有效式(或永真式); 如果A在任何解释下都是假的, 称A为 矛盾式(或永假式); 若至少存在一个解释使A为真, 则称A 是可满足式(协调式).

清华大学离散数学ppt课件

清华大学离散数学ppt课件
对于有穷集,极小元和极大元必存在,可能存在多个. 最小元和最大元不一定存在,如果存在一定惟一. 最小元一定是极小元;最大元一定是极大元. 孤立结点既是极小元,也是极大元.
19
偏序集的特定元素(续)
定义4.29 设<A, ≼>为偏序集, BA, yA.
(1) 若x (x∈B→x≼y) 成立, 则称 y 为B 的上界.
实例:数集上的小于或等于关系是全序关系 整除关系不是正整数集合上的全序关系 {1, 2, 4, 6}集合上的整除关系, 2覆盖1, 4 和 6 覆盖2. 但4不覆盖1.
15
偏序集与哈斯图
定义4.27 集合A和A上的偏序关系≼一起叫做偏序集, 记 作<A,≼>. 实例:整数集和数的小于等于关系构成偏序集<Z,≤>
定义4.28 设<A,≼>为偏序集, BA, y∈B. (1) 若x(x∈B→y≼x)成立, 则称 y 为 B 的最小元. (2) 若x(x∈B→x≼y)成立, 则称 y 为 B 的最大元. (3) 若x(x∈B∧x≼y→x=y)成立, 则称 y 为B的极小元. (4) 若x(x∈B∧y≼x→x=y)成立, 则称 y 为B的极大元.
Being kind is more important than being right. 善良比真理更重要.
You should never say no to a gift from a child. 永远不要拒绝孩子送给你的礼物.
Sometimes all a person needs is a hand to hold and a heart to understand. 有时候,一个人想要的只是一只可握的手和一颗感知的心.
23
请您欣赏
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档