自动控制学习心得

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以为主要工具研究多变量的理论。20世纪50年代以后,随着航天等技术的发展和控制理论应用范围的扩大,经典线性控制理论的局限性日趋明显,它既不能满足实际需要,也不能解决理论本身提出的一些新问题。这种状况推动线性系统的研究,在1960年以后从经典阶段发展到现代阶段。美国学者首先把状态空间法应用于对多变量线性系统的研究,提出了和这两个基本概念,并提出相应的判别准则。1963年他又和E.G.吉尔伯特一起得出揭示线性系统结构分解的重要结果,为现代线性系统理论的形成和发展作了开创性的工作。1965年以后,现代线性系统理论又有新发展。出现了、和等研究的新理论和新方法。随着计算机技术的发展,以线性系统为对象的计算方法和计算机辅助设计问题也受到普遍重视。

主要特点与经典相比,现代线性系统理论的主要特点是:

①研究对象一般是多变量线性系统,而经典理论主要以单输入单输出系统为研究对象。因此,现代线性系统理论具有大得多的适用范围。

②除输入变量和输出变量外,还着重考虑描述系统内部状态的状态变量,而经典理论只考虑系统的外部性能(输入与输出的关系)。因此,现代线性系统理论所考虑的问题更为全面和更为深刻。

③在分析和综合方法方面以时域方法为主,兼而采用频域方法。而经典理论主要采用频域方法。因此,现代线性系统理论能充分利用这两种方法。而时域方法对动态描述要更为直观。

④使用更多的数学工具,除经典理论中使用的外,现代线性系统理论大量使用线性代数、矩阵理论和微分方程理论,对某些问题还使用泛函分析、群论、环论、范畴论和复变函数论等较高深的数学工具。因此,现代线性系统理论能探讨更一般更复杂的问题。

数学模型在线性系统理论中,输入变量、状态变量和输出变量三者之间的数学关系被看作是线性的。系统数学模型具有标准形式。对于连续情况,线性系统由下列方程组描述:[511-01]第一个方程称为状态方程,用以描述状态向量=(,,…,) 与输入向量=(1,…,)间的动态关系;第二个方程称为输出方程或量测方程,描述输出向量=(1,2…,)与状态向量和输入向量之间的线性组合关系。这里T表示矩阵转置。,,和都是常系数矩阵。的维数(即系统的状态变量的个数)称为系统的维数。这个模型可用下面的框图表示。

[线性系统(,,,)],,,)" class=image>

对于离散情况,线性系统的模型具有差分方程形式:

(+1)=A()+B()

()=C()+() (=0,1,2,…)为简便起见,常可把线性系统简记为(,,,)其中或()表示从输入端直接传送到输出端的前馈作用,它与系统状态的动态行为无关在理论研究中常可假设D=0,这时系统可记为(,,)。

学科内容线性系统理论的主要内容包括:①与系统结构有关的各种问题,例如系统的结构分解问题和解耦问题等。系统结构的规范分解(见)是其中的著名结果。②关于控制系统中反馈作用的各种问题,包括和对控制系统性能的影响和反馈控制系统的综合设计等问题。是这方面的主要研究课题。③状态观测器问题,研究用来重构系统状态的状态观测器的原理和设计问题。④实现问题,研究如何构造具有给定的外部特性的线性系统的问题,主要研究课题是问题。⑤几何理论,即用几何观点研究线性系统的全局性问题(见)。⑥代数理论,用抽象代数方法研究线性系统,把线性系统理论抽象化和符号化。其中最有名的是模论方法(见)。⑦,是在状态空间法基础上发展起来的频域方法,可以用来处理多变量线性系统的许多分析和综合问题,也称现代频域方法。⑧时变线性系统理论,研究时变线性系统的分析、综合和各种特性。数值方法和近似方法的研究占有重要地位(见)。

与其他学科的关系很多实际系统(工程系统、生物系统、经济系统、社会系统等)都可用线性系统模型近似地描述,而线性系统理论和方法又比较成熟,因此它的应用范围十分

广泛。在航空、航天、化工、机械、电机等技术领域中,线性系统理论都有应用实例。在科学领域中,线性系统理论的研究不但为控制理论的其他分支提供了理论基础,而且对数学研究也提出了一些有实际意义的新问题。

参考书目

凯拉斯著,李清泉等译:《线性系统》,科学出版社,北京,1985。(T.Kailath,Linear Systems,Prentice-Hall,Inc.,Englewood Cliffs,N.J.,1980.

L.Zadeh and C.A.Desoer,Linear System Theory:AState Space Approach,McGraw-Hill,New Y ork,1963

经典控制理论

在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基础上,形成了较为完整的自动控制系统设计的频率法理论。1948年又提出了根轨迹法。至此,自动控制理论发展的第一阶段基本完成。

这种建立在频率法和根轨迹法基础上的理论,通常被称为经典控制理论。

&经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。通常是采用反馈控制,构成所谓闭环控制系统。经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。

1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;出描述方式,这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;

2.经典控制理论采用试探法设计系统。即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。虽然这种设计方法具有实用等很多优点,但是,在推理上却是不能令人满意的,效果也不是最佳的,人们自然提出这样一个问题,即对一个特定的应用课题,能否找到最佳的设计。综上所述,经典控制理论的最主要的特点是:线性定常对象,单输入单输出,完成镇定任务。即便对这些极简单的对象、对象描述及控制任务,理论上也尚不完整,从而促使现代控制理论的发展:对经典理的精确化、数学化及理论化。

现代控制理论

现代控制理论中首先得到透彻研究的是多输入多输出线性系统,其中特别重要的是对刻划控制系统本质的基本理论的建立,如可控性、可观性、实现理论、典范型、分解理论等,使控制由一类工程设计方法提高为一门新的科学。同时为满足从理论到应用,在高水平上解决很多实际中所提出控制问题的需要,促使非线性系统、最优控制、自适应控制、辩识与估计理

相关文档
最新文档